
CSCI-1680
Layering and Encapsulation

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• HW0: Due TODAY by 11:59pm
• Container setup: due by Thursday

– If you have issues, please fill out the form

Administrivia

• HW0: Due TODAY by 11:59pm
• Container setup: due by Thursday

– If you have issues, please fill out the form

• Snowcast out later today (look for Ed post)
– Gearup Thursday 9/14 5-7pm CIT368 (+Zoom, recorded)

MYOFFICE HOURS

TTh 2 4PM

Administrivia

• HW0: Due TODAY by 11:59pm
• Container setup: due by Thursday

– If you have issues, please fill out the form

• Snowcast out later today (look for Ed post)
– Gearup Thursday 9/14 5-7pm CIT368 (+Zoom, recorded)

• Milestone due by Tuesday, 9/19 by 11:59pm EDT
– Warmup and first steps + design doc for the rest

Topics for Today

• Layering and Encapsulation

• Intro to IP, TCP, UDP

• Demo on sockets

4

Map of the Internet, 2021 (via BGP)
OPTE project

OPTE Internet map, 1997-2021: https://youtu.be/DdaElt6oP6w

https://www.youtube.com/watch?v=DdaElt6oP6w
https://youtu.be/DdaElt6oP6w

OPTE Internet map, 1997-2021: https://youtu.be/DdaElt6oP6w

https://www.youtube.com/watch?v=DdaElt6oP6w
https://youtu.be/DdaElt6oP6w

OPTE Internet map, 1997-2021: https://youtu.be/DdaElt6oP6w

https://www.youtube.com/watch?v=DdaElt6oP6w
https://youtu.be/DdaElt6oP6w

How do we make sense of all this?

How do we make sense of all this?

• Very large number of computers

How do we make sense of all this?

• Very large number of computers

• Incredible variety of technologies
– Each with very different constraints

How do we make sense of all this?

• Very large number of computers

• Incredible variety of technologies
– Each with very different constraints

• Lots of multiplexing

How do we make sense of all this?

• Very large number of computers

• Incredible variety of technologies
– Each with very different constraints

• Lots of multiplexing

• No single administrative entity

How do we make sense of all this?

• Very large number of computers

• Incredible variety of technologies
– Each with very different constraints

• Lots of multiplexing

• No single administrative entity

• Evolving demands, protocols, applications
– Each with very different requirements!

Layering

Layering

Abstraction to the rescue!

I
PROTOGICK

Layering

Abstraction to the rescue!

• Break problem into separate parts, solve part independently

p

Layering

Abstraction to the rescue!

• Break problem into separate parts, solve part independently

• Abstract data from the layer above inside data from the layer
below Encapsulate data from “higher layer” inside “lower layer”

=> Lower layer can handle data without caring what’s above it!

I

I

An analogy

How to deliver a package?
PACKAGE

The big complex picture

Application Protocol (L7)

Transport Protocol (L4)

Network Protocol (L3)

Link-Layer Protocol (L2)

The big complex picture

Application Protocol (L7)

Transport Protocol (L4)

Network Protocol (L3)

Link-Layer Protocol (L2)

“OSI reference model” or “7-layer model”

E

Applications (Layer 7)

The applicatons/programs/etc you use every day

Examples:
• HTTP/HTTPS: Web traffic (browser, etc)
• SSH: secure shell
• FTP: file transfer
• DNS (more on this later)
• …

Applications (Layer 7)

The applicatons/programs/etc you use every day

Examples:
• HTTP/HTTPS: Web traffic (browser, etc)
• SSH: secure shell
• FTP: file transfer
• DNS (more on this later)
• … When you’re building programs,

you usually work here

How to make apps use the network?

print(“Hello world”)

send(“Hello world”)

How to make apps use the network?

print(“Hello world”)

send(“Hello world”)

⇒Want to send useful messages , not packets
⇒Don’t have to care about how path packet

takes to get from A->B, we just want it to
get there

Apps rely on: transport layer (layer 4)

• Generally provided by OS as socket interface

• For app, creates a ”pipe” to send/recv data to/from
another endpoint (think like a file descriptor)

A__B

TAPI

Apps rely on: transport layer (layer 4)

• Generally provided by OS as socket interface
• For app, creates a ”pipe” to send/recv data to/from another endpoint

(think like a file descriptor)
• OS keeps track of sockets which sockets belong to which app =>

multiplexing

PORT NUMBERS

Key transport layer details for now

• Multiplexing provided by port numbers
– 16-bit number 0—65535

– Servers use well-known port numbers, clients
typically choose one at random

What service does the transport layer need?

