CSCI-1680

Building Links and (Local) Networks

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Today

Last time: how to send over a link

Today: how to build a network with links?

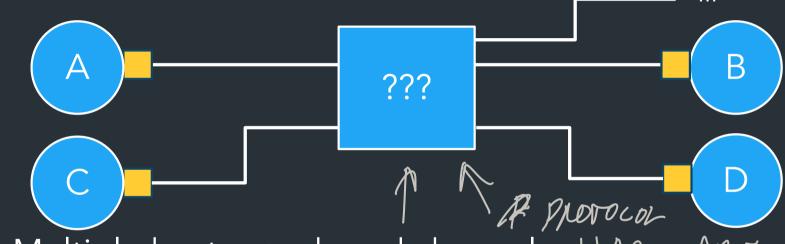
- Sharing links
- Case study: Ethernet (and Wifi)

- Network interfaces: How you interact with the link layer

• How switching works

What does "link layer" mean?

	Application	Service: user-facing application. // Application-defined messages	MERIAGE !!
	Transport	Service: multiplexing applications Reliable byte stream to other node (TCP), Unreliable datagram (UDP)	.,
	Network	Service: move packets to any other node in the ne Internet Protocol (IP)	etwork PALKET
2	Link	Service: move frames to other node across link. May add reliability, medium access control	"FRAME"
	Physical	Service: move bits to other node across link	


/

The main idea

Sending bits over a channel....

What does "link layer" mean?

- Multiple hosts => shared channel HADWARE
- Need ways to allow "small" number of hosts to communicate

What does "link layer" mean?

???

B

Multiple hosts => shared channel

Д

 Need ways to allow "small" number of hosts to communicate "Small" => Within a building, floor of office, etc Related term: Local Area Network (LAN) How to share the channel?

Medium Access Control (MAC)

G PLOTOCOL FOR HOW YO "TALK" ON CHANNEL

Medium Access Control

Idea: Control access to shared physical medium

=> No more than one device can be "talking" at one time

Need a protocol for "who can talk when?" channel among multiple devices

RD YO HAVE FULL

B

Partitioned Access: divide the channel into fixed slots

- Time Division Multiple Access (TDMA)
- Frequency Division Multiple Access (FDMA)
- Code Division Multiple Access (CDMA) NARD TO NAVE MANY

Problems?

`DMA

Partitioned Access: divide the channel into fixed slots

- Time Division Multiple Access (TDMA)
- Frequency Division Multiple Access (FDMA)
- Code Division Multiple Access (CDMA)

Problems?

→ Hard to maximize channel utilization (eg. what happens if only one person is talking?)

Random Access:no fixed slots: "ask" to talk, or just talk and hopefor the best/ '

- Carrier Sense Multiple Access / Collision Detection (CSMA/CD)
- Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA)
- RTS/CTS (Request to Send/Clear to Send)

– Token-based

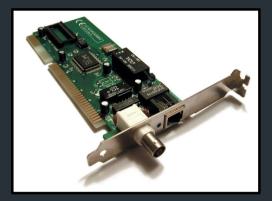
Problems?

PIPAN

-RERY - WAIT LONGON - ASK IF OKPY to TOMMENT

<u>Random Access</u>: no fixed slots: "ask" to talk, or just talk and hope for the best

- Carrier Sense Multiple Access / Collision Detection (CSMA/CD)
- Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA)
- RTS/CTS (Request to Send/Clear to Send)
- Token-based _ WAY YO MINIMIZE CONISIONS


Problems?

