
CSCI-1680
Building Links and
(Local) Networks

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• Snowcast due Monday (9/25) by 11:59pm EDT
• I’m debugging a few tester issues now

– See FAQ post on Ed for known issues!
– As long as manual testing works with the reference, you’re fine

=> Document problems in your README

• Look for update on HW1 on Friday

Administrivia

• Tuesday 9/26: IP project out
– You will work in groups of two
– We will send a form today/tomorrow where you can specify your

group, or ask to be matched to a group
– Matching happens based on language, in-person/remote, etc.

Fill out form by Tuesday, 9/26!

Today

Last time: how to send over a link
Today: how to build a network with links?
• Sharing links
• Case study: Ethernet (and Wifi)

– Network interfaces: How you interact with the link layer

• How switching works

What does “link layer” mean?

Network

Link

Physical

Transport

Application

Service: move bits to other node across link

Service: move frames to other node across link.
May add reliability, medium access control

Service: move packets to any other node in the network
Internet Protocol (IP)

Service: multiplexing applications
Reliable byte stream to other node (TCP),
Unreliable datagram (UDP)

Service: user-facing application.
Application-defined messages

The main idea

Sending bits over a channel….

A B

What does “link layer” mean?

• Multiple hosts => shared channel
• Need ways to allow “small” number of hosts to

communicate

A B

C D

???

…

”Small” => Within a building, floor of office, etc
Related term: Local Area Network (LAN)

How to share the channel?

Medium Access Control (MAC)

Medium Access Control

Idea: Control access to shared physical medium
=> No more than one device can be “talking” at one time

Need a protocol for “who can talk when?”

An example of multiplexing => sharing the channel
among multiple devices

High-level: MAC approaches

Partitioned Access: divide the channel into fixed slots
– Time Division Multiple Access (TDMA)
– Frequency Division Multiple Access (FDMA)
– Code Division Multiple Access (CDMA)

Problems?

Þ Hard to maximize channel utilization
(eg. what happens if only one person is talking?)

High-level: MAC approaches

Random Access: no fixed slots: “ask” to talk, or just talk and hope
for the best

– Carrier Sense Multiple Access / Collision Detection (CSMA/CD)
– Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA)
– RTS/CTS (Request to Send/Clear to Send)
– Token-based

Problems?

Þ Hard to maintain “fairness”
(eg. one host dominating channel)

Why does this matter?

Different types of links solve these problems differently
– Ethernet (wired) vs. Wifi (wireless)
– Affects throughput, reliability, etc.

Understand why different links operate differently
=> How we build the Internet from them

Interface: device that connects something to a network
• OS abstraction for a network device
• Physical hardware that does the “talking”
 => Network Interface Card (NIC)

Common interfaces
– Loopback: Virtual, only for local host
– Wifi, Ethernet, Bluetooth, …

Example: Ethernet

Ethernet

Dominant wired LAN technology, has evolved
significantly over time
• Original version (1983): 10Mbps
• Now (commonly): 1Gbps
• Also: 10Gbps, 40Gbps, …

New developments in physical media, encodings,
hardware => higher speeds over time

Ethernet: software viewpoint

• All hosts have an “ethernet address”
 => Globally-unique identifier

• Logically all hosts are connected to each other

• If you know a host’s ethernet address, you can send to it

Ethernet: the header

Ethernet: the header

• Source address: where packet is from
• Destination address: where packet is going

ÞDevices ask: “Is this my packet?” ”Where should I send this
packet?”

Other stuff
• Preamble: when a packet starts
• FCS: Frame Check sequence (checksum)

Ethernet Addressing

Globally unique, 48-bit unicast address per adapter
– Example: 00:1c:43:00:3d:09 (Samsung adapter)
– First 24 bits: Registered to manufacturers

Other protocols have adopted this address format
(eg. Wifi, Bluetooth, …)

=> Nowadays, we call them “mac addresses” or
“hardware addresses”

http://standards.ieee.org/develop/regauth/oui/oui.txt

Ethernet’s evolution

Originally, a shared medium with all hosts

• Basic idea: all hosts can see all frames, read a frame if it
matches your hardware address

• Implications?
=>Can have collisons!