Key transport layer details for now

• Multiplexing provided by port numbers
– 16-bit number 0—65535

– Servers use well-known port numbers, clients
typically choose one at random

Port Service
22 Secure Shell (SSH)

25 SMTP (Email)

80 HTTP (Web traffic)

443 HTTPS (Secure Web traffic)

16800 Snowcast
What service does the transport layer need?

12346 22
12347 22

A B
12345 80

12345,50

Key transport layer details for now

• Multiplexing provided by port numbers
– 16-bit number 0—65535

– Servers use well-known port numbers, clients
typically choose one at random

• Two main forms
– TCP: reliable transport

– UDP: unreliable transport

(more details later)

Port Service
22 Secure Shell (SSH)

25 SMTP (Email)

80 HTTP (Web traffic)

443 HTTPS (Secure Web traffic)

16800 Snowcast
What service does the transport layer need?

Layer 3: Network layer

Provided by: Internet Protocol (IP)

• Move packets between any two hosts
anywhere on the Internet

• Responsible for routing and forwarding
between nodes or

Ia IPv4 IPv6

Layer 3: Network layer

Provided by: Internet Protocol (IP)

• Move packets between any two hosts
anywhere on the Internet

• Responsible for routing and forwarding
between nodes

• Every host has a unique address:

www.cs.brown.edu => 128.148.32.110

Layer 3: Network layer

Provided by: Internet Protocol (IP)

• Move packets between any two hosts
anywhere on the Internet

• Responsible for routing and forwarding
between nodes

• Every host has a unique address:

www.cs.brown.edu => 128.148.32.110
Given address, the network knows how to get the packet there

f Pulppress

LY
TRANSPORT

B
ROUTERS

3
Network

AT f
1481 128.34 110

128,148 X X

Link layer (L2)

• Internet == Network of networks

• Networks are made up of many different
types of links!

• Each type of link has its own challenges,
protocols, etc depending on the medium

Examples
• Wifi
• Cellular Data
• Ethernet
• Fiber optic
• …

Link layer (L2)

• Internet == Network of networks

• Networks are made up of many different
types of links!

• Each type of link has its own challenges,
protocols, etc depending on the medium

The OS sees links as interfaces
=> Each one probably has a driver that
implements that particular protocol

Examples
• Wifi
• Cellular Data
• Ethernet
• Fiber optic
• …

CELLULAR

Physical layer (Layer 1)

• How we move packets across one individual link
• Deals with individual bits
• More about electrical engineering/physics than computer

science
• We’ll talk about this briefly

Physical layer (Layer 1)

• How we move packets across one individual link
• Deals with individual bits
• More about electrical engineering/physics than computer

science
• We’ll talk about this briefly

0 0 1 0 1 0 1 1 0

Data
(in one particular format)

Clock

IP: the “Narrow Waist”

• Applications built using IP; IP, Designed to connect many
networks

• “Hourglass” structure => one (actually two) core abstractions!

APPS

LINKS
ETH WIFI

What you should take away from this

Layer N Each layer is defined by some protocol

What you should take away from this

Layer N Each layer is defined by some protocol

Layer N-1

Layer N uses the services provided by N-1 to operate

What you should take away from this

Layer N Each layer is defined by some protocol

Layer N-1

Layer N+1

Each layer provides a service for the layers “above” it

Layer N uses the services provided by N-1 to operate

Why do we do this?