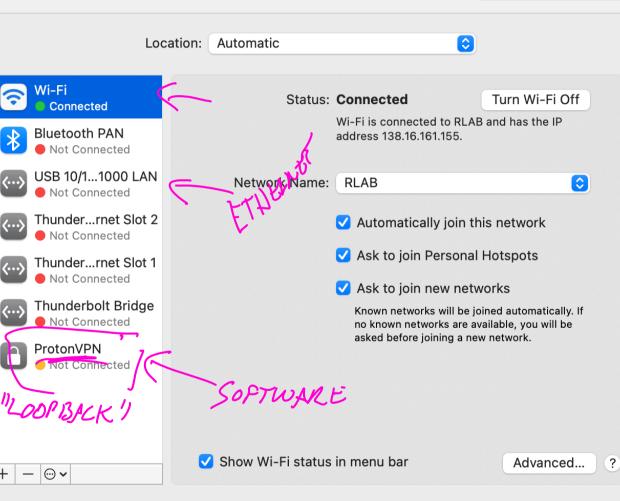
⇒ Hard to maintain "fairness" (eg. one host dominating channel)

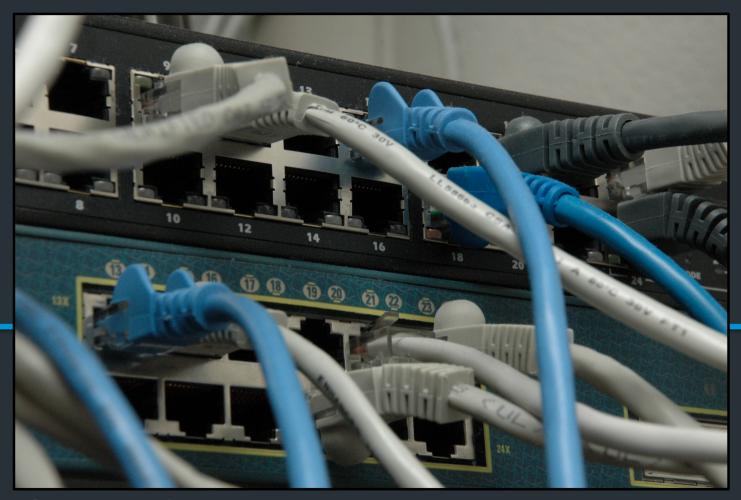
Interface: device that connects something to a network

- OS abstraction for a network device
- Physical hardware that does the "talking"

=> Network Interface Card (NIC)

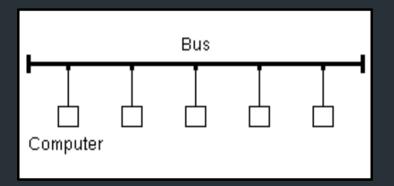
<u>Common interfaces</u>


- Loopback: Virtual, only for local host
- Wifi, Ethernet, Bluetooth, ...


Network

h

+


Q Search

Example: Ethernet

Ethernet's evolution

Originally, a shared medium with all hosts

- Basic idea: all hosts can see all frames, read a frame if it matches your hardware address
- Implications?

=>Can have collisons!

Classical Ethernet: Problems

 Problem: shared medium, all hosts in the same "collision domain"

ALL HOSTS COULD CAUSE COLLISIONS traj OTTIENS,

Classical Ethernet: Problems

- Problem: shared medium, all hosts in the same "collision domain"
- Transmit algorithm
 - If line is idle, transmit immediately
 - Upper bound message size of 1500 bytes
 - (AN DETLET 1 / X COULISION - If line is busy: wait until idle and transmit immediately
- Generally possible to <u>detect</u> collisions, deal with it ullet

