
CSCI-1680
Layering and Encapsulation

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• HW0: Due TODAY by 11:59pm
• Container setup: due by Thursday

– If you have issues, please fill out the form

• Snowcast out later today (look for Ed post)
– Gearup Thursday 1/29 5-7pm CIT368 (+ recorded)

• Milestone due by Monday 2/2 by 11:59pm EDT
– Warmup and first steps + design doc for the rest

STARTAFTER LEC3

to
CIT 165

Topics for Today

• Layering and Encapsulation
• Intro to IP, TCP, UDP
• Demo on sockets

4

Map of the Internet, 2021 (via BGP)
OPTE project

How do we make sense of all this?

Examples from discussion:

Making physical links

Getting stuff to arrive in order

Reliability

Identifying all the things

Concurrency

Managing paths

Multiplexing

Security

Solve with abstractions: break problem into parts,
solve parts independently

=> Layers

How do we make sense of all this?

• Very large number of computers
• Diverse of technologies and constraints
• Lots of multiplexing
• No single administrative entity

Evolving demands, protocols, apps => different requirements!

Layering

Abstraction to the rescue!
Idea: Break problem into separate parts, solve part independently

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Encapsulate data from “higher layer” inside “lower layer”
=> Lower layer can handle data without caring what’s above it!

Analogy: how to deliver a package?

1 JAN

ii
Add metadata that tells us where data
should go ("label on package")

Data: content, also called payload

Metadata: header

The big complex picture

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Application Protocol (L7)

Transport Protocol (L4)

Network Protocol (L3)

Link-Layer Protocol (L2)

“OSI reference model” or “7-layer model”

Today's goals
=> Introduce the most fundamental abstractions and why
we have them
=> Introduce key features you need to know now to write
programs that use the network

Don't worry: We're going to break down each layer
in detail in the rest of the course!

Applications (Layer 7)

The applications/programs/etc you use every day

Examples
• HTTP/HTTPS: Web traffic (browser, etc)
• SSH: secure shell
• FTP: file transfer
• DNS (more on this later)
• …

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

When you’re building programs,
you usually work here

How to make apps use the network?

print(“Hello world”)

send(“Hello world”)

5

How to make apps use the network?

print(“Hello world”)

send(“Hello world”)

ÞWant to send useful messages, not packets
ÞDon’t have to care about how path packet takes

to get from A->B, we just want it to get there

I

Next layer: transport
layer

Apps rely on: transport layer (layer 4)
Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

OS provides interface for "sockets": API for making network
connections

Creates a "pipe" to send/recv data to another endpoint, like a file
descriptor

Two classsic transport layer protocols:

 TCP (reliable) and UDP (unreliable)

OS needs to keep track of which sockets belong to which app =>
multiplexing

Apps rely on: transport layer (layer 4)
Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

OS provides as "socket interface": API in the OS for making network connection

For an app, creates a "pipe" to send/recv data to for from another endpoint

 => Think like a file descriptor

OS keeps track of which sockets belong to which app => multiplexing

Apps rely on: transport layer (layer 4)

• Provided by OS as socket interface
• For app, creates a ”pipe” to send/recv data to/from another

endpoint (think like a file descriptor)
• OS keeps track of sockets which sockets belong to which

app => multiplexing

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

A 0B

Transport layer: multiplexing applications

Multiplexing provided by port numbers
– 16-bit number 0—65535
– Servers use well-known port numbers, clients

typically choose one at random

Two classic protocols we'll see:
 - TCP (reliable)
 - UDP (unreliable)
(lots more on this later)

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Port Service

22 Secure Shell (SSH)

25 SMTP (Email)

80 HTTP (Web traffic)

443 HTTPS (Secure Web traffic)

16800 Snowcast

What service does the transport layer need?

Layer 3: Network layer
Provided by: Internet Protocol (IP)
• Move packets between any two

hosts anywhere on the Internet
• Responsible for routing and

forwarding between nodes

Every host has a unique address:
www.cs.brown.edu => 128.148.32.110

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Given address, the network knows how to get the packet there

Anatomy of a packet

LY
TRANSPORT

B
ROUTERS

a

network
A B

481 128.34 110

128,148 X X

Lower layers

Link layer (L2): Individual links between nodes
 => Ethernet, wifi, cellular, …

Physical layer (L1): how to move bits over link
 => Engineering/physics problem

The OS sees links as interfaces
=> Each one probably has a driver that implements that particular protocol

Examples
• Wifi
• Cellular Data
• Ethernet
• Fiber optic
• …

What you should take away from this

Layer N Each layer is defined by some protocol

1

What you should take away from this

Layer N Each layer is defined by some protocol

Layer N-1

Layer N uses the services provided by N-1 to operate

What you should take away from this

Layer N
Each layer is defined by some protocol

Layer N-1

Layer N+1

Each layer provides a service for the layers “above” it

Layer N uses the services provided by N-1 to operate

IP as the “narrowing point”

• Applications built using IP
• IP connects many heterogeneous networks

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

“Hourglass” structure => one (actually two) core abstractions!

Why do we do this?

• Helps us manage complexity
• Different implementations at one “layer” use same

interface
• Allows independent evolution

To recap

3. Network Service: move packets to any other node in the network
IPv4, IPv6 => (Unreliable)

To recap

3. Network

2. Link

1. Physical Service: move bits across link
(Electrical engineering problem)

Service: move frames to other node via link
 (eg. Ethernet, Wifi, …)

Service: move packets to any other node in the network
IPv4, IPv6 => (Unreliable)

To recap

3. Network

2. Link

1. Physical

5. Transport

Service: move bits across link
(Electrical engineering problem)

Service: move frames to other node via link
 (eg. Ethernet, Wifi, …)

Service: multiplexing applications
TCP: Reliable byte stream
UDP: Unreliable messages

Service: move packets to any other node in the network
IPv4, IPv6 => (Unreliable)

To recap

3. Network

2. Link

1. Physical

5. Transport

7. Application

Service: move bits to other node across link
(Electrical engineering problem)

Service: move frames to other node across link.
 (eg. Ethernet, Wifi, …)

Service: user-facing application. (eg. HTTP, SSH, …)
Application-defined messages

Where do we handle, eg, security, reliability, fairness?

Service: move packets to any other node in the network
IPv4, IPv6 => (Unreliable)

Service: multiplexing applications
TCP: Reliable byte stream
UDP: Unreliable messages

How/where to handle challenges?

Can decide on how to distribute certain problems
– What services at which layer?
– What to leave out?
– More on this later (“End-to-end principle”)

Example: Why bother having (unreliable) UDP, when TCP
provides a reliable way to send data?

Get to decide where (and if) to pay the “cost” of certain features

Anatomy of a packet

What are the things that we need to know
about B to connect to it?

IP address

Port number

What kind of transport (TCP, UDP)

A B
127.0 0.1
PORT

WANT
TO

LISTEN

Example: communicating via UDP

1

1

UDP: Unreliable transport protocol

 => Just send the packets, doesn't care if they actually arrive

 => Sender won't know if the packet reached the destination

We'll break this down further next lecture!