• Helps us manage complexity

• Different implementations at one “layer” use same
interface

• Allows independent evolution

To recap

To recap

3. Network Service: move packets to any other node in the network
IP: Unreliable, best-effort service model

To recap

3. Network

2. Link Service: move frames to other node across link.
 (eg. Ethernet, Wifi, …)

Service: move packets to any other node in the network
IP: Unreliable, best-effort service model

To recap

3. Network

2. Link

1. Physical Service: move bits to other node across link
(Electrical engineering problem)

Service: move frames to other node across link.
 (eg. Ethernet, Wifi, …)

Service: move packets to any other node in the network
IP: Unreliable, best-effort service model

To recap

3. Network

2. Link

1. Physical

5. Transport

Service: move bits to other node across link
(Electrical engineering problem)

Service: move frames to other node across link.
 (eg. Ethernet, Wifi, …)

Service: move packets to any other node in the network
IP: Unreliable, best-effort service model

Service: multiplexing applications
Reliable byte stream to other node (TCP),
Unreliable datagram (UDP)

To recap

3. Network

2. Link

1. Physical

5. Transport

7. Application

Service: move bits to other node across link
(Electrical engineering problem)

Service: move frames to other node across link.
 (eg. Ethernet, Wifi, …)

Service: move packets to any other node in the network
IP: Unreliable, best-effort service model

Service: multiplexing applications
Reliable byte stream to other node (TCP),
Unreliable datagram (UDP)

Service: user-facing application. (eg. HTTP, SSH, …)
Application-defined messages

To recap

3. Network

2. Link

1. Physical

5. Transport

7. Application

Service: move bits to other node across link
(Electrical engineering problem)

Service: move frames to other node across link.
 (eg. Ethernet, Wifi, …)

Service: move packets to any other node in the network
IP: Unreliable, best-effort service model

Service: multiplexing applications
Reliable byte stream to other node (TCP),
Unreliable datagram (UDP)

Service: user-facing application. (eg. HTTP, SSH, …)
Application-defined messages

Where do we handle, eg, security, reliability, fairness?

I

How/where to handle challenges?

• Can decide on how to distribute certain problems
– What services at which layer?

– What to leave out?

– More on this later (End-to-end principle)

How/where to handle challenges?

• Can decide on how to distribute certain problems
– What services at which layer?

– What to leave out?

– More on this later (End-to-end principle)

• Example: reliability
– IP offers pretty crappy service, even on top of reliable links… why?

– TCP: offers reliable, in-order, no-duplicates service. Why would you
want UDP?

How/where to handle challenges?

• Can decide on how to distribute certain problems
– What services at which layer?

– What to leave out?

– More on this later (End-to-end principle)

• Example: reliability
– IP offers pretty crappy service, even on top of reliable links… why?

– TCP: offers reliable, in-order, no-duplicates service. Why would you
want UDP?

Get to decide where (and if) to pay the “cost” of certain features

Anatomy of a packet

UDP EXAMPLE

SENDER
RECEIVER
F LISTENINGON

A gB Port 5000

127.00.1 SYSEI

GREAT
Focke

CREATE
SOCKET

SOCKET
SOCKET

LISTENONPORT BINDI
5000

END Picketing

PACKET

NEEDS To know

I WAIT FOR A Rev

P OF B
PORTOF LISTENERON B
TCPOR UDP

MORE CONTENT

WE WILL COVER
LATER

FEEL FREE TO READ

AHEAD THOUGH

Transport: UDP and TCP

UDP and TCP: most popular protocols atop IP
– Both use 16-bit port number & 32-bit IP address
– Applications bind a port & receive traffic on that port

Transport: UDP and TCP

UDP and TCP: most popular protocols atop IP
– Both use 16-bit port number & 32-bit IP address
– Applications bind a port & receive traffic on that port

• UDP – User (unreliable) Datagram Protocol
– Send packets to a port (… and not much else)
– Sent packets may be dropped, reordered, even duplicated

Transport: UDP and TCP

UDP and TCP: most popular protocols atop IP
– Both use 16-bit port number & 32-bit IP address
– Applications bind a port & receive traffic on that port

• UDP – User (unreliable) Datagram Protocol
– Send packets to a port (… and not much else)
– Sent packets may be dropped, reordered, even duplicated

• TCP – Transmission Control Protocol
– Provides illusion of reliable ‘pipe’ or ‘stream’ between two processes

anywhere on the network
– Handles congestion and flow control

Uses of TCP

• Most applications use TCP
– Easier to program (reliability is convenient)

– Automatically avoids congestion (don’t need to worry about taking
down the network