CSMA/CD: Carrier Sense Multiple Access / Collision Detection

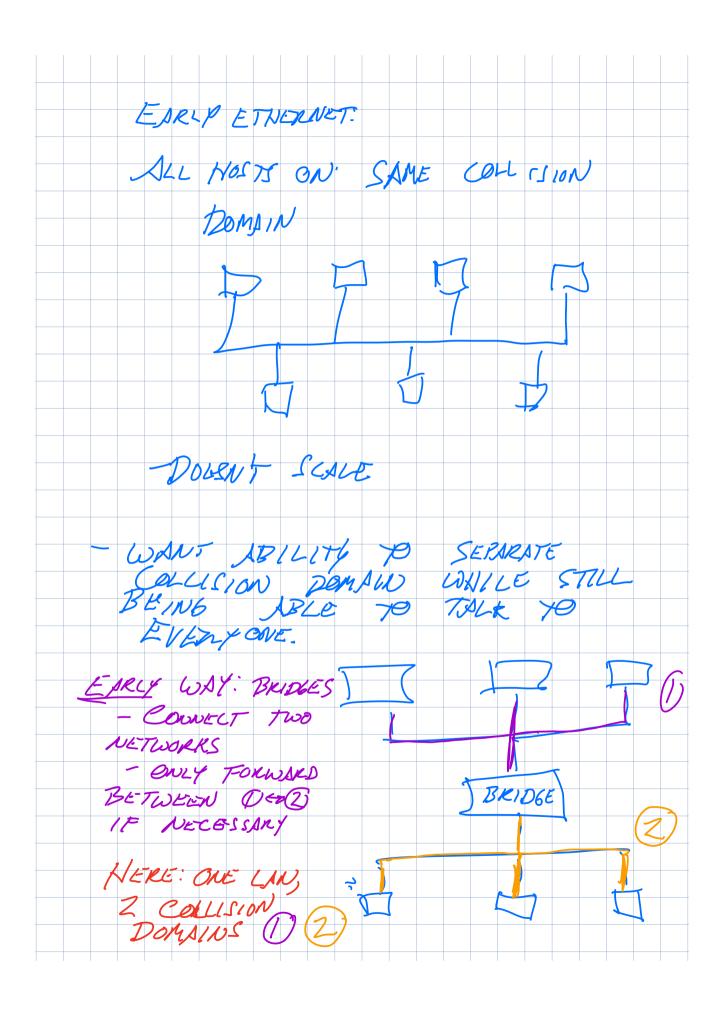
When to transmit again?

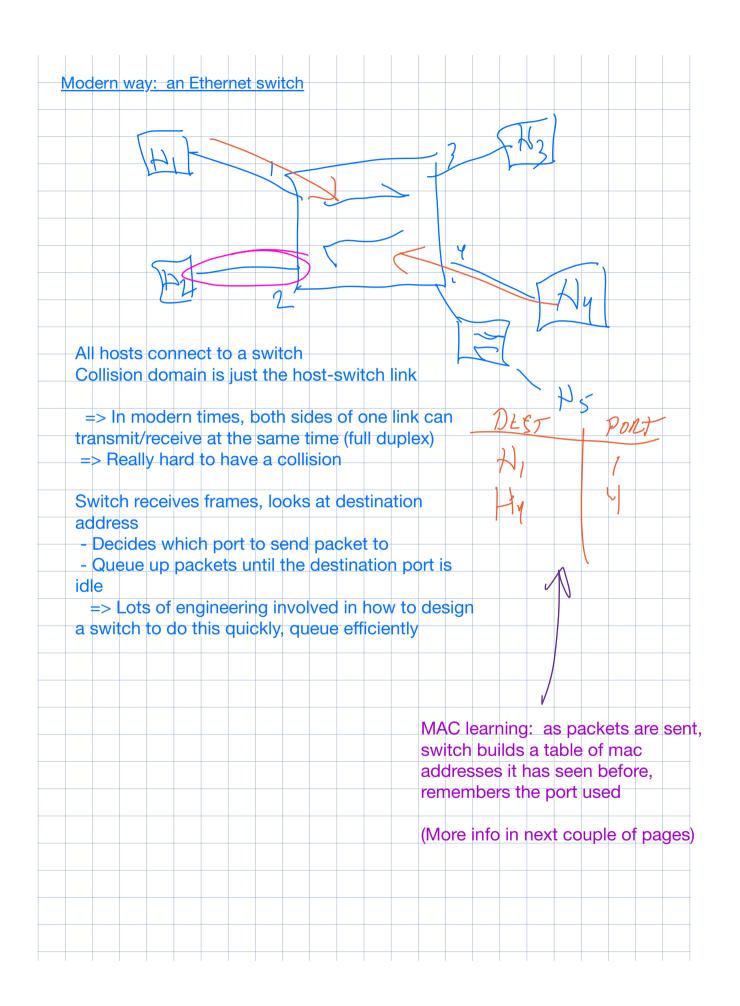
- Delay and try again: exponential backoff
- nth time: $k \times 51.2\mu s$, for $k = U\{0..(2^{\min(n,10)}-1)\}$
 - 1st time: 0 or 51.2µs
 - 2nd time: 0, 51.2, 102.4, or 153.6µs
- Give up after several times (usually 16)

