CSCI-1680 Network Layer: IP Forwarding realities

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

- Sign up for IP milestone meetings, preferably with your mentor TA, on or before Friday (Oct 6)
 - You don't need to show an implementation, but you are expected to talk about your design
 - Look for calendar link in email
- IP gearup II: Thursday 5-7pm in CIT368
 - Implementation and debugging tips
- HW1: Due Thursday (HW2 out either Thursday or next Tues)

Today

"Wrinkles" in IP forwarding

- Longest Prefix Match
- IP<->Link layer (ARP, DHCP)
- Network Address Translation (NAT)
- IPv6

After this: Routing

Prefix	IF/Next hop	<u>Wa</u> roi
82.14.0.0/16	(A)	ad
1.3.0.0/16	(B)	Ι.
1.3.4.0/24	(C)	2.
5.6.128.0/20	(D)	С
0.0.0.0/0	(Default)	—J.

Warmup: based on the table, where would the router send packets destined for the following addresses:

- . 5.6.128.100
- 2. 1.3.1.1
- 3. 8.8.8.8

(X) is placeholder—could be an IP or an interface name

4. 1.3.4.8

An IP can match on more than one row => <u>need to pick the most specific (longest) prefix</u>

1.3.0.0/16

	Prefix	IF/Next hop
than one row specific (longest) prefix	1.3.0.0/16	(B)
	1.3.4.0/24	(C)
	1.3.4.5/32	
0000001 0000011 xxxxxxx xxxxxx	0.0.0/0	(Default)

1.3.4.0/24 0000001 00000011 00000100 xxxxxxx

An IP can match on more than one row => <u>need to pick the most specific (longest) prefix</u>

Prefix	IF/Next hop
1.3.0.0/16	(B)
1.3.4.0/24	(C)
1.3.4.5/32	
0.0.0.0/0	(Default)

1.3.0.0/16 0000001 0000011 xxxxxxx xxxxxx

1.3.4.0/24 **0000001 0000011 00000100 xxxxxxx**

More specific => best match!

	птепх плехтнор
An IP can match on mor => need to pick the mo	than one row It specific (longest) prefix
	1.3.4.0/24 (C)
	1.3.4.5/32
1.3.0.0/16	00000001 0000011 xxxxxxx xxxxxxx 0.0.0.0/0 (Default)
1.3.4.0/24	0000001 0000011 00000100 xxxxxxx
	More specific => best match!
ther examples you'll see	
0.0.0/0	<pre></pre>
1 2 2 5/22	

Profix

IF/Nevt hon

1.2.3.5/32 0000001 0000011 00000100 00000101

0

0.

					Prefix	IF/Next hop
An IP can match on more than one row => need to pick the most specific (longest) prefix					1.3.0.0/16	(B)
					1.3.4.0/24	(C)
					1.3.4.5/32	
1.3.0.0/16	0000001	L 0000001:	xxxxxxx	x xxxxxxx	0.0.0/0	(Default)
1.3.4.0/24	00000001	1 0000001:	1 0000010) xxxxxxx	ĸ	
		•				
	Nore speci	fic => best m	atch!			
her examples you'll see…						
0.0.0/0	*****	*****	*****	****	=> Least speci	fic!
					(Used for defau	ult "catchall" routes
1.2.3.5/32	00000001	00000011	00000100	00000101	=> Most speci (Refers to a sin	fic! gle host,

Prefix

					плехспор
An IP can match on mo => need to pick the m		1.3.0.0/16	(B)		
				1.3.4.0/24	(C)
				1.3.4.5/32	
1.3.0.0/16	0000001 000001	1 xxxxxxx		0.0.0/0	(Default)
1.3.4.0/24	0000001 0000001.	1 00000100			
	More specific => best ma	atch!			
Other examples you'll see					
0.0.0/0	XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX	*****	*****	=> Least speci (Used for defai	ific! ult "catchall" rout
1.2.3.5/32	0000001 0000011	00000100	00000101	=> Most speci (Refers to a sin	ific! iale host.
=>Longest prefix match summarizing routes whe	l by prefixes	often a local IF	P)		

Profix

IE/Next hon

What happens at the link layer?

