
CSCI-1680
Layering and Encapsulation

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• HW0: Due TODAY by 11:59pm
• Container setup: due by Thursday

– If you have issues, please fill out the form

• Snowcast out later today (look for Ed post)
– Gearup Thursday 1/29 5-7pm CIT368 (+ recorded)

• Milestone due by Monday 2/2 by 11:59pm EDT
– Warmup and first steps + design doc for the rest

Topics for Today

• Layering and Encapsulation
• Intro to IP, TCP, UDP
• Demo on sockets

4

Map of the Internet, 2021 (via BGP)
OPTE project

How do we make sense of all this?

How do we make sense of all this?

• Very large number of computers
• Diverse of technologies and constraints

How do we make sense of all this?

• Very large number of computers
• Diverse of technologies and constraints
• Lots of multiplexing
• No single administrative entity

How do we make sense of all this?

• Very large number of computers
• Diverse of technologies and constraints
• Lots of multiplexing
• No single administrative entity

Evolving demands, protocols, apps => different requirements!

How do we solve this?

How do we solve this?
Abstractions

Strategy: break the problem down into parts, solve each problem
independently

How do we solve this?
Abstractions

=> Break the problem down into parts, solve each problem
independently

=> In networking, we call this layering

Analogy: how to deliver a package?

Layering
Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Layering

Abstraction to the rescue!
Idea: Break problem into separate parts, solve part independently

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Encapsulate data from “higher layer” inside “lower layer”
=> Lower layer can handle data without caring what’s above it!

The big complex picture

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Application Protocol (L7)

Transport Protocol (L4)

Network Protocol (L3)

Link-Layer Protocol (L2)

“OSI reference model” or “7-layer model”

Today's goals

Today's goals
=> Introduce the most fundamental abstractions and why
we have them
=> Introduce key features you need to know now to write
programs that use the network

Today's goals
=> Introduce the most fundamental abstractions and why
we have them
=> Introduce key features you need to know now to write
programs that use the network

Don't worry: We're going to break down each layer
in detail in the rest of the course!

Applications (Layer 7)

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Applications (Layer 7)

The applications/programs/etc you use every day

Examples
• HTTP/HTTPS: Web traffic (browser, etc)
• SSH: secure shell
• FTP: file transfer
• DNS (more on this later)
• …

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

When you’re building programs,
you usually work here

How to make apps use the network?

print(“Hello world”)

send(“Hello world”)

How to make apps use the network?

print(“Hello world”)

send(“Hello world”)

ÞWant to send useful messages, not packets
ÞDon’t have to care about how path packet takes

to get from A->B, we just want it to get there

Apps rely on: transport layer (layer 4)
Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Apps rely on: transport layer (layer 4)

• Provided by OS as socket interface
• For app, creates a ”pipe” to send/recv data to/from

another endpoint (think like a file descriptor)

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Apps rely on: transport layer (layer 4)

• Provided by OS as socket interface
• For app, creates a ”pipe” to send/recv data to/from another

endpoint (think like a file descriptor)
• OS keeps track of sockets which sockets belong to which

app => multiplexing

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Transport layer: multiplexing applications

Multiplexing provided by port numbers
– 16-bit number 0—65535
– Servers use well-known port numbers, clients

typically choose one at random

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Port Service

22 Secure Shell (SSH)

25 SMTP (Email)

80 HTTP (Web traffic)

443 HTTPS (Secure Web traffic)

16800 Snowcast

Transport layer: multiplexing applications

Multiplexing provided by port numbers
– 16-bit number 0—65535
– Servers use well-known port numbers, clients

typically choose one at random

Two classic protocols we'll see:
 - TCP (reliable)
 - UDP (unreliable)
(lots more on this later)

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Port Service

22 Secure Shell (SSH)

25 SMTP (Email)

80 HTTP (Web traffic)

443 HTTPS (Secure Web traffic)

16800 Snowcast

What service does the transport layer need?

Anatomy of a packet

Layer 3: Network layer

Provided by: Internet Protocol (IP)

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Layer 3: Network layer

Provided by: Internet Protocol (IP)
• Move packets between any two

hosts anywhere on the Internet
• Responsible for routing and

forwarding between nodes

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Layer 3: Network layer
Provided by: Internet Protocol (IP)
• Move packets between any two

hosts anywhere on the Internet
• Responsible for routing and

forwarding between nodes

Every host has a unique address:
www.cs.brown.edu => 128.148.32.110

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Given address, the network knows how to get the packet there

Lower layers

Link layer (L2): Individual links between nodes

Physical layer (L1): how to move bits over link Examples
• Wifi
• Cellular Data
• Ethernet
• Fiber optic
• …

Lower layers

Link layer (L2): Individual links between nodes
 => Ethernet, wifi, cellular, …

Physical layer (L1): how to move bits over link
 => Engineering/physics problem

The OS sees links as interfaces
=> Each one probably has a driver that implements that particular protocol

Examples
• Wifi
• Cellular Data
• Ethernet
• Fiber optic
• …

IP as the “narrowing point”

• Applications built using IP
• IP connects many heterogeneous networks

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

IP as the “narrowing point”

• Applications built using IP
• IP connects many heterogeneous networks

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

“Hourglass” structure => one (actually two) core abstractions!