• Exponential backoff is a useful, general technique

Does this scale?

Ethernet Recap


- Service provided: send frames among stations with specific addresses
- All nodes in the same "collision domain"


NOS SO AUCH J PROBLEM.

Avoiding collisions

• Early method: bridging

Modern way: switching

Switch: network device that forwards frames (packets) between ports

- All hosts connect to a switch
- Collision domain is host-switch
- Switch buffers packets, forwards to destination when its port is idle

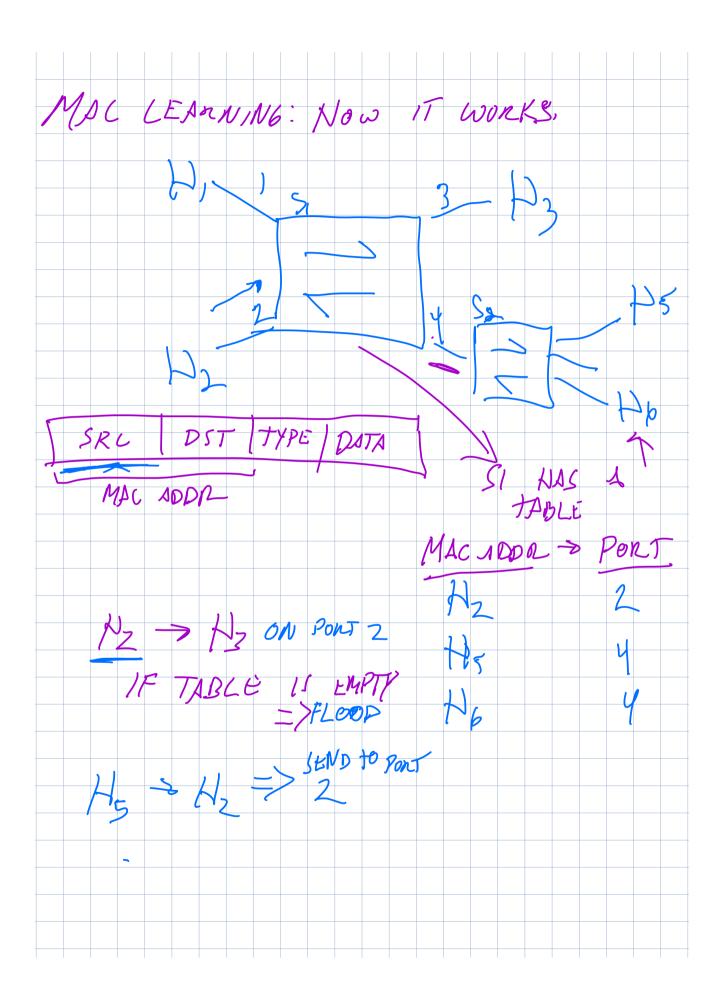
How to know which devices is on which port?

MAC Learning

- Switches "learn" which host lives on which port by watching traffic
- If you don't know, flood to all ports!

MAC Learning


- Switches "learn" which host lives on which port by watching traffic
- If you don't know, flood to all ports!


SOME SECURITY PROBLEMS - CAN "SPOOP" (FORGE) ADDRELS

- CAN FILL TABLE.

