CSCI-1680 Network Layer: IP Forwarding realities

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

- Sign up for IP milestone meetings, preferably with your mentor TA, on or before Friday (Oct 6)
 - You don't need to show an implementation, but you are expected to talk about your design
 - Look for calendar link in email
- IP gearup II: Thursday 5-7pm in CIT368
 - Implementation and debugging tips
- HW1: Due Thursday (HW2 out either Thursday or next Tues)

Today

"Wrinkles" in IP forwarding

- Longest Prefix Match
- IP<->Link layer (ARP, DHCP)
- Network Address Translation (NAT)
- IPv6

After this: Routing

2.

3.

1.3.1.1

8.8.8.8

Prefix	IF/Next hop
82.14.0.0/16	(A)
1.3.0.0/16	(B)
1.3.4.0/24	(C)
5.6.128.0/20	(D)
(X) B place forder—could	

<u>Warmup</u>: based on the table, where would the router send packets destined for the following addresses: 1. 5.6.128.100

Warmup: based on the table, where would the router send packets destined for the following addresses: 1. 5.6.128.100

.3.4.8

What happens when prefixes overlap?

						Prefix	IF/Next hop
An IP can match on more than one row => need to pick the most specific (longest) prefix		1.3.0.0/16	(B)				
						1.3.4.0/24	(C)
						1.3.4.5/32	
1	.3.0.0/16	0000001	00000011		xxxx xxxx	0.0.0.0/0	(Default)
1	.3.4.0/24	00000001 More specif	L 00000011 ic => best ma	L 00000100) xxxxxxx		
Other examp	les you'll see						
	0.0.0.0/0	*****	*****	*****	*****	=> Least spec (Used for defa	ific! ult "catchall" routes
1	.2.3.5/32	00000001	00000011	00000100	00000101	=> Most spec	ific!
=>Longest prefix matching: can keep forwarding tables small by summarizing routes where possible, otherwise using specific prefixes				ll by prefixes	often a local I	p)	

What happens at the link layer?

What does it mean to send to IF1?

Prefix	IF/Next hop
1.2.1.0/24	IF1
1.2.2.0/24	IF2
8.0.0.0/30	IFO
Default	8.0.0.2

"Local delivery": what does it mean to send to IF1?

So far: "easy" to communicate with nodes on the same network. But how?

Src: 1.2.4.100

Dst: 1.2.1.3

1.2.1.2

"Glue" between L2 and L3

EFH WIFI -- 1.2

Need a way to connect get link layer info (mac address) from network-layer info (IP address)

"What MAC address has IP 1.2.3.4?"

"Glue" between L2 and L3

Need a way to connect get link layer info (mac address) from network-layer info (IP address)

"What MAC address has IP 1.2.3.4?"

Ask the network! => Address Resolution Protocol (ARP)

ARP: Address resolution protocol

Given an IP address, ask network for the MAC address

- Maps IP addresses to mac addresses
 - Request: "Who has 1.2.3.4?"
 - Response: "aa:bb:cc:dd:ee:ff is at 1.2.3.4"

ARP: Address resolution protocol

Given an IP address, ask network for the MAC address

- Maps IP addresses to mac addresses
 - Request: "Who has 1.2.3.4?"
 - Response: "aa:bb:cc:dd:ee:ff is at 1.2.3.4"
- ARP table: hosts cache IP->mac mappings
- - Anyone can respond: problem?

Example

# arp -n				
Address	HWtype	HWaddress	Flags Mask	
Iface				
172.17.44.1	ether	00:12:80:01:34:55	C	eth0
172.17.44.25	ether	10:dd:b1:89:d5:f3	C	eth0
172.17.44.6	ether	b8:27:eb:55:c3:45	С	eth0
172.17.44.5	ether	00:1b:21:22:e0:22	С	eth0
		Λ.		1
L3				/'
(IP ADDRS)		くこ		HOTE
\checkmark			· · · · ·	") "
	ALL LINT	AIUS SUOUS	N/VE	INTERFACE.
		TIMBOUT, ETC	, s	

How do you get an IP address?

Getting an IP

Two ways to configure an IP for a host:

• <u>Static</u> configuration: manually specify IP address, mask, gateway, ...

=> More common with network devices that don't change often

• Automatic: ask the network for an IP when you connect!

=> Most common for end hosts

=> Dynamic Host Configuration Protocol (DHCP)

END NOSTS, NOME REVIEWS .--

Hos	st A			DHCP	server		
	Src: Dst: DHCP	A's MAC addro ff:ff:ff:ff DISCOVER	ess :ff:ff	AT STA SEN_VE	25, j n' <u>(</u> j	Don 4 P/	KNOW

=> Again, host needs to use broadcast address. Why?
=> Problem?

A home router

Story time

About those home routers...

You get just one IP from your ISP... => Need to share IP among many devices on the same network!

YOU GET ONE IP ADDROLS FROM YOUR ISP.

About those home routers...

You get just one IP from your ISP... => Need to share IP among many devices on the same network!

Common to create a "private" IP range used within local network => Routers need to do extra work to share public IP among private IPs => Network Address Translation (NAT) (A form of connection multiplexing)

Private IPs (RFC1918)

USED FOR INTERNAL STUFF - NOGE NETUNALS

- DOCHEN

Some IP ranges are reserved:

Prefix	Use
127.0.0.0/8	"Loopback" address—always for current host
10.0.0/8 4	
192.168.0.0/16	Reserved for private internal networks (RFC1918)
172.16.0.0/12	DOCKER

• Many networks will use these blocks internally

Network Address Translation

- What happens when hosts need to share an IP address?
- How to map private IP space to public IPs?

Network Address Translation (NAT)

- Despite CIDR, it's still difficult to allocate addresses (2³² is only 4 billion)
- NAT "hides" entire network behind one address
- Hosts are given private addresses
- Routers map outgoing packets to a free address/port
- Router reverse maps incoming packets
- Problems?

NAT Example

NAT Traversal

Various methods, depending on the type of NAT Examples:

- ICE: Interactive Connectivity Establishment (RFC8445)
- STUN: Session Traversal Utilities for NAT (RFC5389)

One idea: connect to external server via UDP, it tells you the address/port