What does it mean to send to IF1?

The story so far:		
but what about other networks?	Prefix	IF/Next hop
=> Routers know about multiple networks, forward packets between them	1.2.1.0/24	IF1
	1.2.2.0/24	IF2
	8.0.0.0/30	IFO
	Default	8002

"Local delivery": what does it mean to send to IF1?

So far: "easy" to communicate with nodes on the same network. But how?

To send a packet on a local network, we need:

- Dest. IP (Network layer)
- Dest. MAC address (Link layer)

	Src	Dest
Link		???
IP	10.2.4.100	1.2.1.3

Assume: link layer can figure out the rest once we fill in this info

=> How do we get the MAC address?

"Glue" between L2 and L3

Need a way to connect get link layer info (mac address) from network-layer info (IP address)

"What MAC address has IP 1.2.3.4?"

Ask the network! => Address Resolution Protocol (ARP)

ARP: Address resolution protocol

Given an IP address, ask network for the MAC address

- Maps IP addresses to mac addresses
 - Request: "Who has 1.2.3.4?"
 - Response: "aa:bb:cc:dd:ee:ff is at 1.2.3.4"
- ARP table: hosts cache IP->mac mappings
- Requests send to broadcast address: ff:ff:ff:ff:ff:ff:ff:ff
 Anyone can respond: problem?

Example

# arp -n				
Address	HWtype	HWaddress	Flags Mask	Iface
172.17.44.1	ether	00:12:80:01:34:55	С	eth0
172.17.44.25	ether	10:dd:b1:89:d5:f3	С	eth0
172.17.44.6	ether	b8:27:eb:55:c3:45	C	eth0
172.17.44.5	ether	00:1b:21:22:e0:22	С	eth0

How do you get an IP address?

Getting an IP

Two ways to configure an IP:

- <u>Static</u> configuration: manually specify IP address, mask, gateway, ...
- Automatic: ask the network for an IP when you connect!

Getting an IP

Two ways to configure an IP for a host:

<u>Static</u> configuration: manually specify IP address, mask, gateway, ...

=> More common with network devices that don't change often

• Automatic: ask the network for an IP when you connect!

=> Most common for end hosts

=> Dynamic Host Configuration Protocol (DHCP)

DHCP: The idea

- Networks are free to assign addresses within block to hosts
- Solution: Dynamic Host Configuration Protocol
 - Client: DHCP Discover to 255.255.255.255 (broadcast)
 - Server(s): DHCP Offer to 255.255.255.255 (why broadcast?)
 - Client: choose offer, DHCP Request (broadcast, why?)
 - Server: DHCP ACK (again broadcast)
- Result: address, gateway, netmask, DNS server

DHCP: The idea

- Every network has a "pool" of IPs it can assign to hosts Some subset of its prefix (eg. 192.168.1.0/24)
- When a host connects, it asks a <u>DHCP server</u> for an address from the pool
- DHCP server(s) act like allocators: give "leases" to IPs, provide other config info

(More steps after this)

=> Again, host needs to use broadcast address. Why?
=> Problem?

A home router

What's in this thing?

Story time

About those home routers...

You get just one IP from your ISP... => Need to share IP among many devices on the same network!

Common to create a "private" IP range used within local network => Routers need to do extra work to share public IP among private IPs => Network Address Translation (NAT) (A form of connection multiplexing)

Private IPs (RFC1918)

Some IP ranges are reserved:

Prefix	Use
127.0.0/8	"Loopback" address—always for current host
10.0.0/8	
192.168.0.0/16	Reserved for private internal networks (RFC1918)
172.16.0.0/12	

- Many networks will use these blocks internally
- These IPs should never be routed over the Internet!
 What would happen if they were?

Network Address Translation

- What happens when hosts need to share an IP address?
- How to map private IP space to public IPs?

