CSCI 1680 Physical Layer, Link Layer I

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

- Snowcast: Milestone due today (ish)
 - Make sure you follow our submission format
 - So long as you pass the tests locally or with reference, you're fine
- Snowcast full submission: due Monday 9/25
- HW1: details soon

Last call for override codes If you emailed me yesterday, I will respond after class

Roadmap

• One thing on sockets

 \mathcal{A}

- Physical layer key points
- Inherent properties of real networks

SENDING DATA W **E B** CONN. WRITE () · CONN-READL-7 Kenne FORS BYTES_ READ = READ(y) When you read on a TCP socket, you might not get back the amount of data you expect => need to check and act accordingly Idea: call read in a loop until you get back how much you wanted In Go: io.ReadFull TCP is designed to provide a STREAM of ordered data => it doesn't care about the separation of individual messages WHAT NAPPENS 17 YOU DON'T KDOW TRE SIZE OF THE MESSAGE? => PROTOCOL NETIDE TO BE SET UP SO THAT YOU CAN ALWAYS FIGURE BUT HOW MUCH DATA TO READ NETT. TYPE LENGTH STRING E6, MESSIGE TYPE -7 SIZE

Layers, Services, Protocols

	Application	Service: user-facing application. Application-defined messages					
	Transport	Service: multiplexing applications Reliable byte stream to other node (TCP),					
	Network	Unreliable datagram (UDP) Service: move packets to any other node in the network IP: Unreliable, best-effort service model					
	Link	Service: move frames to other node across link. May add reliability, medium access control					
L	Physical	Service: move bits to other node across link					

Physical Layer (Layer 1)

Specifies three things:

- Physical medium, WIFI, ETHERNOT, EDT
- Signaling/modulation: Now to SEND 0.-1
- · Encoding : Now to TURN THIS INTO VSTEUL INS

Physical Layer (Layer 1)

Specifies three things:

- Physical medium: cable, fiber, wireless frequency
- Signaling/modulation: how to transmit/receive
- Encoding: how to get meaningful data

Why should we care?

This is the line between electrical engineering and computer science

Helpful to understand challenges involved => How design/limitations affect our systems

Also: Learn important principles we'll use elsewhere

- Sender encodes message using some format, sends "over the wire"
- Receiver decodes (or recovers) message at the other end

What can go wrong?

- Noise
- Sharing channel: interference from other devices
- Physical distance (attenuation)
- Energy usage
- Security

=> Every medium has its own characteristics, and problems

Key points

 All media have fixed <u>bandwidth</u> => fixed "space" to transmit information

• Sending data takes time! => latency

• All media have (some) errors => how to deal with them?

Bandwidth

Bandwidth

- **Bandwidth** frequencies that a channel propagates well Signals consist of many frequency components $M_{\mathbb{Z}}$
- Creates a fixed "space" in which data can be transmitted
 => Wires: defined by physical properties
 ⇒ Wireless: frequency ranges are regulated

Upper bound on throughput: amount of data we can send per time (bits per second)

UNITED

STATES FREQUENCY ALLOCATIONS

THE RADIO SPECTRUM

The dust is capable single-provide loss protopol of the Table of Proposed Ministers and by the PCC and 2020. It can d, it may not completely which all aspects to a fraction and most during meaks in the Table of Proposed Ministers. Therefore, for complete administer, user should avoid the Table to intervise the constraint data. PCC is allocations:

	U.S. DEPARTMENT OF COMMERCE National Telecommunications and Information Administration Office of Spectrum Management
J	JANUARY 2016

For study the functional of Financian (1). Increased Parties (Materior and Antonian and Antonia Parties and Antonia (1). Parties (2), No. 107 (No. 10, 2), No. 2012 (2), No. 2012

