CSCI-1680
Layering and Encapsulation

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Maziéres, Phil Levis, John Jannotti

Administrivia

HWO: Due TODAY by 11:59pm

» Container setup: due by Thursday
— If you have issues, please fill out the form
_» Srper Aefer LECS
* Snowcast out later today (look for Ed post)
— Gearup Thursday 1/29 5-7pm @288 (+ recorded)

CIT 16S
* Milestone due by Monday 2/2 by 11:59pm &@

— Warmup and first steps + design doc for the rest

Topics for Today

» Layering and Encapsulation
 Intro to IP, TCP, UDP
* Demo on sockets

Map of the Internet, 2021 (via BGP)
OPTE project

*

Color Chart

North America (ARIN)
Europe (RIPE)

Africa (AFRINIC)
Backbone

How do we make sense of all this?

Examples from discussion:
Making physical links
Getting stuff to arrive in order

Reliability

|dentifying all the things

Concurrency Solve with abstractions: break problem into parts,
Managing paths solve parts independently

Multiplexing => Layers

Security

How do we make sense of all this?

« Very large number of computers

» Diverse of technologies and constraints
 Lots of multiplexing

* No single administrative entity

Evolving demands, protocols, apps => different requirements!

Layering
o

TCP UDP
Link Layer

Abstraction to the rescue!

Idea: Break problem into separate parts, solve part independently

Encapsulate data from “higher layer” inside “lower layer”
=> Lower layer can handle data without caring what's above it!

Analogy: how to deliver a package7

A\

Add metadata that tells us where data
should go ("label on package")

Data: content, also called payload
Metadata: header

N\

Moez MeqpoATA

/I/IE'fﬁDA'fA
\ _

Cawﬂ\/?//

-

/

The big complex picture

End host End host

App/ication Protocol (L 7) Application Application

- — | |

Presentation Presentation

Session Session

Transport Protocol (L4) Transport =~ " Transport
’\
| |
Network Protocol (L3) Network = Network Network
~ | | |
Link-Layer Protocol (L2) Data link «= = Data link Data link = Data link

| | | |
Physical Physical — Physical Physical

—

Today's goals

=> Introduce the most fundamental abstractions and why
we have them

=> Introduce key features you need to know now to write
programs that use the network

Don't worry: We're going to break down each layer
in detail in the rest of the course!

Applications (Layer 7) S—

TCP UbP
Link Layer

The applications/programs/etc you use every day

Examples

« HTTP/HTTPS: Web traffic (orowser, etc)

e SSH: secure shell

« FTP: file transfer

* DNS (more on this later) =

‘ e o o .
When you’re building programs, - l -
D
you usually work here ® (

How to make apps use the network?

print(“Hello world”)

send(“Hello world”)

How to make apps use the network?

print(“Hello world”)

send(“Hello world”)

-

— Want to send useful messages, not packets
= Don’t have to care about how path packet takes

.

to get from A->B, we just want it to get there

%

Next layer: transport
layer

Apps rely on: transport layer (layer 4)

Application

:
O?{p«e«@s interface for "sockets": API for maka e

cBnnections

Creates a "pipe" to send/recv data to another endpoint, like a file
descriptor
Two classsic transport layer protocols:

TCP (reliable) and UDP (unreliable)

OS needs to keep track of which sockets belong to which app =>
multiplexing

Apps rely on: transport Iayer_aagLeLél

. Application

70/\62

Link Layer

OS provides as "socket interface": API in the OS for making network connection

For an app, creates a "pipe" to send/recv data to for from another endpoint
=> Think like a file descriptor

OS keeps track of which sockets belong to which app => multiplexing

—

Apps rely on: transport layer (layer 4)

Application

Link Layer

Provided by OS as socket interface

For app, creates a "pipe” to send/recv data to/from another
endpoint (think like a file descriptor)

OS keeps track of sockets which sockets belong to which
app => multiplexing

Transport layer: multiplexing applications

Multiplexing provided by port numbers TCP

— 16-bit number 0—65535

— Servers use well-known port numbers, clients
typically choose one at random

Port Service

Two classic protocols we'll see:
22 Secure Shell (SSH)

- TCP (reliable)

) 25 SMTP (Email)
- UDP (unreliable) 80 HTTP (Web traffic)
(lots more on this later) :
443 HTTPS (Secure Web traffic)
\—) 16800 Snowcast

[What service does the transport layer need?