Classical Ethernet: Problems

• Problem: shared medium, all hosts in the same “collision
domain”

• Transmit algorithm
– If line is idle, transmit immediately
– Upper bound message size of 1500 bytes
– If line is busy: wait until idle and transmit immediately

• Generally possible to detect collisions, deal with it

CSMA/CD: Carrier Sense Multiple Access / Collision Detection

When to transmit again?

• Delay and try again: exponential backoff
• nth time: k × 51.2μs, for k = U{0..(2min(n,10)-1)}

– 1st time: 0 or 51.2μs
– 2nd time: 0, 51.2, 102.4, or 153.6μs

• Give up after several times (usually 16)

• Exponential backoff is a useful, general technique

Does this scale?

Ethernet Recap

• Service provided: send frames among stations with
specific addresses

• All nodes in the same “collision domain”

Avoiding collisions

• Early method: bridging

Avoiding collisions

Add some hardware to the network that can separate
collision domains

Original way (1990s): bridges
A

Bridge

B C

X Y Z

Port 1

Port 2

Modern way: switching

Switch: network device that forwards frames (packets)
between ports

• All hosts connect to a switch
• Collision domain is host-switch
• Switch buffers packets,

forwards to destination when
its port is idle

How to know which devices is on which port?

MAC learning, how it works

MAC Learning

• Switches “learn” which host lives on which port by
watching traffic

 =>Keeps table of <destination addr => port>

• If you don’t know, flood to all ports!

MAC Learning

• Switches “learn” which host lives on which port by
watching traffic

• If you don’t know, flood to all ports!

MAC learning is just an optimization vs. old version
(but a pretty good one…)

MAC table example

33

R6#sh mac-address-table
EHWIC: 0
Destination Address Address Type VLAN Destination Port
------------------- ------------ ---- -----------------
5c45.27e0.8383 Dynamic 1 GigabitEthernet0/1/3
7641.7b63.584a Dynamic 20 GigabitEthernet0/1/3
5c45.27e0.8381 Dynamic 10 GigabitEthernet0/1/3
0000.5e00.0101 Dynamic 10 GigabitEthernet0/0/1
ca3f.aee3.e3e6 Dynamic 20 GigabitEthernet0/1/3
644b.f012.7f75. Dynamic 20 GigabitEthernet0/1/3
f018.9815.8eb8 Dynamic 20 GigabitEthernet0/1/3
ecb5.fa13.4677 Dynamic 20 GigabitEthernet0/0/2
a0a4.c5c2.4165 Dynamic 20 GigabitEthernet0/0/1
4c71.0c92.4f10 Dynamic 10 GigabitEthernet0/1/3
12d3.acae.bbc0 Dynamic 20 GigabitEthernet0/0/1
04d4.c448.9cf7 Dynamic 20 GigabitEthernet0/1/3

What can go wrong?

Attack on a Learning Switch

• Eve: wants to sniff all packets sent to Bob
• Same segment: easy (shared medium)
• Different segment on a learning bridge: hard

– Once bridge learns Bob’s port, stop broadcasting

• How can Eve force the bridge to keep broadcasting?
– Flood the network with frames with spoofed src addr!

Also: VLANs

Consider: Company network, A and B departments
– Broadcast traffic does not scale
– May not want traffic between the two departments
– What if employees move between offices?

b1

b2

a1

a2

VLANs

• Solution: Virtual LANs
– Assign switch ports to a VLAN ID (color)
– Isolate traffic: only same color
– Some links may belong to multiple VLANs

=> Easy to change, no need to rewire

a2

b2

a1

b1

How does this all change with wifi?

A CB

How does this all change with wifi?

Can’t detect collisions anymore!
=> Carrier Sense Multiple Access / Collision Avoidance
=> Try to send: if you don’t hear back, assume collision (and maybe
retry)

A CB

Extra material

Coming Up

• Connecting multiple networks: IP and the Network Layer

Dealing with Loops

Problem: people may create loops in LAN!
– Accidentally, or to provide redundancy
– Don’t want to forward packets indefinitely

A

C

E

D

B

K

F

H

J

G

I

B3

B7

B4

B2

B5

B1

B6

Enter Radia Perlman

“…we have designed an algorithm that allows the
extended network to consist of an arbitrary topology. (…)
The algorithm (…) computes a subset of the topology that
connects all LANs yet is loop-free (a spanning tree).”