Early IEEE 802.11 (Wifi) channel bandwidth

" UNLICENSED BAND" 2.4 6Hg

Early IEEE 802.11 (Wifi) channel bandwidth

	Wi-Fi generations					
	Generation	IEEE standard	Adopted	Maximum link rate (Mbit/s)	Radio frequency (GHz)	
	Wi-Fi 7	802.11be	(2024)	1376 to 46120	2.4/5/6	
	Wi-Fi 6E	802.11ax	2020	574 to 9608 ^[41]	6 ^[42]	
	Wi-Fi 6		2019		2.4/5	
-	Wi-Fi 5	802.11ac	2014	433 to 6933	5 ^[43]	
	Wi-Fi 4	802.11n	2008	72 to 600	2.4/5	
	(Wi-Fi 3)*	802.11g	2003	6 to 54	2.4	
		802.11 a	1999		5	
	(Wi-Fi 2)*	802.11b	1999	1 to 11	2.4	
	(Wi-Fi 1)*	802.11	1997	1 to 2	2.4	
	*(Wi-Fi 1, 2, a	and 3 are by retroactive inference) ^{[44][45][46][47][48]}				

802.11

THROUGHRT BITS/S

How to actually send stuff?

One way: Use Carriers

Start with a carrier frequency, modulate it to encode data:

OOK: On-Off Keying

This can get more complex...

Lots of engineering you can do

- Multiple carriers/frequencies
- Adjust amplitude, phase

• Clever ways to avoid errors

A good animation on Wikipedia

Example: Quadrature Amplitude Modulation (QAM)

256-QAM Constellation

Modulation schemes in action

• <u>https://www.youtube.com/watch?v=vvr9AMWEU-c</u>

Sounds great, right?

• Problem: noise limits the number of modulation levels (M)

MODULATION MOLEVELS 0) 00

Sounds great, right?

• Problem: noise limits the number of modulation levels (M)

Shannon's Law: $C = B \log_2(1 + S/N)$

- C: channel capacity in bits/second - THRONGNPUT

– B : bandwidth in Hz

– S, N: average signal, noise power

AMOUNT BE INFORMATION WE CAN FIT IN A CHANNEL: BANDWIDTE SIGENAL/NOISE RATIO

Sounds great, right?

• Problem: noise limits the number of modulation levels (M)

Shannon's Law: $C = B \log_2(1 + S/N)$

- C: channel capacity in bits/second
- B : bandwidth in Hz
- S, N: average signal, noise power

=> For any medium, need to design encodings based on bandwidth, noise characteristics

Medium	Bandwidth	Throughput	
Dialup	8 kHz	56 Kbit/s	
Early Wifi (802.11g)	20 MHz	54 Mbit/s	10 ⁻⁹ Noise
Modern Wifi (802.11ax)	20-40 MHz	Up to 9 Gbps	/NJERFELOUCE
Ethernet	62.5 MHz (1Gbps version)	1Gbit/s (common) Up to 100Gbps	10-12
3G cellular	Depends on carrier	2 Mbit/s	
5G cellular	Depends on carrier	> 1 GBps	

=> Does this mean wifi is the best?

WHAT IF YOU HAVE MULTIPLE LINKS OF DIFFERENT SPEEDS? D: 54 MBps 1GBPS 1GBPS --WIFI ETN WIFI N e & a R B BOTTLEWEEK LINK LIMITS THROUGHPUT

Sending data takes time!

• Latency: time between sending data and when data arrives (somewhere)

• Multiple components => many definitions, depending on what we're measuring $\mathcal{A} = \mathcal{B}$ $\mathcal{T}_{\mathcal{A}} = \mathcal{T}_{\mathcal{A}} = \mathcal{T}_{\mathcal{A}}$

Sending Frames Across

How to think about latency

How to think about latency

- <u>Processing delay</u> at the node: per message computation
- <u>Queuing delay</u>: time spent waiting in buffers
- Transmission delay: sending out the actual data
 - Size/Bandwidth
- <u>Propagation delay</u>: time for bits to actually go out on the wire
 - Upper bound?
 - Depends on media, ultimate upper bound is speed of light

Round trip time (RTT): time between request and response

When we design protocols, can think about performance based on number of RTTs

Round trip time (RTT): time between request and response

When we design protocols, can think about performance based on number of RTTs

Sending Frames Across

Error Detection

• Basic idea: use a checksum

- Compute small check value, like a hash of packet

- Good checksum algorithms
 - Want several properties, e.g., detect any single-bit error
 - Details later

Which matters most, bandwidth or delay?

