
CSCI-1680
Sockets and network programming

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• Container setup: fill out form by TONIGHT (1/29)
– Whether or not you have it working

Snowcast is out!
• Gearup Today 1/29 5-7pm CIT165 (+Zoom, recorded)

– Look at the notes!

• Milestone due by Monday, 2/2 by 11:59pm EST
– Warmup + design doc

Topics for Today

• Working with sockets
• TCP & UDP
• Building a protocol

Sockets: Communication Between Machines

• Network sockets are file descriptors!
• UDP (“datagram sockets”)
 => Connectionless: unreliable message delivery

• TCP (“stream sockets”)
– Reliable, connection-oriented...

Demo: guessing game

Sockets: Communication Between Machines

• Network sockets file descriptors!
• Datagram sockets (eg. UDP): unreliable message

delivery
– Send atomic messages, which may be reordered or lost

• Stream sockets (TCP): bi-directional pipes
– Stream of bytes written on one end, read on another
– Reads may not return full amount requested, must re-read

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port
 listen – listen for clients
socket – make socket
bind* – assign address
connect – connect to listening socket
 accept – accept connection

• This call to bind is optional, connect can choose address & port.

Socket Naming

• TCP & UDP name communication endpoints
– IP address specifies host (128.148.32.110)
– 16-bit port number demultiplexes within host
– Well-known services listen on standard ports (e.g. ssh – 22, http

– 80, mail – 25)
– Clients connect from arbitrary ports to well known ports

• A connection is named by 5 components
– Protocol, local IP, local port, remote IP, remote port

Dealing with Data

• Many messages are binary data sent with precise formats

• Data usually sent in Network byte order (Big Endian)
– Remember to always convert!
– In C, this is htons(), htonl(), ntohs(), ntohl()