Perlman, Radia (1985). "An Algorithm for Distributed Computation of a Spanning
Tree in an Extended LAN". ACM SIGCOMM Computer Communication
Review. 15 (4): 44–53. doi:10.1145/318951.319004

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F318951.319004

Spanning Tree

• Need to disable ports, so that no loops in network
• Like creating a spanning tree in a graph

– View switches and networks as nodes, ports as edges

A

C

E

D

B

K

F

H

J

G

I

B5

B2

B3

B7

B4

B1

B6

Distributed Spanning Tree Algorithm

• Every bridge has a unique ID (Ethernet address)
• Goal:

– Bridge with the smallest ID is the root
– Each segment has one designated bridge, responsible for

forwarding its packets towards the root
• Bridge closest to root is designated bridge
• If there is a tie, bridge with lowest ID wins

Spanning Tree Protocol

• Send message when you think you are the root
• Otherwise, forward messages from best known root

– Add one to distance before forwarding
– Don’t forward over discarding ports (see next slide)

• Spanning Tree messages contain:
– ID of bridge sending the message
– ID sender believes to be the root
– Distance (in hops) from sender to root

• Bridges remember best config msg on each port
• In the end, only root is generating messages

Spanning Tree Protocol (cont.)

• Forwarding and Broadcasting
• Port states*:

– Root port: a port the bridge uses to reach the root
– Designated port: the lowest-cost port attached to a single

segment
– If a port is not a root port or a designated port, it is a discarding

port.

* In a later protocol RSTP, there can be ports configured as backups and alternates.

A

C

E

D

B

K

F

H

J

G

I

B5

B2

B3

B7

B4

B1

B6

Root Port

Designated Port

Discarding Port

Algorhyme
I think that I shall never see
a graph more lovely that a tree.
A tree whose crucial property
is loop-free connectivity.
A tree that must be sure to span
so packet can reach every LAN.
First the root must be selected.
By ID, it is elected.
Least cost paths from root are traced.
In the tree, these paths are placed.
A mesh is made by folks like me,
then bridges find a spanning tree.

 Radia Perlman

Limitations of Bridges

• Scaling
– Spanning tree algorithm doesn’t scale
– Broadcast does not scale
– No way to route around congested links, even if path exists

• May violate assumptions
– Could confuse some applications that assume single segment

• Much more likely to drop packets
• Makes latency between nodes non-uniform

– Beware of transparency

Switching

Switches must be able to, given a packet, determine the
outgoing port
• 3 ways to do this:

– Virtual Circuit Switching
– Datagram Switching
– Source Routing

Input
ports

T3

T3

STS-1

T3

T3

STS-1

Switch

Output
ports

Virtual Circuit Switching

• Explicit set-up and tear down phases
– Establishes Virtual Circuit Identifier on each link
– Each switch stores VC table

• Subsequent packets follow same path
– Switches map [in-port, in-VCI] : [out-port, out-VCI]

• Also called connection-oriented model

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Host A Host B

Switch 3

Switch 2Switch 1

7

11

Virtual Circuit Model

• Requires one RTT before sending first packet
• Connection request contain full destination address,

subsequent packets only small VCI
• Setup phase allows reservation of resources, such as

bandwidth or buffer-space
– Any problems here?

• If a link or switch fails, must re-establish whole circuit
• Example: ATM, MPLS

Datagram Switching
• Each packet carries destination address
• Switches maintain address-based tables

– Maps [destination address]:[out-port]
• Also called connectionless model

0

13
2

0
1 3

2

0
13

2

Switch 3 Host B

Switch 2

Host A

Switch 1

Host C

Host D

Host E
Host F

Host G

Host H

Addr Port

A 3
B 0
C 3
D 3
E 2
F 1
G 0
H 0

Switch 2

Datagram Switching

• No delay for connection setup
• Source can’t know if network can deliver a packet
• Possible to route around failures
• Higher overhead per-packet
• Potentially larger tables at switches

Source Routing

• Packets carry entire route: ports
• Switches need no tables!

