
CS1680
Physical Layer, Link Layer I

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• Snowcast: milestone due last night
– I will be reviewing today; look for an announcement for feedback,

reference doc

• Snowcast full submission: due Tuesday, Jan 10

Administrivia

• Snowcast: milestone due last night
– I will be reviewing today; look for an announcement for feedback,

reference doc, Gradescope

• Snowcast full submission: due Tuesday, Jan 10

Last call for registration stuff
• If you received an override, make sure you accept it. Check now!
• If you want to be enrolled but are not, email me ASAP

Today

• Two more things on sockets

• Physical/Link layer: how to connect two things
 => Inherent properties of real networks

Layers, Services, Protocols

Network

Link

Physical

Transport

Application

Move bits to another node across a link

Move frames to other nodes across a link

Move packets to any node in the network
Protocol: IP

Deliver packets to applications
(e.g., TCP, UDP)

Defined by application

Physical Layer (Layer 1)

Specifies three things:
• Physical medium
• Signaling/modulation
• Encoding

Physical Layer (Layer 1)

Specifies three things:
• Physical medium: cable, fiber, wireless frequency
• Signaling/modulation: how to transmit/receive
• Encoding: how to get meaningful data

Why should we care?

This is the line between electrical engineering and
computer science

Helpful to understand challenges involved
=> How design/limitations affect our systems

Why should we care?

This is the line between electrical engineering and
computer science

Helpful to understand challenges involved
=> How design/limitations affect our systems

Also: Learn important principles we’ll use elsewhere

The main idea

A B

The main idea

• Send/receive data over a medium (copper wire, fiber, radio frequency)
• Sender encodes message using some format, sends “over the wire”
• Receiver decodes (or recovers) message at the other end

A B

How does this work?

Why is this hard?

• Sharing channel: interference from other devices
• Noise
• Physical distance (attenuation)
• Energy usage
• Security
• …

Why is this hard?

• Sharing channel: interference from other devices
• Noise
• Physical distance (attenuation)
• Energy usage
• Security
• …

=> Every medium has its own characteristics, and problems

We don’t need to know the details.

However, there are some key takeways to help
understand the challenges and implications

Key points

Key points

1. All media have fixed bandwidth => fixed “space” to
transmit information

2. Sending data takes time! => latency

3. All media have (some) errors => how to deal with them?

Bandwidth

Bandwidth:

 Creates a fixed “space” in which data can be transmitted
=>Wires: defined by physical properties
Þ Wireless: frequency ranges are regulated

Bandwidth: frequencies that a channel propagates well
(Most signals made up of different frequencies)

Creates a fixed “space” in which data can be transmitted
=>Wires: defined by physical properties
Þ Wireless: frequency ranges are regulated

Bandwidth: frequencies that a channel propagates well
(Most signals made up of different frequencies)

Creates a fixed “space” in which data can be transmitted
=>Wires: defined by physical properties
Þ Wireless: frequency ranges are regulated

Upper bound on throughput: amount of data we
can send per time (bits per second)

Early IEEE 802.11 (Wifi) channel bandwidth

Early IEEE 802.11 (Wifi) channel bandwidth

How to actually send data?

(Within a limited bandwidth)

How to actually send stuff?

How to actually send stuff?

Modulation: how to vary a signal in order to transmit
information

Example: Start with a carrier frequency, modulate it to
encode data

Specifying the Signal: Modulation

On-Off Keying

(OOK)

1 0 1

Amplitude Shift

Keying (ASK)

1 0 1

Specifying the Signal: Modulation

On-Off Keying

(OOK)

1 0 1

Amplitude Shift

Keying (ASK)

1 0 1

OOK: On-Off Keying ASK: Amplitude Shift Keying

An (early) medium

An (early) medium

Example: Bell 103 modem (c. 1960s)
Uses frequency-shfit keying to encode data

Transmitting ("originating") side
 -1 ("Mark"): 1270 Hz
 -0 ("Space"): 1070 Hz

Receiving ("answering") side
 - 1 ("Mark"): 2225 Hz
 - 0 ("Space"): 2025 Hz

Example: Bell 103 modem (c. 1960s)
Uses frequency-shfit keying to encode data

Transmitting ("originating") side
 -1 ("Mark"): 1270 Hz
 -0 ("Space"): 1070 Hz

Receiving ("answering") side
 - 1 ("Mark"): 2225 Hz
 - 0 ("Space"): 2025 Hz

Throughput: 300 bits/second ("baud")

Transceiver: acoustic coupler

Lots of innovation since then!

