
CSCI-1680
Network Layer:

IP Forwarding realities

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• Sign up for IP milestone meetings, preferably with your
mentor TA, on or before Friday (Oct 6)
– You don’t need to show an implementation, but you are expected to

talk about your design
– Look for calendar link in email

• IP gearup II: Thursday 5-7pm in CIT368
– Implementation and debugging tips

• HW1: Due Thursday (HW2 out either Thursday or next Tues)

Today

“Wrinkles” in IP forwarding
• Longest Prefix Match
• IP<->Link layer (ARP, DHCP)
• Network Address Translation (NAT)
• IPv6

After this: Routing

Default

Network A: 82.14.0.0/16 B: 1.3.0.0/16

D: 5.6.128.0/20 C: 1.3.25.0/24

Prefix IF/Next hop

82.14.0.0/16 (A)

1.3.0.0/16 (B)

1.3.4.0/24 (C)

5.6.128.0/20 (D)

0.0.0.0/0 (Default)

Warmup: based on the table, where would the
router send packets destined for the following
addresses:
1. 5.6.128.100

2. 1.3.1.1

3. 8.8.8.8

4. 1.3.4.8(X) is placeholder—could be an IP or an interface name

What happens when prefixes overlap?
Prefix IF/Next hop

1.3.0.0/16 (B)

1.3.4.0/24 (C)

1.3.4.5/32

0.0.0.0/0 (Default)
00000001 00000011 xxxxxxxx xxxxxxxx1.3.0.0/16

An IP can match on more than one row
 => need to pick the most specific (longest) prefix

1.3.4.0/24 00000001 00000011 00000100 xxxxxxxx

What happens when prefixes overlap?
Prefix IF/Next hop

1.3.0.0/16 (B)

1.3.4.0/24 (C)

1.3.4.5/32

0.0.0.0/0 (Default)
00000001 00000011 xxxxxxxx xxxxxxxx1.3.0.0/16

An IP can match on more than one row
 => need to pick the most specific (longest) prefix

1.3.4.0/24 00000001 00000011 00000100 xxxxxxxx

More specific => best match!

What happens when prefixes overlap?
Prefix IF/Next hop

1.3.0.0/16 (B)

1.3.4.0/24 (C)

1.3.4.5/32

0.0.0.0/0 (Default)
00000001 00000011 xxxxxxxx xxxxxxxx1.3.0.0/16

0.0.0.0/0 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

An IP can match on more than one row
 => need to pick the most specific (longest) prefix

1.3.4.0/24 00000001 00000011 00000100 xxxxxxxx

More specific => best match!

Other examples you’ll see…

00000001 00000011 00000100 000001011.2.3.5/32

What happens when prefixes overlap?
Prefix IF/Next hop

1.3.0.0/16 (B)

1.3.4.0/24 (C)

1.3.4.5/32

0.0.0.0/0 (Default)
00000001 00000011 xxxxxxxx xxxxxxxx1.3.0.0/16

0.0.0.0/0 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

An IP can match on more than one row
 => need to pick the most specific (longest) prefix

1.3.4.0/24 00000001 00000011 00000100 xxxxxxxx

More specific => best match!

Other examples you’ll see…

00000001 00000011 00000100 00000101

=> Least specific!
(Used for default “catchall” routes)

1.2.3.5/32 => Most specific!
(Refers to a single host,
often a local IP)

What happens when prefixes overlap?
Prefix IF/Next hop

1.3.0.0/16 (B)

1.3.4.0/24 (C)

1.3.4.5/32

0.0.0.0/0 (Default)
00000001 00000011 xxxxxxxx xxxxxxxx1.3.0.0/16

0.0.0.0/0 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

An IP can match on more than one row
 => need to pick the most specific (longest) prefix

1.3.4.0/24 00000001 00000011 00000100 xxxxxxxx

More specific => best match!

=>Longest prefix matching: can keep forwarding tables small by
summarizing routes where possible, otherwise using specific prefixes

Other examples you’ll see…

00000001 00000011 00000100 00000101

=> Least specific!
(Used for default “catchall” routes)

1.2.3.5/32 => Most specific!
(Refers to a single host,
often a local IP)

What happens at the link layer?