Network Address Translation (NAT)

- Despite CIDR, it's still difficult to allocate addresses (2³² is only 4 billion)
- NAT "hides" entire network behind one address
- Hosts are given *private* addresses
- Routers map outgoing packets to a free address/port
- Router reverse maps incoming packets
- Problems?

NAT Example

Problems with NAT

- Breaks end-to-end connectivity!
- Technically a violation of layering
- Need to do extra work at end hosts to establish end-toend connection
 - VoIP (Voice/Video conferencing)
 - Games

NAT Traversal

Various methods, depending on the type of NAT Examples:

- ICE: Interactive Connectivity Establishment (RFC8445)
- STUN: Session Traversal Utilities for NAT (RFC5389)

One idea: connect to external server via UDP, it tells you the address/port

IP challenge: Address space exhaustion

- IP version 4: ~4 billion IP addresses
 - World population: ~8 billion
 - Est. number of devices on Internet (2021): >10-30 billion
- Since 1990s: various tricks
 - Smarter allocations by registrars
 - Address sharing: Network Address Translation (NAT)
 - DHCP
 - Reclaiming unused space
- Long term solution: IP version 6

RIR IPv4 Address Run-Down Model

Source: potaroo.net/tools/ipv4

Source: potaroo.net/tools/ipv4

So what happened when we ran out of IPv4 addresses?

- It's not completely gone just yet, but close \bullet
- Address block fragmentation \bullet
 - Secondary market for IPv4
 - E.g., in 2011 Microsoft bought >600K US IPv4 addresses for \$7.5M
- NATs galore \bullet
 - Home NATs, carrier-grade NATs

IPv6

- Main motivation: IPv4 address exhaustion
- Initial idea: larger address space
- Need new packet format:
 - REALLY expensive to upgrade all infrastructure!
 - While at it, why don't we fix a bunch of things in IPv4?
- Work started in 1994, basic protocol published in 1998

The original expected plan

From: http://www.potaroo.net/ispcol/2012-08/EndPt2.html

The plan in 2011

What was happening (late 2012)

June 6th, 2012

Transition is not painless

From http://www.internetsociety.org/deploy360/ipv6/ :

You may want to begin with our "Where Do I Start?" page where we have guides for:

- Network operators
- Developers
- Content providers / website owners
- Enterprise customers
- Domain name registrars
- Consumer electronics vendors
- Internet exchange point (IXP) operators

• Why do each of these parties have to do something?

IP version 6

IPv6 Adoption

At Google: **IPv6 Adoption** We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6. Native: 36.43% 6to4/Teredo: 0.00% Total IPv6: 36.43% | Feb 6, 2022 40.00% 35.00% 30.00% 25.00% 20.00% 15.00% 10.00% 5.00% 0.00% Jan 2012 Jan 2013 Jan 2014 Jan 2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019 Jan 2020 Jan 2021 Jan 2022

IPv6 Adoption

At Google:

At Brown

Wi-Fi	TCP/IP DNS WIN	S 802.1X Proxies	Hardware	
Configure IPv4:	Using DHCP	\bigcirc		
IPv4 Address:	10.3.142.223		Renew DHCP Le	ase
Subnet Mask:	255.255.192.0	DHCP Client ID:		
Router:	10.3.128.1		(If required)	
Configure IPv6:	Automatically	(
Router:	fe80::1			
	IPv6 Address		Prefix Length	1
	2620:6e:6000:900:1	87f:2222:a64f:392a	64	
	2620:6e:6000:900:d	4d6:81f8:1bc2:97c5	64	

IPv6 Key Features

- 128-bit addresses
- Simplifies basic packet format through *extension headers*
 - 40-byte base header (fixed)
 - Make less common fields optional
- Security and Authentication

IPv6 Address Representation

- Groups of 16 bits in hex notation 47cd:1244:3422:0000:0000:fef4:43ea:0001
- Two rules:
 - Leading 0's in each 16-bit group can be omitted
 47cd:1244:3422:0:0:fef4:43ea:1
 - One contiguous group of 0's can be compacted
 47cd:1244:3422::fef4:43ea:1