• Servers typically listen on well-known ports:
– SSH: 22

– SMTP (email): 25

– HTTP (web): 80, 443

Uses of UDP

In general, when you have concerns other than a reliable “stream” of
packets:

Uses of UDP

In general, when you have concerns other than a reliable “stream” of
packets:
• When latency is critical (late messages don’t matter)

Uses of UDP

In general, when you have concerns other than a reliable “stream” of
packets:
• When latency is critical (late messages don’t matter)
• When messages fit in a single packet

Uses of UDP

In general, when you have concerns other than a reliable “stream” of
packets:
• When latency is critical (late messages don’t matter)
• When messages fit in a single packet
• When you want to build your own (un)reliable protocol!

Uses of UDP

In general, when you have concerns other than a reliable “stream” of
packets:
• When latency is critical (late messages don’t matter)
• When messages fit in a single packet
• When you want to build your own (un)reliable protocol!

Examples

Uses of UDP

In general, when you have concerns other than a reliable “stream” of
packets:
• When latency is critical (late messages don’t matter)
• When messages fit in a single packet
• When you want to build your own (un)reliable protocol!

Examples
• DNS (port 53)

Uses of UDP

In general, when you have concerns other than a reliable “stream” of
packets:
• When latency is critical (late messages don’t matter)
• When messages fit in a single packet
• When you want to build your own (un)reliable protocol!

Examples
• DNS (port 53)
• Streaming multimedia/gaming (sometimes)

A note on layering

Strict layering not required
– TCP/UDP “cheat” to detect certain errors in IP-level information like

address
– Overall, allows evolution, experimentation

One more thing…

One more thing…

• Layering defines interfaces well
– What if I get an Ethernet frame, and send it as the payload of an IP packet

across the world?

One more thing…

• Layering defines interfaces well
– What if I get an Ethernet frame, and send it as the payload of an IP packet

across the world?

• Layering can be recursive
– Each layer agnostic to payload!

One more thing…

• Layering defines interfaces well
– What if I get an Ethernet frame, and send it as the payload of an IP packet

across the world?

• Layering can be recursive
– Each layer agnostic to payload!

• Many examples
– Tunnels: e.g.,

VXLAN is ETH over UDP (over IP over ETH again…)

– Our IP assignment: IP on top of UDP “links”

Example

* This is just an example, do not worry about the details, or the specific
protocols!
From: Yu et al., A General, Easy to Program and Scalable Framework for Analyzing In-
network Packet Traces, NSDI 2019

How do we use these protocols?

Using TCP/IP

How can applications use the network?

• Sockets API.
– Originally from BSD, widely implemented (*BSD, Linux, Mac OS,

Windows, …)

– Important to know and do once

– Higher-level APIs build on them

• After basic setup, it’s a lot like working with files

Sockets: Communication Between Machines

• Network sockets are file descriptors too

• Datagram sockets (eg. UDP): unreliable message delivery
– Send atomic messages, which may be reordered or lost

• Stream sockets (TCP): bi-directional pipes
– Stream of bytes written on one end, read on another

– Reads may not return full amount requested, must re-read

System calls for using TCP

Client Server

System calls for using TCP

Client Server
 socket – make socket

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port
 listen – listen for clients

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port
 listen – listen for clients
socket – make socket

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port
 listen – listen for clients
socket – make socket
bind* – assign address

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port
 listen – listen for clients
socket – make socket
bind* – assign address
connect – connect to listening socket

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port
 listen – listen for clients
socket – make socket
bind* – assign address
connect – connect to listening socket
 accept – accept connection

• This call to bind is optional, connect can choose address & port.

Socket Naming

• TCP & UDP name communication endpoints
– IP address specifies host (128.148.32.110)

– 16-bit port number demultiplexes within host

– Well-known services listen on standard ports (e.g. ssh – 22, http – 80, mail
– 25)

– Clients connect from arbitrary ports to well known ports

• A connection is named by 5 components
– Protocol, local IP, local port, remote IP, remote port

Dealing with Data

• Many messages are binary data sent with precise formats

• Data usually sent in Network byte order (Big Endian)
– Remember to always convert!

– In C, this is htons(), htonl(), ntohs(), ntohl()