What does it mean to send to IF1?

10

1.2.1.3 1.2.2.100
1.2.1.1 1.2.2.1

IF1 IF2

IF0

Prefix IF/Next hop

1.2.1.0/24 IF1

1.2.2.0/24 IF2

8.0.0.0/30 IF0

Default 8.0.0.2

The story so far:
=>Can “easily” communicate with nodes on the same network,
but what about other networks?
=> Routers know about multiple networks, forward packets between them

So far: “easy” to communicate with nodes on the
same network. But how?

To send a packet on a local network, we need:
• Dest. IP (Network layer)
• Dest. MAC address (Link layer)

Assume: link layer can figure out the rest once we
fill in this info

11

1.2.1.2

1.2.1.3

1.2.1.200

1.2.1.1

IF1

Subnet “A”: 1.2.1.0/24

“Local delivery”:
what does it mean to send to IF1?

Prefix IF/Next hop

1.2.1.0/24 IF1

… …
=> How do we get the MAC address?

Src: 1.2.4.100
Dst: 1.2.1.3
. . .

Src Dest

Link ???

IP 10.2.4.100 1.2.1.3

“Glue” between L2 and L3

Need a way to connect get link layer info (mac address)
from network-layer info (IP address)

 “What MAC address has IP 1.2.3.4?”

Ask the network!
=> Address Resolution Protocol (ARP)

ARP: Address resolution protocol

Given an IP address, ask network for the MAC address
• Maps IP addresses to mac addresses

– Request: “Who has 1.2.3.4?”
– Response: “aa:bb:cc:dd:ee:ff is at 1.2.3.4”

• ARP table: hosts cache IP->mac mappings
• Requests send to broadcast address: ff:ff:ff:ff:ff:ff

– Anyone can respond: problem?

Src Dst
Eth …:aa:aa:aa ff:ff:ff:ff:ff:ff
Who has 1.2.1.3?

A
bb:bb:bb:bb:bb:bb

(1.2.1.3)

A
aa:aa:aa:aa:aa:aa

(1.2.1.1)

Src Dst
Eth …:bb:bb:bb …:aa:aa:aa
1.2.1.3 is at bb:bb:bb:bb:bb:bbÞRequest is sent to broadcast address!

Anyone can respond. Problem?

Example

arp -n
Address HWtype HWaddress Flags Mask Iface
172.17.44.1 ether 00:12:80:01:34:55 C eth0
172.17.44.25 ether 10:dd:b1:89:d5:f3 C eth0
172.17.44.6 ether b8:27:eb:55:c3:45 C eth0
172.17.44.5 ether 00:1b:21:22:e0:22 C eth0

16

1.2.1.2

1.2.1.3

1.2.1.200

1.2.2.105

1.2.2.100

1.2.1.1 1.2.2.1

IF1 IF2

IF0

Subnet “A”: 1.2.1.0/24

Subnet “B”: 1.2.2.0/24

How do you get an IP address?

Getting an IP

Two ways to configure an IP:
• Static configuration: manually specify IP address, mask,

gateway, …

• Automatic: ask the network for an IP when you connect!

Getting an IP

Two ways to configure an IP for a host:
• Static configuration: manually specify IP address, mask,

gateway, …
 => More common with network devices that don’t change often

• Automatic: ask the network for an IP when you connect!
=> Most common for end hosts
=> Dynamic Host Configuration Protocol (DHCP)

DHCP: The idea

• Networks are free to assign addresses within block to
hosts

• Solution: Dynamic Host Configuration Protocol
– Client: DHCP Discover to 255.255.255.255 (broadcast)
– Server(s): DHCP Offer to 255.255.255.255 (why broadcast?)
– Client: choose offer, DHCP Request (broadcast, why?)
– Server: DHCP ACK (again broadcast)

• Result: address, gateway, netmask, DNS server

DHCP: The idea

• Every network has a “pool” of IPs it can assign to hosts
Some subset of its prefix (eg. 192.168.1.0/24)

• When a host connects, it asks a DHCP server for an address from
the pool

• DHCP server(s) act like allocators: give “leases” to IPs, provide
other config info

Host A

Src: A's MAC address
Dst: ff:ff:ff:ff:ff:ff
DHCPDISCOVER

Src: <Server MAC address>
Dst: ff:ff:ff:ff:ff:Ff
DHCPOFFER:
Your IP: 192.168.1.102
Mask: 255.255.255.0
Router: 192.168.1.1
...