Application

Layer 3: Network layer

Provided by: Internet Protocol (IP)

* Move packets between any two
hosts anywhere on the Internet

* Responsible for routing and
forwarding between nodes

Every host has a unique address:
www.cs.brown.edu => 128.148.32.110

[Given address, the network knows how to get the packet there }

Wi-Fi TCP/IP DNS WINS 802.1X Proxies Hardware

Configure IPv4: Using DHCP e
IPv4 Address: 172.17.48.252 Renew DHCP Lease
Subnet Mask: 255.255.255.0 DHCP Client ID:

(If required)
Router: 172.17.48.1

Configure IPv6: Automatically e

Router:
IPv6 Address:

Prefix Length:

Cancel

Lo A—" > B

T2pwspr R 0UTER S

N
7 A%\W
Lk b

[16 12637, 10
(28110 % F

Anatomy of a packet

Frame 100: 452 bytes on wire (3616 bits), 452 bytes captured (3616 bits) on interface en®, id @

Ethernet II, Src: Apple_15:8e:b8 (f0:18:98:15:8e:b8), Dst: Cisco_c5:2c:a3 (f8:c2:88:c5:2c:a3)
> Internet Protocol Version 4, Src: 172.17.48.252, Dst: 128.148.32.12

Transmission Control Protocol, Src Port: 52725, Dst Port: 80, Seq: 1, Ack: 1, Len: 386

Hypertext Transfer Protocol

0000 f8 ,
0010 01 ce @@

0020 20 - P W-F
08 P 6---1

85 "GET / HTTP/1.1
od Host: <cs.brown
2e .edu- -Us er-Agent
3a : Mozill a/5.0 (M

0

Lower layers

Link layer (L2): Individual links between nodes

=> Ethernet, wifi, cellular, ...

Physical layer (L1): how to move bits over link Examp\'/f/_sf,
S ITI
=> Engineering/physics problem + Cellular Data
LL W/F) e Ethernet
CE /@jﬁ L@ « Fiber optic
<" —

The OS sees links as interfaces
=> Each one probably has a driver that implements that particular protocol

What you should take away from this

I I I » Each layer is defined by some protocol

What you should take away from this

I I I » Each layer is defined by some protocol

‘ Layer N uses the services provided by N-1 to operate

Layer N-1

What you should take away from this

Layer N+1

‘ Each layer provides a service for the layers “above” it

I I I » Each layer is defined by some protocol

‘ Layer N uses the services provided by N-1 to operate

IP as the “narrowing point”

FTP HTTP NV

DA

N—

P

NET, NET, NET

n

* Applications built using IP
* [P connects many heterogeneous networks

[”Hourglass" structure => one (actually two) core abstractions!

Why do we do this?

* Helps us manage complexity

» Different implementations at one “layer” use same
interface

* Allows independent evolution

To recap

3. Network Service: move packets to any other node in the network
. IPv4, IPv6 => (Unreliable)

To recap

Service: move packets to any other node in the network

3. Network IPv4, IPv6 => (Unreliable)

Service: move frames to other node via link
(eg. Ethernet, Wifi, ...)

Service: move bits across link
(Electrical engineering problem)

1. Physical

To recap

Service: multiplexing applications
5. Transport TCP: Reliable byte stream
UDP: Unreliable messages

Service: move packets to any other node in the network

3. Network IPv4, IPv6 => (Unreliable)

Service: move frames to other node via link
(eg. Ethernet, Wifi, ...)

Service: move bits across link

1. Physical (Electrical engineering problem)

To recap

Service: user-facing application. (eg. HTTP, SSH, ...)

7. Application Application-defined messages

Service: multiplexing applications
TCP: Reliable byte stream

5. Transport
UDP: Unreliable messages

Service: move packets to any other node in the network

3. Network e, e = (Urelfeisle)

Service: move frames to other node across link.
(eg. Ethernet, Wifi, ...)

Service: move bits to other node across link
(Electrical engineering problem)

Where do we handle, eg, security, reliability, fairness? }

anang

How/where to handle challenges?