– But end hosts must obtain the path information

• Variable packet header

0

13
2

0
1 3

2

0

13

2

0

13

2
3 0 1 3 01

30 1

Switch 3

Host B

Switch 2

Host A

Switch 1

Generic Switch Architecture

• Goal: deliver packets from input to output ports
• Three potential performance concerns:

– Throughput in bytes/second
– Throughput in packets/second
– Latency Generic switch architecture

Switch
fabric

Control
processor

Output
port

Input
port

• Goal: deliver packets from input to output ports

• Three potential performance concerns:
- Throughput in terms of bytes/time

- Throughput in terms of packets/time

- Latency

Shared Memory Switch

• 1st Generation – like a regular PC
– NIC DMAs packet to memory over I/O bus
– CPU examines header, sends to destination NIC
– I/O bus is serious bottleneck
– For small packets, CPU may be limited too
– Typically < 0.5 Gbps

I/O bus

Interface 1

Interface 2

Interface 3

CPU

Main memory

Shared Bus Switch

• 2st Generation
– NIC has own processor, cache of forwarding table
– Shared bus, doesn’t have to go to main memory
– Typically limited to bus bandwidth

• (Cisco 5600 has a 32Gbps bus)
I/O bus

Interface 1

Interface 2

Interface 3

CPU

Main memory

Point to Point Switch

• 3rd Generation: overcomes single-bus bottleneck
• Example: Cross-bar switch

– Any input-output permutation
– Multiple inputs to same output requires trickery
– Cisco 12000 series: 60Gbps

Cut through vs. Store and Forward

• Two approaches to forwarding a packet
– Receive a full packet, then send to output port
– Start retransmitting as soon as you know output port, before full

packet

• Cut-through routing can greatly decrease latency
• Disadvantage

– Can waste transmission (classic optimistic approach)
• CRC may be bad
• If Ethernet collision, may have to send runt packet on output link

Buffering

• Buffering of packets can happen at input ports, fabric,
and/or output ports

• Queuing discipline is very important
• Consider FIFO + input port buffering

– Only one packet per output port at any time
– If multiple packets arrive for port 2, they may block packets to

other ports that are free
– Head-of-line blocking: can limit throughput to ~ 58% under

some reasonable conditions*

2

21

Port 1

Port 2

* For independent, uniform traffic, with same-size frames

Head-of-Line Blocking

• Solution: Virtual Output Queueing
– Each input port has n FIFO queues, one for each output
– Switch using matching in a bipartite graph
– Shown to achieve 100% throughput*

1262 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 8, AUGUST 1999

(a) (b)

Fig. 2. Define as an undirected graph connecting the set of vertices with the set of edges . The edge connecting vertices
and has an associated weight denoted . Graph is bipartite if the set of inputs and outputs
partition such that every edge has one end in and one end in . Matching on is any subset of such that no two edges in have a
common vertex. A maximum matching algorithm is one that finds the matching with the maximum total size or total weight. (a) Example of
for and . (b) Example of matching on .

necessarily desirable. First, under admissible traffic, it can
lead to instability and unfairness, particularly for nonuniform
traffic patterns. To demonstrate this behavior, Fig. 3 shows
an example of a potentially unstable 3 3 switch with just
four active flows,3 and scheduled using the maximum size
matching algorithm. It is assumed that ties are broken by
selecting among alternatives with equal probability. Arrivals
to the switch are i.i.d. Bernoulli arrivals and each flow has
arrivals at rate , where . Even though the
traffic is admissible, it is straightforward to show that the
switch can be unstable for sufficiently small . Consider the
event that at slot , both and have arrivals
with probability and ,
in which case input 1 receives service with probability 2/3.
Therefore, the total rate at which input 1 receives service is
at most

But the arrival rate to input 1 is , so if

(which holds for), then the switch is unstable and
the traffic cannot be sustained by the maximum size matching
algorithm.
Second, under inadmissible traffic, the maximum size

matching algorithm can lead to starvation. An example of
this behavior is shown in Fig. 4 for a 2 2 switch. It is
clear that because all three queues are permanently occupied,

3 It can also be shown that a 2 2 switch with nonuniform traffic can be
unstable when scheduled using a maximum size matching algorithm. However,
our proof is more complex and is omitted here.

Fig. 3. An example of instability under admissible traffic using a maximum
size matching algorithm for a 3 3 switch with nonuniform traffic.

Fig. 4. Under an inadmissible workload, the maximum size matching will
always serve just two queues, starving the flow from input 1 to output 1.

the algorithm will always select the “cross” traffic: input 1 to
output 2 and input 2 to output 1. It is worth noting that the
practical scheduling algorithms described previously attempt
to approximate a maximum size matching [1], [2], [4], [14],
[22]. It is therefore not surprising that these algorithms perform
well when the traffic is uniform, but perform less well when
the traffic is nonuniform.