DHCP server

(More steps after this)

=> Again, host needs to use broadcast address. Why?
=> Problem?

A home router

What’s in this thing?

Story time

About those home routers…

You get just one IP from your ISP…
=> Need to share IP among many devices
on the same network!

Common to create a “private” IP range used
within local network
 => Routers need to do extra work to share public
IP among private IPs
 => Network Address Translation (NAT)
 (A form of connection multiplexing)

Private IPs (RFC1918)

Some IP ranges are reserved:

• Many networks will use these blocks internally
• These IPs should never be routed over the Internet!

– What would happen if they were?

Prefix Use

127.0.0.0/8 “Loopback” address—always for current host

10.0.0.0/8

Reserved for private internal networks (RFC1918)192.168.0.0/16

172.16.0.0/12

Network Address Translation

• What happens when hosts need to share an IP
address?

• How to map private IP space to public IPs?

Network Address Translation (NAT)

• Despite CIDR, it’s still difficult to allocate addresses
(232 is only 4 billion)

• NAT “hides” entire network behind one address
• Hosts are given private addresses
• Routers map outgoing packets to a free address/port
• Router reverse maps incoming packets
• Problems?

NAT Example

Problems with NAT

• Breaks end-to-end connectivity!
• Technically a violation of layering
• Need to do extra work at end hosts to establish end-to-

end connection
– VoIP (Voice/Video conferencing)
– Games

NAT Traversal

Various methods, depending on the type of NAT
Examples:
• ICE: Interactive Connectivity Establishment (RFC8445)
• STUN: Session Traversal Utilities for NAT (RFC5389)

One idea: connect to external server via UDP, it tells you
the address/port

IP challenge: Address space exhaustion

• IP version 4: ~4 billion IP addresses
– World population: ~8 billion
– Est. number of devices on Internet (2021): >10-30 billion

• Since 1990s: various tricks
– Smarter allocations by registrars
– Address sharing: Network Address Translation (NAT)
– DHCP
– Reclaiming unused space

• Long term solution: IP version 6

35

Source: potaroo.net/tools/ipv4

Source: potaroo.net/tools/ipv4

So what happened when we ran out of IPv4
addresses?

• It’s not completely gone just yet, but close
• Address block fragmentation

– Secondary market for IPv4
– E.g., in 2011 Microsoft bought >600K US IPv4 addresses for $7.5M

• NATs galore
– Home NATs, carrier-grade NATs

Jun 2014

IPv6

• Main motivation: IPv4 address exhaustion
• Initial idea: larger address space
• Need new packet format:

– REALLY expensive to upgrade all infrastructure!
– While at it, why don’t we fix a bunch of things in IPv4?

• Work started in 1994, basic protocol published in 1998

The original expected plan

From: http://www.potaroo.net/ispcol/2012-08/EndPt2.html

The plan in 2011

What was happening (late 2012)

June 6th, 2012

Transition is not painless

• Why do each of these parties have to do
something?

From http://www.internetsociety.org/deploy360/ipv6/ :

http://www.internetsociety.org/deploy360/ipv6/

IP version 6

45

128-bit addresses!
Eg. 2600:3c03::f03c:91ff:fe6e:e3e1

IPv6 Adoption
At Google:

46

IPv6 Adoption
At Google:

47

At Brown

48

IPv6 Key Features

• 128-bit addresses
• Simplifies basic packet format through extension

headers
– 40-byte base header (fixed)
– Make less common fields optional

• Security and Authentication

IPv6 Address Representation

• Groups of 16 bits in hex notation
 47cd:1244:3422:0000:0000:fef4:43ea:0001
• Two rules:

– Leading 0’s in each 16-bit group can be omitted
 47cd:1244:3422:0:0:fef4:43ea:1
– One contiguous group of 0’s can be compacted
 47cd:1244:3422::fef4:43ea:1

