CSCI-1680

Layering and Encapsulation

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

Administrivia

* HWO: Due TODAY by 11:59pm
» Container setup: due by Thursday

— If you have issues, please fill out the form

* Snowcast out later today (look for Ed post)
— Gearup Thursday 1/29 5-7pm CIT368 (+ recorded)

* Milestone due by Monday 2/2 by 11:59pm EDT

— Warmup and first steps + design doc for the rest

Topics for Today

» Layering and Encapsulation
 Introto IP, TCP, UDP
« Demo on sockets

Map of the Internet, 2021 (via BGP)
OPTE project

Color Chart
North America (ARIN)
Europe (RIPE)

Africa (AFRINIC)
Backbone

How do we make sense of all this?

How do we make sense of all this?

Very large number of computers
Diverse of technologies and constraints

How do we make sense of all this?

Very large number of computers

Diverse of technologies and constraints
_ots of multiplexing

No single administrative entity

How do we make sense of all this?

» Very large number of computers
* Diverse of technologies and constraints
* Lots of multiplexing

* No single administrative entity

Evolving demands, protocols, apps => different requirements!

How do we solve this?

How do we solve this?
Abstractions

Strategy: break the problem down into parts, solve each problem
independently

How do we solve this?
Abstractions

=> Break the problem down into parts, solve each problem
independently

[=> |In networking, we call this layering }

Analogy: how to deliver a package?

Layering

Application

TCP UDP
Link Layer

Layering
EC

TCP UDP
Link Layer

Abstraction to the rescue!

|dea: Break problem into separate parts, solve part independently

Encapsulate data from “higher layer” inside “lower layer”
=> Lower layer can handle data without caring what’s above it!

Application Protocol (L7)

Transport Protocol (L4)

Network Protocol (L3)

Link-Layer Protocol (L2)

End host

Application
|

Presentation

Session

Transport ~

Network ~ Network

| |
Data link = Data link
| |

Physical Physical

The big complex picture

End host

Application
|

Presentation

Session

Transport

Network Network

| |
Data link — Data link
| |

Physical Physical

Today's goals

Today's goals

=> |Introduce the most fundamental abstractions and why
we have them

=> |Introduce key features you need to know now to write
programs that use the network

Today's goals

=> |Introduce the most fundamental abstractions and why
we have them

=> |Introduce key features you need to know now to write
programs that use the network

Don't worry: We're going to break down each layer
in detail in the rest of the course!

Applications (Layer 7)

Applications (Layer 7)

Link Layer

The applications/programs/etc you use every day

Examples

« HTTP/HTTPS: Web traffic (browser, etc)

e SSH: secure shell

« FTP: file transfer

* DNS (more on this later) =

. e o o ‘
When you're building programs, & J_ -
. (
you usually work here ®

How to make apps use the network?

print(“Hello world”

send(“Hello world”

How to make apps use the network?

print(“Hello world”)

send(“Hello world”)

-

— Want to send useful messages, not packets
= Don't have to care about how path packet takes
to get from A->B, we just want it to get there

- /

Apps rely on: transport layer (layer 4)

TCP UDP

Link Layer

Apps rely on: transport layer (layer 4)

TCP UDP

Link Layer

* Provided by OS as socket intertace

» For app, creates a "pipe” to send/recv data to/from
another endpoint (think like a file descriptor)

Apps rely on: transport layer (layer 4)

Application

Link Layer

Provided by OS as socket interface

For app, creates a "pipe” to send/recv data to/from another
endpoint (think like a file descriptor)

OS keeps track of sockets which sockets belong to which
app => multiplexing

Transport layer: multiplexing applications
Multiplexing provided by port numbers TP uDP
— 16-bit number 0—65535

— Servers use well-known port numbers, clients
typically choose one at random

Link Layer

Port Service
Secure Shell (SSH)

SMTP (Email)
HTTP (Web traffic)

HTTPS (Secure Web traffic)

Snowcast

Transport layer: multiplexing applications

TCP UDP

Multiplexing provided by port numbers
— 16-bit number 0—65535 Link Layer

— Servers use well-known port numbers, clients
typically choose one at random

Port Service
22 Secure Shell (SSH)

25 SMTP (Email)

80 HTTP (Web traffic)

443 HTTPS (Secure Web traffic)
16800 Snowcast

Two classic protocols we'll see:
- TCP (reliable)
- UDP (unreliable)

(lots more on this later)

[What service does the transport layer need?