- How much data can we send during one RTT?
- E.g., send request, receive file

For small transfers, latency more important, for bulk, throughput more important

Performance Metrics

- **<u>Throughput</u>**: Number of bits received/unit of time
 - e.g. 100 Mbps
- **Goodput**: Useful bits received per unit of time

• Latency: How long for message to cross network

• <u>Jitter</u>: Variation in latency

Error Detection and Correction

Error Detection

• Idea: have some codes be invalid

– Must add bits to catch errors in packet

UC

0 -> 01

 \rightarrow 10

])

Error Detection

- Idea: have some codes be invalid
 - Must add bits to catch errors in packet
- Sometimes can also correct errors
 - If enough redundancy
 - Might have to retransmit
- Used in multiple layers

On reliable delivery

- Many link layer protocols don't account for reliable delivery!
 Eg. Wifi does, Ethernet does not
- Usually, reliable delivery guaranteed by other protocol layers if needed, such as TCP

• Why might we NOT want reliable delivery at the link layer?

Maximizing Throughput

- Can view network as a pipe
 - For full utilization want bytes in flight \geq bandwidth \times delay
 - But don't want to overload the network (future lectures)

Summary: Reliable delivery

- Want exactly once
 - At least once: acks + timeouts + retransmissions
 - At most once: sequence numbers
- Want efficiency
 - Sliding window

Components of a Square Wave

Components of a Square Wave

Graphs from Dr. David Alciatore, Colorado State University

Approximation of a Square Wave

Graphs from Dr. David Alciatore, Colorado State University

Can we do better?

- Suppose channel passes 1KHz to 2KHz
 - 1 bit per sample: alternate between 1KHz and 2KHz
 - 2 bits per sample: send one of 1, 1.33, 1.66, or 2KHz
 - Or send at different amplitudes: A/4, A/2, 3A/4, A
 - n bits: choose among 2ⁿ frequencies!

Can we do better?

- Suppose channel passes 1KHz to 2KHz
 - 1 bit per sample: alternate between 1KHz and 2KHz
 - 2 bits per sample: send one of 1, 1.33, 1.66, or 2KHz
 - Or send at different amplitudes: A/4, A/2, 3A/4, A
 - n bits: choose among 2ⁿ frequencies!

Can we do better?

- Suppose channel passes 1KHz to 2KHz
 - 1 bit per sample: alternate between 1KHz and 2KHz
 - 2 bits per sample: send one of 1, 1.33, 1.66, or 2KHz
 - Or send at different amplitudes: A/4, A/2, 3A/4, A
 - n bits: choose among 2ⁿ frequencies!

What is the capacity if you can distinguish M levels?

Hartley's Law

 $C = 2B \log_2(M) \text{ bits/s}$

Hartley's Law

$C = 2B \log_2(M) \text{ bits/s}$

Great. By increasing M, we can have as large a capacity as we want!

Hartley's Law

$C = 2B \log_2(M) \text{ bits/s}$

Great. By increasing M, we can have as large a capacity as we want!

Or can we?

The channel is noisy!

Putting it all together

• Noise limits M!

 $2B \log_2(M) \le \underline{B} \log_2(1 + S/N)$ $M \le \sqrt{1 + S/N}$

Example: Telephone Line has 3KHz BW, 30dB SNR

- S/N = 10⁽³⁰ dB/10) = 1000
- $C = 3KHz \log_2(1 + 1000) \approx 30Kbps$
- $-M < sqrt(1001) \approx 31$ levels

Putting it all together

• Noise limits M!

 $2B \log_2(M) \le \underline{B \log_2(1 + S/N)}$ $M \le \sqrt{1 + S/N}$

Example: Telephone Line has 3KHz BW, 30dB SNR

- S/N = 10⁽³⁰ dB/10) = 1000
- C = 3KHz log₂(1 + 1000) \approx 30Kbps

 $-M < sqrt(1001) \approx 31 \text{ levels}$

Signal-to-noise ratio (SNR) is typically measured in Decibels (dB) dB = 10log₁₀(S/N)

Manchester Encoding

- Map $0 \rightarrow 01; 1 \rightarrow 10$
 - Transmission rate now 1 bit per two clock cycles
- Solves clock recovery & baseline wander
- ... but halves transmission rate!