Can decide on how to distribute certain problems

— What services at which layer?
— What to leave out?
— More on this later ("End-to-end principle”)

Example: Why bother having (unreliable) UDP, when TCP
provides a reliable way to send data?

Anatomy of a packet

Frame 100: 452 bytes on wire (3616 bits), 452 bytes captured (3616 bits) on interface en®, id @

Ethernet II, Src: Apple_15:8e:b8 (f0:18:98:15:8e:b8), Dst: Cisco_c5:2c:a3 (f8:c2:88:c5:2c:a3)
> Internet Protocol Version 4, Src: 172.17.48.252, Dst: 128.148.32.12

Transmission Control Protocol, Src Port: 52725, Dst Port: 80, Seq: 1, Ack: 1, Len: 386

Hypertext Transfer Protocol

0000 f8 ,
0010 01 ce @@

0020 20 - P W-F
08 P 6---1

85 "GET / HTTP/1.1
od Host: <cs.brown
2e .edu- -Us er-Agent
3a : Mozill a/5.0 (M

0

A 7

f)2 7.0.0.)
What are the things that we need to know /L7 500
about B to connect to it? Z/mp
IP address
Port number VOANT
What kind of transport (TCP, UDP) W
LISTEN)

—

> 6355 91.294778 128.148.205.238 66.228.43.75 HTTP 520 GET /assets/staff/ckiml167.jpg HTTP/1.1

6376 91.294973 66.228.43.75 128.148.205.238 HTTP 2600 HTTP/1.1 200 OK (JPEG JFIF image)
- 6383 91.295255 66.228.43.75 128.148.205.238 HTTP 2481 HTTP/1.1 200 OK (JPEG JFIF image)

6441 91.395012 128.148.205.48 66.228.43.75 HTTP 413 GET /favicon.ico HTTP/1.1

Frame 6355: 520 bytes on wire (4160 bits), 520 bytes captured (4160 bits) on interface sshdump, id 0
Ethernet II, Src: Cisco_9f:f0:03 (00:00:0c:9f:f0:03), Dst: f2:3c:91:6e:e3:el (f2:3c:91:6e:e3:el)
Internet Protocol Version 4, Src: 128.148.205.238, Dst: 66.228.43.75
Transmission Control Protocol, Src Port: 63872, Dst Port: 80, Seq: 4405, Ack: 303891, Len: 454

GET /assets/staff/ckiml67.jpg HTTP/1.1\r\n

Host: test.cs1680.systems\r\n

Connection: keep-alive\r\n

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like Geck..

Accept: image/avif,image/webp,image/apng, image/svg+xml, image/*,*/*;q=0.8\r\n

Referer: http://test.cs1680.systems/staff/\r\n

Accept-Encoding: gzip, deflate\r\n

Accept-Language: 1t,en-US;q=0.9,en;q=0.8,ru;q=0.7,pl;q=0.6\r\n

dnt: 1\r\n 43 68 72 6f 6d 65 2f 31 32 38 2e 30 2e 30 2e 30
sec—gpc: 1\r\n 20 53 61 66 61 72 69 2f 35 33 37 2e 33 36 0d 0a
\r\n 41 63 63 65 70 74 3a 20 69 6d 61 67 65 2f 61 76 .

[Full request URI: http://test.cs1680.systems/assets/staff/ckiml67.jpgl
[HTTP request 10/11]

[Prev request in frame: 6271]

[Response in frame: 6383]

[Next request in frame: 6549]

Example: communicating via UDP

U — _ We'll break this down further next lecture!
PP Ezxamre

(Recoyern)
(Sgupgn_) K LifTEMING G
74 ’,_/_,> Ponr <oo0
y Sy XDP
~ CREATE SockET — CEEATLC CockET Socxer()
Secr:r 1)

- UCTEN oW Poer guol)
SoOD

—Sepn PKET

Senpc)
\h'— (/\-).)‘/7’ /:0)2. j‘ kgcy(j

AACKET

MEEOL 78 fpoow
—(Por g

— PRT @or LiTemen OV B :
—7CP o WOP

UDP: Unreliable transport protocol
=> Just send the packets, doesn't care if they actually arrive
=> Sender won't know if the packet reached the destination