Anatomy of a packet

Frame 100: 452 bytes on wire (3616 bits), 452 bytes captured (3616 bits) on interface en@, id 0

Ethernet II, Src: Apple_15:8e:b8 (f0:18:98:15:8e:b8), Dst: Cisco_c5:2c:a3 (f8:c2:88:c5:2c:a3)
> Internet Protocol Version 4, Src: 172.17.48.252, Dst: 128.148.32.12

Transmission Control Protocol, Src Port: 52725, Dst Port: 80, Seq: 1, Ack: 1, Len: 386

Hypertext Transfer Protocol

0000 f8 02 ’ E-
Q-

2010 01 94 cee @@ v
0020 20 18 . P W-F
08 c9 P 6 i
85 31 "GET / HTTP/1.1
od 6e Host: c¢s.brown
2e 74 .edu- -Us er-Agent
3a 4d : Mozill a/5.0 (M

Application

Layer 3: Network layer

Link Layer

Provided by: Internet Protocol (IP

Layer 3: Network layer
o

Provided by: Internet Protocol (IP)

* Move packets between any two
hosts anywhere on the Internet

* Responsible for routing and
forwarding between nodes

Application

Layer 3: Network layer

Provided by: Internet Protocol (IP)

* Move packets between any two
hosts anywhere on the Internet

* Responsible for routing and
forwarding between nodes

Every host has a unique address:
www.cs.brown.edu => 128.148.32.110

[Given address, the network knows how to get the packet there }

Wi-Fi

Configure IPv4:
IPv4 Address:
Subnet Mask:

Router:

Configure IPv6:
Router:
IPv6 Address:

Prefix Length:

TCP/IP DNS

Using DHCP
172.17.48.252
255.2565.255.0

172.17.48.1

Automatically

WINS

802.1X Proxies

DHCP Client ID:

A
v

Hardware

Renew DHCP Lease

(If required)

Cancel

Lower layers

e
dite
Ny g
L
S — =

-
R . =~
¥ e Sy
-
— -

Link layer (L2): Individual links between nodes

Physical layer (L1): how to move bits over link Examples

o Wifi

Cellular Data
Ethernet
Fiber optic

Lower layers

Link layer (L2): Individual links between nodes

=> Ethernet, wifi, cellular, ...

Physical layer (L1): how to move bits over link Examp\'/\e/?f,
® Tl

=> Engineering/physics problem + Cellular Data
e Ethernet
* Fiber optic

The OS sees links as interfaces
=> Each one probably has a driver that implements that particular protocol

|

IP as the “narrowing point”

FTP HTTP NV TFTP

DA

N—

IP

NET, NET, ~~ NET,

* Applications built using IP
* |P connects many heterogeneous networks

IP as the “narrowing point”

FTP HTTP NV

DA

N—

IP

NET, NET, ~~ NET,

* Applications built using IP
* |P connects many heterogeneous networks

[”Hourglass" structure => one (actually two) core abstractions!

What you should take away from this

I I I » Each layer is defined by some protocol

What you should take away from this

I I I » Each layer is defined by some protocol

‘ Layer N uses the services provided by N-1 to operate

Layer N-1

What you should take away from this

Layer N+1

‘ Each layer provides a service for the layers “above” it

I I I » Each layer is defined by some protocol

‘ Layer N uses the services provided by N-1 to operate

Layer N-1

Why do we do this?

* Helps us manage complexity

» Different implementations at one “layer” use same
interface

» Allows independent evolution

To recap

3 Network Service: move packets to any other node in the network
. IPv4, IPvé6 => (Unreliable)

To recap

Service: move packets to any other node in the network

3. Network IPv4, IPv6 => (Unreliable)

Service: move frames to other node via link
(eg. Ethernet, Wifi, ...)