But still some fundamental limitations
of the medium…

This can get more complex…

Lots of engineering you can do
• Multiple carriers/frequencies
• Adjust amplitude, phase
• Clever ways to avoid errors
• …

A good animation on Wikipedia

https://upload.wikimedia.org/wikipedia/commons/9/90/QAM16_Demonstration.gif

Example: Quadrature Amplitude Modulation (QAM)

PhaseAmplitu
de

Modulation schemes in action

• https://www.youtube.com/watch?v=vvr9AMWEU-c

https://www.youtube.com/watch?v=vvr9AMWEU-c

Sounds great, right?

The problem: noise limits the number of modulation levels (M)

Sounds great, right?

• Problem: noise limits the number of modulation levels (M)

Shannon’s Law: C = B log2(1 + S/N)
– C: channel capacity (throughput) in bits/second
– B : bandwidth in Hz
– S, N: average signal, noise power

Sounds great, right?

• Problem: noise limits the number of modulation levels (M)

Shannon’s Law: C = B log2(1 + S/N)
– C: channel capacity (throughput) in bits/second
– B : bandwidth in Hz
– S, N: average signal, noise power

Takeaway: fundamental limit on how much data we can fit into
a fixed channel, based on noise
=> For any medium, designers create encodings to try and
maximize throughput

Medium Bandwidth Throughput

Dialup
(1960s) 4 kHz

300 bits/s

Dialup 56 Kbit/s

=> Does this mean wifi is the best?

Medium Bandwidth Throughput

Dialup
(1960s) 4 kHz

300 bits/s

Dialup 56 Kbit/s

Early Wifi
(802.11g)

20 MHz 54 Mbit/s

Modern Wifi
(802.11ax)

20-40 MHz Up to 9 Gbps

Ethernet 62.5 MHz
(1Gbps version)

1Gbit/s (common)
Up to 100Gbps

3G cellular Depends on carrier 2 Mbit/s

5G cellular Depends on carrier > 1 GBps

=> Does this mean wifi is the best?

Latency

Sending data takes time!

Latency:

Sending data takes time!

Latency: time between sending data and when data arrives
(somewhere)

Multiple components => many definitions, depending on what
we’re measuring

How to think about latency

How to think about latency

Transmission Delay

Propagation Delay
Latency

How to think about latency

How to think about latency

• Processing delay at the node: per message computation

• Queuing delay: time spent waiting in buffers

• Transmission delay: sending out the actual data
– Size/Bandwidth

• Propagation delay: time for bits to actually go out on the wire
– Upper bound?
– Depends on media, ultimate upper bound is speed of light

Ping

Round trip time (RTT): time between request and response

Round trip time (RTT): time between request and response

When we design protocols,
can think about performance
 based on number of RTTs

Ti
m

e

Request

Response

=> Not just about the physical layer!

Sending Frames Across

Throughput: bits / s

…
…

Which matters most, bandwidth or delay?

• How much data can we send during one RTT?
• E.g., send request, receive file

Ti
m

e

Request

Response

Which matters most, bandwidth or delay?

• How much data can we send during one RTT?
• E.g., send request, receive file

Ti
m

e

Request

Response

Often: For small transfers, latency more important,
for bulk, throughput more important

Performance Metrics

• Throughput: Number of bits received/unit of time
– e.g. 100 Mbps

• Goodput: Useful bits received per unit of time

• Latency: How long for message to cross network

• Jitter: Variation in latency

Dealing with errors

Error Detection

• Basic idea: use a checksum
– Compute small check value, like a hash of packet

Error Detection

• Basic idea: use a checksum
– Compute small check value, like a hash of packet

• Good checksum algorithms
–Want several properties, e.g., detect any single-bit error
– Details later

=> Not all protocols do this. Why?

Error Detection and Correction

Error Detection

• Basic idea: use a checksum
– Compute small check value, like a hash of packet

• Good checksum algorithms
–Want several properties, e.g., detect any single-bit error
– Details later

Error Detection

• Idea: have some codes be invalid
–Must add bits to catch errors in packet

• Sometimes can also correct errors
– If enough redundancy
–Might have to retransmit

• Used in multiple layers

Simplest Schemes

• Example: send each bit 3 times
– Valid codes: 000 111
– Invalid codes : 001 010 011 100 101 110
– Corrections : 0 0 1 0 1 1

Parity

Add a parity bit to the end of a word
• Example with 2 bits:
– Valid: 000 011 101 110

– Invalid: 001 010 010 111

– Can we correct?