What you should take away from this

Layer N Each layer is defined by some protocol

What you should take away from this

Layer N Each layer is defined by some protocol

Layer N-1

Layer N uses the services provided by N-1 to operate

What you should take away from this

Layer N
Each layer is defined by some protocol

Layer N-1

Layer N+1

Each layer provides a service for the layers “above” it

Layer N uses the services provided by N-1 to operate

Why do we do this?

• Helps us manage complexity
• Different implementations at one “layer” use same

interface
• Allows independent evolution

To recap

3. Network Service: move packets to any other node in the network
IPv4, IPv6 => (Unreliable)

To recap

3. Network

2. Link

1. Physical Service: move bits across link
(Electrical engineering problem)

Service: move frames to other node via link
 (eg. Ethernet, Wifi, …)

Service: move packets to any other node in the network
IPv4, IPv6 => (Unreliable)

To recap

3. Network

2. Link

1. Physical

5. Transport

Service: move bits across link
(Electrical engineering problem)

Service: move frames to other node via link
 (eg. Ethernet, Wifi, …)

Service: multiplexing applications
TCP: Reliable byte stream
UDP: Unreliable messages

Service: move packets to any other node in the network
IPv4, IPv6 => (Unreliable)

To recap

3. Network

2. Link

1. Physical

5. Transport

7. Application

Service: move bits to other node across link
(Electrical engineering problem)

Service: move frames to other node across link.
 (eg. Ethernet, Wifi, …)

Service: user-facing application. (eg. HTTP, SSH, …)
Application-defined messages

Where do we handle, eg, security, reliability, fairness?

Service: move packets to any other node in the network
IPv4, IPv6 => (Unreliable)

Service: multiplexing applications
TCP: Reliable byte stream
UDP: Unreliable messages

How/where to handle challenges?

Can decide on how to distribute certain problems
– What services at which layer?
– What to leave out?
– More on this later (“End-to-end principle”)

How/where to handle challenges?

Can decide on how to distribute certain problems
– What services at which layer?
– What to leave out?
– More on this later (“End-to-end principle”)

Example: Why bother having (unreliable) UDP, when TCP
provides a reliable way to send data?

Get to decide where (and if) to pay the “cost” of certain features

Anatomy of a packet

Example: communicating via UDP

Transport: UDP and TCP

UDP and TCP: most popular protocols atop IP
– Both use 16-bit port number & 32-bit IP address
– Applications bind a port & receive traffic on that port

• UDP – User (unreliable) Datagram Protocol
– Send packets to a port (… and not much else)
– Sent packets may be dropped, reordered, even duplicated

• TCP – Transmission Control Protocol
– Provides illusion of reliable ‘pipe’ or ‘stream’ between two processes

anywhere on the network
– Handles congestion and flow control

Uses of TCP

• Most applications use TCP
– Easier to program (reliability is convenient)
– Automatically avoids congestion (don’t need to worry about

taking down the network

• Servers typically listen on well-known ports:
– SSH: 22
– SMTP (email): 25
– HTTP (web): 80, 443

Uses of UDP

In general, when you have concerns other than a reliable
“stream” of packets:
• When latency is critical (late messages don’t matter)
• When messages fit in a single packet
• When you want to build your own (un)reliable protocol!

Examples
• DNS (port 53)
• Streaming multimedia/gaming (sometimes)

A note on layering

Strict layering not required
– TCP/UDP “cheat” to detect certain errors in IP-level information

like address
– Overall, allows evolution, experimentation

TCP UDP

IP
Network

Application

One more thing…

• Layering defines interfaces well
– What if I get an Ethernet frame, and send it as the payload of an

IP packet across the world?

• Layering can be recursive
– Each layer agnostic to payload!

• Many examples
– Tunnels: e.g.,

VXLAN is ETH over UDP (over IP over ETH again…)
– Our IP assignment: IP on top of UDP “links”

Example

X

GW ISP
ISP-Y
Switch

Cloud
Edge

Cloud
WAN

Y(us)

Server

Datacenter

④

③

⑥

⑦

③
④

③②①
Gateway

SLB

Server

T2
T1 T0

Outside our networks

Ingress flow
Egress flow

switch/router mirror w/ERSPAN

③②①

VLAN VXLAN
GRE

IP-in-IP ⑤

⑧

Outside flow
switch/router mirror w/GRE

Figure 1: The example scenario. We collect per-hop traces in our network (Y and ISP-Y-switch) and do not have the traces outside our
network except the ingress and egress of ISP-Y-switch. The packet format of each numbered network segment is listed in Table 1.