IPv6 Addresses

• Break 128 bits into 64-bit network and 64-bit interface
– Makes autoconfiguration easy: interface part can be derived from

Ethernet address, for example
• Types of addresses

– All 0’s: unspecified
– 000…1: loopback
– ff/8: multicast
– fe8/10: link local unicast
– fec/10: site local unicast
– All else: global unicast

IPv6 Header
IPv6 Header

Ver Class Flow

Length Next Hdr. Hop limit

Source

(16 octets, 128 bits)

Destination

(16 octets, 128 bits)

IPv6 Header Fields

• Version: 4 bits, 6
• Class: 8 bits, like TOS in IPv4
• Flow: 20 bits, identifies a flow
• Length: 16 bits, datagram length
• Next Header, 8 bits: …
• Hop Limit: 8 bits, like TTL in IPv4
• Addresses: 128 bits
• What’s missing?

– No options, no fragmentation flags, no checksum

Design Philosophy

• Simplify handling
– New option mechanism (fixed size header)
– No more header length field

• Do less work at the network (why?)
– No fragmentation
– No checksum

• General flow label
– No semantics specified
– Allows for more flexibility

• Still no accountability

With some content from Scott Shenker

Interoperability

• RFC 4038
– Every IPv4 address has an associated IPv6 address (mapped)
– Networking stack translates appropriately depending on other end
– Simply prefix 32-bit IPv4 address with 80 bits of 0 and 16 bits of 1:
– E.g., ::FFFF:128.148.32.2

• Two IPv6 endpoints must have IPv6 stacks
• Transit network:

– v6 – v6 – v6 : ✔
– v4 – v4 – v4 : ✔
– v4 – v6 – v4 : ✔
– v6 – v4 – v6 : ✗!!

Example Next Header Values

• 0: Hop by hop header
• 1: ICMPv4
• 4: IPv4
• 6:TCP
• 17: UDP
• 41: IPv6
• 43: Routing Header
• 44: Fragmentation Header
• 58: ICMPv6

Current State

• IPv6 Deployment picking up
• Most end hosts have dual stacks today (Windows, Mac

OSX, Linux, *BSD, Solaris)
• Requires all parties to work!

– Servers, Clients, DNS, ISPs, all routers

• IPv4 and IPv6 will coexist for a long time

Coming Up

• Routing: how do we fill the routing tables?
– Intra-domain routing: Tuesday, 10/4
– Inter-domain routing: Thursday, 10/6

Example
arp -n
Address HWtype HWaddress Flags Mask Iface
172.17.44.1 ether 00:12:80:01:34:55 C eth0
172.17.44.25 ether 10:dd:b1:89:d5:f3 C eth0
172.17.44.6 ether b8:27:eb:55:c3:45 C eth0
172.17.44.5 ether 00:1b:21:22:e0:22 C eth0

ip route
127.0.0.0/8 via 127.0.0.1 dev lo
172.17.44.0/24 dev enp7s0 proto kernel scope link src 172.17.44.22 metric 204
default via 172.17.44.1 dev eth0 src 172.17.44.22 metric 204

Internet Control Message Protocol (ICMP)

• Echo (ping)
• Redirect
• Destination unreachable (protocol, port, or host)
• TTL exceeded
• Checksum failed
• Reassembly failed
• Can’t fragment
• Many ICMP messages include part of packet that triggered

them
• See http://www.iana.org/assignments/icmp-parameters

http://www.iana.org/assignments/icmp-parameters

ICMP message format

ICMP message format

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

20-byte IP header

ChecksumCodeType

depends on type/code

(protocol = 1—ICMP)

• Types include:
- echo, echo reply, destination unreachable, time exceeded, . . .

- See http://www.iana.org/assignments/icmp-parameters

Example: Time exceeded

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

20-byte IP header

ChecksumCodeType = 11

unused

IP header + first 8 payload bytes

of packet that caused ICMP to be generated

(protocol = 1—ICMP)

• Code usually 0 (TTL exceeded in transit)

• Discussion: How does traceroute work?

Example: Time Exceeded

• Code usually 0 (TTL exceeded in transit)
• Discussion: traceroute