• Can detect odd number of bit errors
– No correction

In general

Hamming distance: number of bits that are different between two
codes
– E.g.: HD (00001010, 01000110) = 3

• If min HD between valid codewords is d:
– Can detect d-1 bit error
– Can correct ⌊(d-1)/2⌋ bit errors

• What is d for parity and 3-voting?

Checksums

Compute a “hash” over the message, send with message

Components of Latency

• Processing
– Per message, small, limits throughput
– e.g. or 120μs/pkt

• Queue
– Highly variable, offered load vs outgoing b/w

• Transmission
– Size/Bandwidth

• Propagation
– Distance/Speed of Light

€

100Mb
s

×
pkt

1500B
×
B
8b

≈ 8,333pkt /s

Reliable Delivery

• Several sources of errors in transmission
• Error detection can discard bad frames
• Problem: if bad packets are lost, how can we ensure

reliable delivery?
– Exactly-once semantics = at least once + at most once

On reliable delivery

• Many link layer protocols don’t account for reliable delivery!
– Eg. Wifi does, Ethernet does not

• Usually, reliable delivery guaranteed by other protocol layers if
needed, such as TCP

• Why might we NOT want reliable delivery at the link layer?

Maximizing Throughput

• Can view network as a pipe
– For full utilization want bytes in flight ≥ bandwidth × delay
– But don’t want to overload the network (future lectures)

• What if protocol doesn’t involve bulk transfer?
– Get throughput through concurrency – service multiple clients

simultaneously

Bandwidth-delay

Bandwidth

Delay

• Can view network as a pipe
- For full utilization want bytes in flight ≥ bandwidth×delay

- But don’t want to overload the network (future lectures)

• What if protocol doesn’t involve bulk transfer?
- Get throughput through concurrency—service multiple

clients simultaneously

Summary: Reliable delivery

• Want exactly once
– At least once: acks + timeouts + retransmissions
– At most once: sequence numbers

• Want efficiency
– Sliding window

Extra content

Components of a Square Wave

Graphs from Dr. David Alciatore, Colorado State University

Graphs from Dr. David Alciatore, Colorado State University

Approximation of a Square Wave

Can we do better?

• Suppose channel passes 1KHz to 2KHz
– 1 bit per sample: alternate between 1KHz and 2KHz
– 2 bits per sample: send one of 1, 1.33, 1.66, or 2KHz
– Or send at different amplitudes: A/4, A/2, 3A/4, A
– n bits: choose among 2n frequencies!

What is the capacity if you can distinguish M levels?

Hartley’s Law

C = 2B log2(M) bits/s

Great. By increasing M, we can have as
large a capacity as we want!

Or can we?

The channel is noisy!

Putting it all together

• Noise limits M!
2B log2(M) ≤ B log2(1 + S/N)

M ≤ √1+S/N

Example: Telephone Line has 3KHz BW, 30dB SNR
– S/N = 10ˆ(30 dB/10) = 1000
– C = 3KHz log2(1 + 1000) ≈ 30Kbps

–M < sqrt(1001) ≈ 31 levels

Signal-to-noise ratio (SNR)
is typically measured in Decibels (dB)

dB = 10log10(S/N)

Manchester Encoding

• Map 0 à 01; 1 à 10
– Transmission rate now 1 bit per two clock cycles

• Solves clock recovery & baseline wander
• … but halves transmission rate!

0 0 1 0 1 0 1 1 0

Clock

Manchester

Layering

Abstraction to the rescue!
• Break problem into separate parts, solve part independently
• Abstract data from the layer above inside data from the layer

below

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Encapsulate data from “higher layer” inside “lower layer”
=> Lower layer can handle data without caring what’s above it!

The big complex picture

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Application Protocol (L7)

Transport Protocol (L4)

Network Protocol (L3)

Link-Layer Protocol (L2)

“OSI reference model” or “7-layer model”

Applications (Layer 7)

The applicatons/programs/etc you use every day

Examples:
• HTTP/HTTPS: Web traffic (browser, etc)
• SSH: secure shell
• FTP: file transfer
• DNS (more on this later)
• …

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

When you’re building programs,
you usually work here