Number Header Format

Headers Added after Mirroring Mirrored Headers

¿ ETHERNET IPV4 ERSPAN ETHERNET IPV4 TCP
¡ ETHERNET IPV4 ERSPAN ETHERNET 802.1Q IPV4 TCP
¬ ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP
√ ETHERNET IPV4 GRE IPV4 UDP VXLAN ETHERNET IPV4 TCP
ƒ ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
≈ ETHERNET IPV4 GRE IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
∆ ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP
« ETHERNET IPV4 GRE IPV4 GRE ETHERNET IPV4 TCP

Table 1: The packet formats in the example scenario. Different switch models may add different headers before sending out the mirrored
packets, which further complicates the captured packet formats.

and reaches one of our switches that peers with the ISP (¿).
To provide a private network with the customer, the traffic is
first tagged with a customer-specific 802.1Q label (¡). Then,
it is forwarded in our backbone/WAN in a VXLAN tunnel
(¬). Once the traffic arrives at the destination datacenter
border (√), it goes through a load balancer (SLB), which
uses IP-in-IP encapsulation (ƒ,≈), and is redirected to a
VPN gateway, which uses GRE encapsulation (∆, «), before
reaching the destination server. Table 1 lists the corresponding
captured packet formats. Note that beyond the differences
in the encapsulation formats, different switches add different
headers when mirroring packets (e.g., ERSPAN vs GRE).
On the return path, the traffic from the VMs on our servers
is encapsulated with VXLAN, forwarded to the datacenter
border, and routed back to X.

Our network operators are called up for help. They must
answer two questions in a timely manner: 1) are the packets
dropped in our network? If not, can they provide any pieces
of evidence? 2) if yes, where do they drop? Though packet
drops seem to be an issue with many proposed solutions, the
operators still find the diagnosis surprisingly hard in practice.
Problem 1: many existing tools fail because of their spe-

cific assumptions and limitations. As explained in §2.1,
existing tools usually require 1) full access to the network
including end hosts [5, 20]; 2) specific topology, like the
Clos [52], or 3) special hardware features [21, 32, 42, 55]. In
addition, operators often need evidence for “the problem is
not because of” a certain part of the network (in this example,
our network but not ISP or the other cloud network), for prun-
ing the potential root causes. However, most of those tools
are not designed for this.

Since all these tools offer little help in this scenario, net-
work operators have no choice but to enable in-network cap-
turing and analyze the packet traces. Fortunately, we already
deployed a system that is similar to to [67], and are able to
capture per-hop traces of a portion of flows.
Problem 2: the basic trace analysis tools fall short for the

complicated problems in practice. Even if network opera-
tors have complete per-hop traces, to recover what happened
in the network is still a challenge. Records for the same pack-
ets spread across multiple distributed captures, and none of
the well-known trace analyzers such as Wireshark [2] have fa-
cilities to join traces from multiple vantage points. Grouping
them, even for the instances of a single packet across multiple
hops, is surprisingly difficult, because each packet may be
modified or encapsulated by middleboxes multiple times, in
arbitrary combinations.

Packet capturing noise further complicates analysis. Mir-
rored packets can get dropped on their way to collectors or
dropped by the collectors. If one just counts the packet oc-
currence on each hop, the real packet drops may be buried in
mirrored packet drops and remain unidentified. Again, it is
unclear how to address this with existing packet analyzers.

Because of these reasons, network operators resort to de-
veloping ad-hoc tools to handle specific cases, while still
suffering from the capturing noise.
Problem 3: the ad-hoc solutions are inefficient and usu-

ally cannot be reused. It is clear that the above ad-hoc tools
have limitations. First, because they are designed for specific
cases, the header parsing and analysis logic will likely be spe-
cific. Second, since the design and implementation have to be
swift (cloud customers are anxiously waiting for mitigation!),

3

Figure 1: The example scenario. We collect per-hop traces in our network (Y and ISP-Y-switch) and do not have the traces outside our
network except the ingress and egress of ISP-Y-switch. The packet format of each numbered network segment is listed in Table 1.