IV. MAXIMUM WEIGHT MATCHINGS
The maximum weight matching for a bipartite graph

is one that maximizes and can be found
by solving an equivalent network flow problem. The most
efficient known algorithm for solving this problem converges
in running time [20].

*MCKEOWN et al.: ACHIEVING 100% THROUGHPUT IN AN INPUT-QUEUED SWITCH, 1999

2

21

Port 1

Port 2

Current Developments

• Switches are becoming programmable
– Match-action paradigm
– Custom protocols, encapsulation, metering, monitoring

• Current speeds reach 12.8Tbps (32x400Gbps or
256x50Gbps) on a single programmable switching chip

IPv4

Ethernet

END

END

IP route

Ethertype

Src MAC Dst MAC
Action: Set
output port

Action: Send
to controller

Action: Set src/dst MAC,
decrement IP TTL

1 2 32…Stage:

TC
AM

R
AM

Table Flow GraphParse Graph Memory Allocation

(a) L2/L3 switch.

Legend

{Ethertype}

{RCP}

{Dst IP}

{Src Port, Src MAC}

{Dst MAC}

{Src/Dst IP,
 IP Proto,
 Src/Dst Port}

Tables

Logical flow

Drop packet
Forward to buffer

Table Flow Graph

IPv4

RCP

TCP UDP

Ethernet

IP route

Ethertype

Src MAC Dst MAC

RCP
ACL

Action: Set src/dst MAC, decrement
IP TTL, insert OMPLS header (opt.),

set src/dst IP (opt.)

Action: Set
queue ID

Action: Clear
output port Action: Update

RCP rate

Action: Set output port,
insert OMPLS header (opt.)

Action: Send
to controller

31 321 2 30…Stage:

TCAM
RAM

Table Flow GraphParse Graph Memory Allocation

(b) RCP and ACL support.

Figure 2: Switch configuration examples.

...

Input Ch. 1

Input Ch. 64

...
Ingress

Deparser

Match
Stage

1

Match
Stage

32
...Ingress

Parsers

Ingress processing

Common data buffer

queues

packet
data

packet
pointer

(enqueue)

packet
pointer

(dequeue)

packet
data

...
Egress

Deparser

Match
Stage

1

Match
Stage

32
...Egress

Parsers

Egress processing

...

Output Ch. 1

Output Ch. 64

Figure 3: Switch chip architecture.

Figure 3. Note that this closely resembles the RMT archi-
tectural diagram of Figure 1a.

Input signals are received by 64 channels of 10Gb SerDes
(serializer-deserializer) IO modules. 40G channels are made
by ganging together groups of four 10G ports. After pass-
ing through modules which perform low level signalling and
MAC functions like CRC generation/checking, input data is
processed by the parsers. We use 16 ingress parser blocks
instead of the single logical parser shown in Figure 1a be-
cause our programmable parser design can handle 40Gb of
bandwidth, either four 10G channels or a single 40G one.

Parsers accept packets where individual fields are in vari-
able locations, and output a fixed 4 Kb packet header vector,
where each parsed field is assigned a fixed location. The lo-
cation is static, but configurable. Multiple copies of fields
(e.g., multiple MPLS tags or inner and outer IP fields) are
assigned unique locations in the packet header vector.

The input parser results are multiplexed into a single
stream to feed the match pipeline, consisting of 32 sequen-
tial match stages. A large shared bu↵er provides storage to

accommodate queuing delays due to output port oversub-
scription; storage is allocated to channels as required. De-
parsers recombine data from the packet header vector back
into each packet before storage in the common data bu↵er.

A queuing system is associated with the common data
bu↵er. The data bu↵er stores packet data, while pointers
to that data are kept in 2K queues per port. Each channel
in turn requests data from the common data bu↵er using
a configurable queuing policy. Next is an egress parser, an
egress match pipeline consisting of 32 match stages, and a
deparser, after which packet data is directed to the appro-
priate output port and driven o↵ chip by 64 SerDes output
channels.

While a separate 32-stage egress processing pipeline seems
like overkill, we show that egress and ingress pipelines share
the same match tables so the costs are minimal. Further,
egress processing allows a multicast packet to be customized
(say for its congestion bit or MAC destination) by port with-
out storing several di↵erent packet copies in the bu↵er. We
now describe each of the major components in the design.

104

