CSCI-1680
Sockets and network programming

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Maziéres, Phil Levis, John Jannotti



Administrivia

 Container setup: fill out form by TONIGHT (1/29)

— Whether or not you have it working

Snowcast is out!
* Gearup Today 1/29 5-7pm CIT165 (+Zoom, recorded)

— Look at the notes!

* Milestone due by Monday, 2/2 by 11:59pm EST

— Warmup + design doc




Topics for Today

« Working with sockets
« TCP & UDP
* Building a protocol



Sockets: Communication Between Machines

* Network sockets are file descriptors!
« UDP (“datagram sockets”)
=> Connectionless: unreliable message delivery

« TCP (“stream sockets”)
— Reliable, connection-oriented...



(PP Expmpre

Last time we ended on talking about the differences between UDP and TCP. We're
going to see a bit more of that, and then we're going to start building an application.

Let's go back to our UDP example: we had a sender and a receiver

SE IVDE;& PECEIVER
s ysCAeL )4‘ ’/_/>j2 i
Dial(). ListenUDP()
Create UDP socket ~SG¢KeT ( ) Create UDP socket, ScCkeT 9)
Listen-on port 5000
=2 CPREArES <S> BIMD()

FILE DESCRIPIOR

Send packet

(in format required by protocol) '
Sern () \; Wait for a packet to arrive

<enprol) blocks) — frev
REcvFeay()

Where does this APl come from?

This is defined by the OS interface, and most OSes follow something similar to the
"Berkeley socket API". In Linux, the core operations are system calls, and every
language wraps the system calls in some way. Here are those syscalls

=> Regardless of what language you use, or what new languages come about, you
want to think about this in terms of the system calls. Because when you interact
with the OS networking stack, no matter how much pretty stuff your language adds,
you're always working in terms of the system calls



Reliability

How connections
work

How data is sent

VDF

Unreliable: Don't know if
data arrived at its destination

"Connectionless"
=> Can send even with no
receiver online!

"Datagram service"
=> Order doesn't matter
=> Sending discrete things

Better when latency
matters,

or you don't care about the
data if it's late (video call)

7P

Reliable (we'll see how
later)

"Connection-oriented"
Unique socket for each
client connection

(eg. A<->B, C <-> B)

"Reliable, in-order, byte stream"
=> Data you send can be any
size (TCP will reconstruct it in-
order on the other end)

N

LOE L ALK

MoLE AT THIS
Larer!




TCP Example

=> Has concept of "connections" between client and server

=> Reliable protocol (will retry packets)

Dial
Create TCP socket
Start connection

Send some data SEMD
- May be in multiple packets

- OS will make sure it gets
there (how? wait a few weeks)

Semvee.

A

Socki 70

"]

\
\\

Some key differences with TCP

=> Each client connection gets its own socket on the server => can be used to hold a
long-term communication between the server and one client (can send a lot of bytes over
multiple packets, just between A and B (like a pipe for each)

=> How does this work? Accept returns a NEW SOCKET for each client that connects
=> OS will make sure data is delivered reliably (or will return error)

PECEIVER.

— b

Listen()/etc <
Create TCP socket SockET
Listen on port 5000 B; N,

Accepty(). faem/

Wait for new connections
=> Returns a new file
descriptor for each client!

(Using client's FD)

Wait for data
RecV/




)I

In TCP: each client gets its own connection--you can think of this as a unique
"pipe" with which the server can communicate to each client independently.

In this way, TCP lets us send large amounts of data (which can't fit into a single
packet), since the protocol will ensure that it all arrives correctly, and in-order (eg.
sending files, web traffic, etc.)



Client-server example: Guessing_game n(
Server picks a random number O $@
Clients connect and can guess numbers

Server responds with too high, too low, or correct
First client to respond wins, restarts game GYESE

As the designers, we get to decide on the
format for how messages are exchanged
Here’s our format. In this version, every
message is 5 bytes:

[Fee | womgen i
) BYI¥ Y pyrs
7’()0 N) H*) :

60553 Protocol must give the arder of bytes => we’re saying it
= ﬂ: D should be big endian (ie] network byte order

Un Ban = Gukss
BESPOIXE

POMBEQ =) ToP e |
&, ézngzic’l’,
When we format the message as a byte ar ay we ordez each fleld asin the picture above: first the type, then the
number. For multi-byte data like integers, our protocol needs to specify the byte order (ie, the endianness) used to

send the data “over the wire”. In our protocol, we’ll use big endian, or “network byte order.” If our guess were the
number Oxaabbccdd, we’d format it like this:

PPk MG )
Z3B DI
o) [’”‘” AR B2 cc DO be

(ME TWolK 7
/MDEX 7»7)%
(N BYTE JRRAY) O I Z ? 7

......................................................................................................

o pb o 95 A LTE oo

.....................................................................................................

In Go we specify the byte order when marshaling the struct. In C, you would need to convert
the fields of your struct using helpers like ntohs(), htons(), etc, before casting your struct to a byte
array and sending it.




Demo: guessing game



Sockets: Communication Between Machines

» Network sockets file descriptors!

« Datagram sockets (eg. UDP): unreliable message
delivery
— Send atomic messages, which may be reordered or lost

* Stream sockets (TCP): bi-directional pipes
— Stream of bytes written on one end, read on another
— Reads may not return full amount requested, must re-read



System calls for using TCP

Client Server
socket — make socket
bind — assign address, port

1isten — listen for clients
socket — make socket

bind* — assign address
connect — connect to listening socket
accept — accept connection

e This call to bind is optional, connect can choose address & port.



Socket Naming

* TCP & UDP name communication endpoints
— |IP address specifies host (128.148.32.110)
— 16-bit port number demultiplexes within host
— Well-known services listen on standard ports (e.g. ssh — 22, http
— 80, mail = 25)
— Clients connect from arbitrary ports to well known ports

* A connection is named by 5 components
— Protocol, local IP, local port, remote IP, remote port



Dealing with Data

« Many messages are binary data sent with precise formats

* Data usually sent in Network byte order (Big Endian)
— Remember to always convert!
— In C, this is htons(), htonl(), ntohs(), ntohl()