Service: move bits across link
(Electrical engineering problem)

1. Physical

To recap

Service: multiplexing applications
5. Transport TCP: Reliable byte stream
UDP: Unreliable messages

Service: move packets to any other node in the network
IPv4, IPv6 => (Unreliable)

3. Network

Service: move frames to other node via link
(eg. Ethernet, Wifi, ...)

Service: move bits across link
(Electrical engineering problem)

1. Physical

To recap

Service: user-facing application. (eg. HTTP, SSH, ...)

7. Application Application-defined messages

Service: multiplexing applications
5. Transport TCP: Reliable byte stream
UDP: Unreliable messages

Service: move packets to any other node in the network

3. Network IPv4, IPv6 => (Unreliable)

Service: move frames to other node across link.
(eg. Ethernet, Wifi, ...)

Service: move bits to other node across link
(Electrical enaineering problem)

Where do we handle, eg, security, reliability, fairness? J

aanan

How/where to handle challenges?

Can decide on how to distribute certain problems
— What services at which layer?
— What to leave out?
— More on this later ("End-to-end principle”)

How/where to handle challenges?

Can decide on how to distribute certain problems

— What services at which layer?
— What to leave out?
— More on this later ("End-to-end principle”)

Example: Why bother having (unreliable) UDP, when TCP
provides a reliable way to send data?

Anatomy of a packet

Frame 100: 452 bytes on wire (3616 bits), 452 bytes captured (3616 bits) on interface en@, id 0

Ethernet II, Src: Apple_15:8e:b8 (f0:18:98:15:8e:b8), Dst: Cisco_c5:2c:a3 (f8:c2:88:c5:2c:a3)
> Internet Protocol Version 4, Src: 172.17.48.252, Dst: 128.148.32.12

Transmission Control Protocol, Src Port: 52725, Dst Port: 80, Seq: 1, Ack: 1, Len: 386

Hypertext Transfer Protocol

0000 f8 02 ’ E-
Q-

2010 01 94 cee @@ v
0020 20 18 . P W-F
08 c9 P 6 i
85 31 "GET / HTTP/1.1
od 6e Host: c¢s.brown
2e 74 .edu- -Us er-Agent
3a 4d : Mozill a/5.0 (M

6355 91.294778 128.148.205.238 66.228.43.75 HTTP 520 GET /assets/staff/ckiml67.jpg HTTP/1.1

6376 91.294973 66.228.43.75 128.148.205.238 HTTP 2600 HTTP/1.1 200 OK (JPEG JFIF image)
6383 91.295255 66.228.43.75 128.148.205.238 HTTP 2481 HTTP/1.1 200 OK (JPEG JFIF image)

6441 91.395012 128.148.205.48 66.228.43.75 HTTP 413 GET /favicon.ico HTTP/1.1

Frame 6355: 520 bytes on wire (4160 bits), 520 bytes captured (4160 bits) on interface sshdump, id @
Ethernet II, Src: Cisco_9f:f0:03 (00:00:0c:9f:f0:03), Dst: f2:3c:91:6e:e3:el1 (f2:3c:91:6e:e3:el)
Internet Protocol Version 4, Src: 128.148.205.238, Dst: 66.228.43.75

Transmission Control Protocol, Src Port: 63872, Dst Port: 80, Seq: 4405, Ack: 303891, Len: 454

v Hypertext Transfer Protocol

GET /assets/staff/ckiml67.jpg HTTP/1.1\r\n

Host: test.cs1680.systems\r\n

Connection: keep—alive\r\n

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like Geck..
Accept: image/avif, image/webp,image/apng, image/svg+xml, image/*,*/*;q=0.8\r\n
Referer: http://test.cs1680.systems/staff/\r\n

Accept-Encoding: gzip, deflate\r\n

Accept-Language: 1t,en-US;q=0.9,en;q=0.8,ru;q=0.7,p1l;q=0.6\r\n

dnt: 1\r\n

sec—gpc: 1\r\n

\r\n

[Full request URI: http://test.cs1680.systems/assets/staff/ckiml67.jpgl
[HTTP request 10/11]

[Prev request in frame: 6271]

[Response in frame: 6383]

[Next request in frame: 6549]

45
42
80
ea
73
67
3a
73
6e
73
6¢C
68
58
57
48
29
2e
od
61
69
2f
2C
72
2e
73
be
65
61
53
2C
2e
67