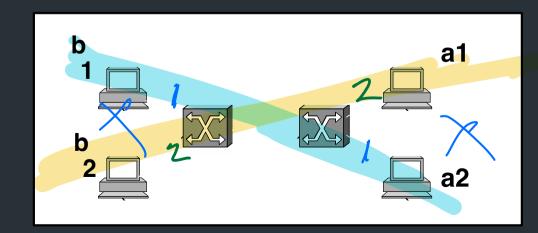
MAC learning is just an optimization vs. old version (but a pretty good one...)

7 REALLY JUST A CACHE!

MAC table example

R6#sh mac-address-to EHWIC: Ø Destination Address		Destination Port
5c45.27e0.8383	Dynamic	1 GigabitEthernet0/1/3
7641.7b63.584a	Dynamic	20 GigabitEthernet0/1/3
5c45.27e0.8381	Dynamic	10 GigabitEthernet0/1/3
0000.5e00.0101	Dynamic	10 GigabitEthernet0/0/1
ca3f.aee3.e3e6	Dynamic	20 GigabitEthernet0/1/3
644b.f012.7f75.	Dynamic	20 GigabitEthernet0/1/3
f018.9815.8eb8	Dynamic	20 GigabitEthernet0/1/3
ecb5.fa13.4677	Dynamic	20 GigabitEthernet0/0/2
a0a4.c5c2.4165	Dynamic	20 GigabitEthernet0/0/1
4c71.0c92.4f10	Dynamic	10 GigabitEthernet0/1/3
12d3.acae.bbc0	Dynamic	20 GigabitEthernet0/0/1
04d4.c448.9cf7	Dynamic	20 GigabitEthernet0/1/3

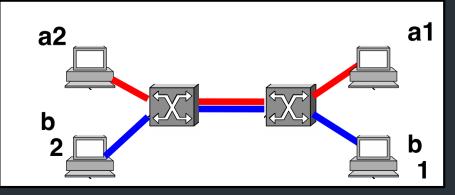
Wha	at if	γοι	ע ג	AN⁻	Γ to	tall	< to	mu	Iltip	le h	ost	s?							
This	is	still	DOS	ssib	le!	Ser	bara	atino	a co	ollisi	on	don	nair	ns n	neal	ns v	ve		
don																			
here											ach	mu	ltipl	e ho	osts				
Bro Mul											oto								
 Iviui	1100	ι σι .	301		au		ann g	JIOU		1103	515								
1		1								-									


Attack on a Learning Switch

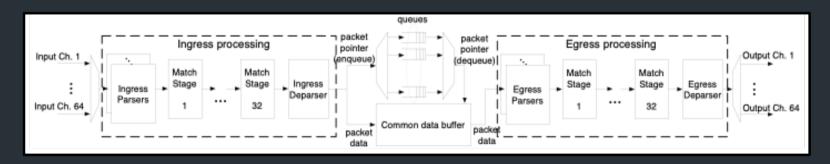
- Eve: wants to sniff all packets sent to Bob
- Same segment: easy (shared medium)
- Different segment on a learning bridge: hard
 - Once bridge learns Bob's port, stop broadcasting
- How can Eve force the bridge to keep broadcasting?
 - Flood the network with frames with spoofed src addr!

Also: VLANs

Consider: Company network, A and B departments


- Broadcast traffic does not scale
- May not want traffic between the two departments
- What if employees move between offices?

- DIFFENEWI LOGICAL DOMAINE LOGICAL DOMAINE SWITCH/CABLINE


VLANs

- Solution: Virtual LANs
 - Assign switch ports to a VLAN ID (color)
 - Isolate traffic: only same color
 - Some links may belong to multiple VLANs
- => Easy to change, no need to rewire

Current Developments

- Switches are becoming programmable
 - Match-action paradigm
 - Custom protocols, encapsulation, metering, monitoring

 Current speeds reach 12.8Tbps (32x400Gbps or 256x50Gbps) on a single programmable switching chip

How does this all change with wifi?

How does this all change with wifi?

Can't detect collisions anymore!

=> Carrier Sense Multiple Access / Collision Avoidance
=> Try to send: if you don't hear back, assume collision (and maybe retry)