Number Header Format

Headers Added after Mirroring Mirrored Headers

¿ ETHERNET IPV4 ERSPAN ETHERNET IPV4 TCP
¡ ETHERNET IPV4 ERSPAN ETHERNET 802.1Q IPV4 TCP
¬ ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP
√ ETHERNET IPV4 GRE IPV4 UDP VXLAN ETHERNET IPV4 TCP
ƒ ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
≈ ETHERNET IPV4 GRE IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
∆ ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP
« ETHERNET IPV4 GRE IPV4 GRE ETHERNET IPV4 TCP

Table 1: The packet formats in the example scenario. Different switch models may add different headers before sending out the mirrored
packets, which further complicates the captured packet formats.

and reaches one of our switches that peers with the ISP (¿).
To provide a private network with the customer, the traffic is
first tagged with a customer-specific 802.1Q label (¡). Then,
it is forwarded in our backbone/WAN in a VXLAN tunnel
(¬). Once the traffic arrives at the destination datacenter
border (√), it goes through a load balancer (SLB), which
uses IP-in-IP encapsulation (ƒ,≈), and is redirected to a
VPN gateway, which uses GRE encapsulation (∆, «), before
reaching the destination server. Table 1 lists the corresponding
captured packet formats. Note that beyond the differences
in the encapsulation formats, different switches add different
headers when mirroring packets (e.g., ERSPAN vs GRE).
On the return path, the traffic from the VMs on our servers
is encapsulated with VXLAN, forwarded to the datacenter
border, and routed back to X.

Our network operators are called up for help. They must
answer two questions in a timely manner: 1) are the packets
dropped in our network? If not, can they provide any pieces
of evidence? 2) if yes, where do they drop? Though packet
drops seem to be an issue with many proposed solutions, the
operators still find the diagnosis surprisingly hard in practice.
Problem 1: many existing tools fail because of their spe-

cific assumptions and limitations. As explained in §2.1,
existing tools usually require 1) full access to the network
including end hosts [5, 20]; 2) specific topology, like the
Clos [52], or 3) special hardware features [21, 32, 42, 55]. In
addition, operators often need evidence for “the problem is
not because of” a certain part of the network (in this example,
our network but not ISP or the other cloud network), for prun-
ing the potential root causes. However, most of those tools
are not designed for this.

Since all these tools offer little help in this scenario, net-
work operators have no choice but to enable in-network cap-
turing and analyze the packet traces. Fortunately, we already
deployed a system that is similar to to [67], and are able to
capture per-hop traces of a portion of flows.
Problem 2: the basic trace analysis tools fall short for the

complicated problems in practice. Even if network opera-
tors have complete per-hop traces, to recover what happened
in the network is still a challenge. Records for the same pack-
ets spread across multiple distributed captures, and none of
the well-known trace analyzers such as Wireshark [2] have fa-
cilities to join traces from multiple vantage points. Grouping
them, even for the instances of a single packet across multiple
hops, is surprisingly difficult, because each packet may be
modified or encapsulated by middleboxes multiple times, in
arbitrary combinations.

Packet capturing noise further complicates analysis. Mir-
rored packets can get dropped on their way to collectors or
dropped by the collectors. If one just counts the packet oc-
currence on each hop, the real packet drops may be buried in
mirrored packet drops and remain unidentified. Again, it is
unclear how to address this with existing packet analyzers.

Because of these reasons, network operators resort to de-
veloping ad-hoc tools to handle specific cases, while still
suffering from the capturing noise.
Problem 3: the ad-hoc solutions are inefficient and usu-

ally cannot be reused. It is clear that the above ad-hoc tools
have limitations. First, because they are designed for specific
cases, the header parsing and analysis logic will likely be spe-
cific. Second, since the design and implementation have to be
swift (cloud customers are anxiously waiting for mitigation!),

3

* This is just an example, do not worry about the details, or the specific
protocols!
From: Yu et al., A General, Easy to Program and Scalable Framework for Analyzing In-
network Packet Traces, NSDI 2019

How do we use these protocols?

Using TCP/IP

How can applications use the network?
• Sockets API.

– Originally from BSD, widely implemented (*BSD, Linux, Mac OS,
Windows, …)

– Important to know and do once
– Higher-level APIs build on them

• After basic setup, it’s a lot like working with files

Sockets: Communication Between Machines

• Network sockets are file descriptors too
• Datagram sockets (eg. UDP): unreliable message

delivery
– Send atomic messages, which may be reordered or lost

• Stream sockets (TCP): bi-directional pipes
– Stream of bytes written on one end, read on another
– Reads may not return full amount requested, must re-read

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port
 listen – listen for clients
socket – make socket
bind* – assign address
connect – connect to listening socket
 accept – accept connection

• This call to bind is optional, connect can choose address & port.

Socket Naming

• TCP & UDP name communication endpoints
– IP address specifies host (128.148.32.110)
– 16-bit port number demultiplexes within host
– Well-known services listen on standard ports (e.g. ssh – 22, http

– 80, mail – 25)
– Clients connect from arbitrary ports to well known ports

• A connection is named by 5 components
– Protocol, local IP, local port, remote IP, remote port

Dealing with Data

• Many messages are binary data sent with precise formats

• Data usually sent in Network byte order (Big Endian)
– Remember to always convert!
– In C, this is htons(), htonl(), ntohs(), ntohl()