Example: communicating via UDP

Transport: UDP and TCP

UDP and TCP: most popular protocols atop IP

— Both use 16-bit port number & 32-bit IP address
— Applications bind a port & receive traffic on that port

* UDP - User (unreliable) Datagram Protocol
— Send packets to a port (... and not much else)
— Sent packets may be dropped, reordered, even duplicated

e TCP = Transmission Control Protocol

— Provides illusion of reliable ‘pipe’ or ‘stream’ between two processes
anywhere on the network

— Handles congestion and flow control

Uses of TCP

* Most applications use TCP
— Easier to program (reliability is convenient)
— Automatically avoids congestion (don’t need to worry about
taking down the network
» Servers typically listen on well-known ports:
— SSH: 22
— SMTP (email): 25
— HTTP (web): 80, 443

Uses of UDP

In general, when you have concerns other than a reliable
“stream” of packets:

* When latency is critical (late messages don’t matter)
» When messages fit in a single packet
* When you want to build your own (un)reliable protocol!

Examples
* DNS (port 53)
« Streaming multimedia/gaming (sometimes)

A note on layering

Application

IP

Strict layering not required

— TCP/UDP “cheat” to detect certain errors in |IP-level information
like address

— Overall, allows evolution, experimentation

One more thing...

« Layering defines interfaces well

— What it | get an Ethernet frame, and send it as the payload of an
IP packet across the world?

» Layering can be recursive
— Each layer agnostic to payload!

* Many examples

— Tunnels: e.g.,
VXLAN is ETH over UDP (over IP over ETH again...)

— Our IP assignment: IP on top of UDP “links”

--=-9 Ingress flow (] switch/router mirror w/ERSPAN
() switch/router mirror w/GRE

<4— Egress flow
Outside flow

ISP-Y

Server

Outside our networks

Number
Headers Added after Mirroring

ETHERNET 1PV4 ERSPAN ETHERNET
ETHERNET 1IPV4 ERSPAN ETHERNET
ETHERNET 1IPV4 ERSPAN ETHERNET
ETHERNET [IPV4 GRE
ETHERNET IPV4 ERSPAN ETHERNET
ETHERNET IPV4 GRE
ETHERNET 1IPV4 ERSPAN ETHERNET
ETHERNET [IPV4 GRE

CEACECNCNCRCNCNS

* This is just an example, do not worry about the details, or the specific

protocols!

From: Yu et al., A General, Easy to Program and Scalable Framework for Analyzing In-

network Packet Traces, NSDI 2019

\

Header Format

Datacenter (3)

Y —_—— —

Mirrored Headers

802.1Q
ETHERNET
ETHERNET
ETHERNET
ETHERNET
ETHERNET
ETHERNET

How do we use these protocols?

Using TCP/IP

How can applications use the network?

 Sockets API.

— Originally from BSD, widely implemented (*BSD, Linux, Mac OS,
Windows, ...)

— Important to know and do once
— Higher-level APIs build on them

» After basic setup, it's a lot like working with files

Sockets: Communication Between Machines

* Network sockets are tile descriptors too

« Datagram sockets (eg. UDP): unreliable message
delivery
— Send atomic messages, which may be reordered or lost

* Stream sockets (TCP): bi-directional pipes
— Stream of bytes written on one end, read on another
— Reads may not return full amount requested, must re-read

System calls for using TCP

Client Server
socket — make socket
bind — assign address, port
listen — listen for clients

socket — Make socket
bind* — assign address
connect — connect to listening socket
accept — accept connection

e This call to bind is optional, connect can choose address & port.

Socket Naming

» TCP & UDP name communication endpoints

— |IP address specifies host (128.148.32.110)
— 16-bit port number demultiplexes within host

— Well-known services listen on standard ports (e.g. ssh — 22, http
— 80, mail — 25)

— Clients connect from arbitrary ports to well known ports

* A connection is named by 5 components
— Protocol, local IP, local port, remote IP, remote port

Dealing with Data

* Many messages are binary data sent with precise formats

« Data usually sent in Network byte order (Big Endian)
— Remember to always convert!
— In C, this is htons(), htonl(), ntohs(), ntohl()