IPv6 Addresses

- Break 128 bits into 64-bit network and 64-bit interface
 - Makes autoconfiguration easy: interface part can be derived from Ethernet address, for example
- Types of addresses
 - All 0's: unspecified
 - 000...1: loopback
 - ff/8: multicast
 - fe8/10: link local unicast
 - fec/10: site local unicast
 - All else: global unicast

IPv6 Header

Ver	Class	Flow				
	Length		Next Hdr.	Hop limit		
Source (16 octets, 128 bits)						
	Destination (16 octets, 128 bits)					

IPv6 Header Fields

- Version: 4 bits, 6
- Class: 8 bits, like TOS in IPv4
- Flow: 20 bits, identifies a flow
- Length: 16 bits, datagram length
- Next Header, 8 bits: ...
- Hop Limit: 8 bits, like TTL in IPv4
- Addresses: 128 bits
- What's missing?
 - No options, no fragmentation flags, no checksum

Design Philosophy

- Simplify handling
 - New option mechanism (fixed size header)
 - No more header length field
- Do less work at the network (why?)
 - No fragmentation
 - No checksum
- General flow label
 - No semantics specified
 - Allows for more flexibility
- Still no accountability

Interoperability

- RFC 4038
 - Every IPv4 address has an associated IPv6 address (mapped)
 - Networking stack translates appropriately depending on other end
 - Simply prefix 32-bit IPv4 address with 80 bits of 0 and 16 bits of 1:
 - E.g., ::FFFF:128.148.32.2
- Two IPv6 endpoints must have IPv6 stacks
- Transit network:
 - $v6 v6 v6 : \vee$
 - |-v4-v4-v4:v|
 - $v4 v6 v4 : \checkmark$
 - v6 v4 v6 : X!!

Example Next Header Values

- 0: Hop by hop header
- 1: ICMPv4
- 4: IPv4
- 6:TCP
- 17: UDP
- 41: IPv6
- 43: Routing Header
- 44: Fragmentation Header
- 58: ICMPv6

Current State

- IPv6 Deployment picking up
- Most end hosts have dual stacks today (Windows, Mac OSX, Linux, *BSD, Solaris)
- Requires all parties to work!
 Servers, Clients, DNS, ISPs, all routers
- IPv4 and IPv6 will coexist for a long time

Coming Up

- Routing: how do we fill the routing tables?
 - Intra-domain routing: Tuesday, 10/4
 - Inter-domain routing: Thursday, 10/6

Example

# arp -n				
Address	HWtype	HWaddress	Flags Mask	Iface
172.17.44.1	ether	00:12:80:01:34:55	С	eth0
172.17.44.25	ether	10:dd:b1:89:d5:f3	C	eth0
172.17.44.6	ether	b8:27:eb:55:c3:45	С	eth0
172.17.44.5	ether	00:1b:21:22:e0:22	С	eth0

ip route

127.0.0.0/8 via 127.0.0.1 dev lo

172.17.44.0/24 dev enp7s0 proto kernel scope link src 172.17.44.22 metric 204 default via 172.17.44.1 dev eth0 src 172.17.44.22 metric 204

Internet Control Message Protocol (ICMP)

- Echo (ping)
- Redirect
- Destination unreachable (protocol, port, or host)
- TTL exceeded
- Checksum failed
- Reassembly failed
- Can't fragment
- Many ICMP messages include part of packet that triggered them
- See http://www.iana.org/assignments/icmp-parameters

ICMP message format

0 01234567890123456789012345678901						
20-byte IP header (protocol = 1—ICMP)						
Туре	Code	Checksum				
depends on type/code						

Example: Time Exceeded

$\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$						
20-byte IP header (protocol = 1—ICMP)						
Type = 11	Code	Checksum				
unused						
IP header + first 8 payload bytes of packet that caused ICMP to be generated						

- Code usually 0 (TTL exceeded in transit)
- Discussion: traceroute