
CSCI-1680
Network Layer:

Intra-domain Routing
Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• IP milestone meetings: Should meet with staff on/before
October 6 (TOMORROW)
– Sign up link via email
– Can’t find a time? Make a private post on Ed!

• IP Gearup II tonight (10/5) 5-7pm, CIT368
– Implementation/debugging stuff; bring questions!

• HW1 due tonight; HW2 out after this class or next class

Today

Two things
• More on NAT
• Intro to routing, RIP

Network Address Translation (NAT)

Story time

How NAT works
192.168.1.100

1.2.1.102

192.168.1.1 5.6.7.8

IF1 IF0

“Inside” network
192.168.1.0/24

192.168.1.101

Rest of Internet

S

=> Router needs to remember connection state
=> Router makes some (sketchy) assumptions about traffic

Goal: Share one IP among many hosts on a private network
Router translates (modifies) packets from ”inside” to use “outside” address

(The most common type)

Where are the port numbers?????

IP Header

UDP TCP

… ports are actually part of the transport layer header!

Problem?

ÞTechnically a violation of layering! Network layer shouldn’t care about port
numbers, but here it matters

ÞNAT needs to know semantics of TCP/UDP (how connections start/end…
...but wait there’s more…

192.168.1.100

1.2.1.102

192.168.1.1 5.6.7.8

IF1 IF0

“Inside” network
192.168.1.0/24

192.168.1.101

Rest of Internet

S

Can’t do it (at least without special setup)!
ÞBy default, R only knows how to translate packets for connections

originating from INSIDE the network
ÞBreaks end to end connectivity!!!

What happens when outside host S wants to connect to inside host A?

A

B

C

R

End to end connectivity, you say?

Breaking end-to-end connectivity?

Why is this bad?

NAT is used in just about every consumer network
• Generally: can’t connect directly to an end host unless it

connects to you first

• Need extra work for any protocols that need a direct

connection between hosts

=> When do we need this?

Why is this bad?

NAT is used in just about every consumer network
• Generally: can’t connect directly to an end host unless it

connects to you first

• Need extra work for any protocols that need a direct

connection between hosts

ÞProtocols that aren’t strictly client-server
ÞLatency critical applications: voice/video calls, games

NAT Traversal

Various methods, depending on the type of NAT

Examples:
• Manual method: port forwarding
• ICE: Interactive Connectivity Establishment (RFC8445)
• STUN: Session Traversal Utilities for NAT (RFC5389)

One idea: connect to external server via UDP, it tells you the
address/port

Routing

Challenges in moving packets

• Forwarding: given a packet, decide which interface to
send the packet (based on IP destination)

• Routing: network-wide process of determining a
packet’s path through the network
=> How each router builds its forwarding table

Routing

Routing is the process of updating forwarding tables
– Routers exchange messages about networks they can reach

Goal: find optimal route (or any route…) for
every other destination

This is a hard problem
– Decentralized
– Topology always changing
– Scale!

20

Map of the Internet, 2021 (via BGP)
OPTE project

Routing is how we build this picture!

How do we connect everything?

Relies on hierarchical nature of IP addressing
• Smaller routers don’t need to know everything, just

another router that knows more
ÞHas default route

• Core routers know everything => no default!

A forwarding table (my laptop)

22

deemer@ceres ~ % ip route
default via 10.3.128.1 dev wlp2s0
10.3.128.0/18 dev wlp2s0 proto dhcp scope link src 10.3.135.44 metric 3003
172.18.0.0/16 dev docker0 proto kernel scope link src 172.18.0.1
192.168.1.0/24 dev enp0s31f6 proto kernel scope link src 192.168.1.1

A large table

23

rviews@route-server.ip.att.net>show route table inet.0 active-path

inet.0: 866991 destinations, 13870153 routes (866991 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 5w0d 19:43:09
 > to 12.0.1.1 via em0.0

1.0.0.0/24 *[BGP/170] 1d 10:24:47, localpref 100, from 12.122.83.238
 AS path: 7018 3356 13335 I, validation-state: valid
 > to 12.0.1.1 via em0.0

1.0.4.0/22 *[BGP/170] 1d 10:24:47, localpref 100, from 12.122.83.238
 AS path: 7018 3356 4826 38803 I, validation-state: valid
 > to 12.0.1.1 via em0.0

1.0.4.0/24 *[BGP/170] 1d 10:24:47, localpref 100, from 12.122.83.238
 AS path: 7018 3356 4826 38803 I, validation-state: valid
 > to 12.0.1.1 via em0.0

1.0.5.0/24 *[BGP/170] 1d 10:24:47, localpref 100, from 12.122.83.238
 AS path: 7018 3356 4826 38803 I, validation-state: valid
 > to 12.0.1.1 via em0.0

1.0.6.0/24 *[BGP/170] 1d 10:24:47, localpref 100, from 12.122.83.238
 AS path: 7018 3356 4826 38803 I, validation-state: valid
 > to 12.0.1.1 via em0.0

1.0.7.0/24 *[BGP/170] 1d 10:24:47, localpref 100, from 12.122.83.238

Thinking about the scale

At this stage, we think about routing to whole networks,
ie, some entity with some set of IP prefixes:

eg. Brown University @ 128.148.0.0/16, 138.16.0.0/16

We call each entity an Autonomous System (AS):
a single administrative domain that lives on the Internet

Routing is organized in two levels:
• Intra-domain (interior) routing: routing within an AS

• Inter-domain (exterior) routing: routing between ASes

Routing is organized in two levels:
• Intra-domain (interior) routing: routing within an AS
 => Full knowledge of the network inside the AS
 => One administrator, routing policy
 => Strive for optimal paths

• Inter-domain (exterior) routing: routing between ASes
 => None of the above, decisions instead made by policy (later)

^ We are here today

Intra-Domain (Interior) Routing

Typically, view network as a graph
• Nodes are routers
• Assign some cost to each edge

– latency, b/w, queue length, …

Goal: find lowest-cost path between nodes
– Each node individually computes routes

4

3
6

2
1

9

1

1
D

A

F
E

B

C

Collect routes into a routing table, used to generate the
forwarding table based on lowest-cost path

Two classes of intra-domain routing algorithms
• Distance Vector (Bellman-Ford shortest path algorithm)

– Each node gets updates only from neighbors
– Can suffer from loops

• Link State (Djikstra/Prim shortest path algorithm)
– Each node has global view of the network
– Requires global state

Distance Vector Routing

• Each node maintains a routing table

• Exchange updates with neighbors
about node’s links:
 => List of <Destination, Cost> pairs

• When to send updates?
– Periodically (seconds to minutes)
– Whenever table changes (triggered update)
– Time out an entry if no updates within some time interval

Dest. Cost Next Hop

A 3 S

B 4 T

C 5 S

D 6 U

Distance Vector: Update rules

Say router R receives an update <D, cD> from neighbor N at
cost CN
 => Know: R can reach D via N with cost c = cD + cN
How to update table?
1. If D not in table, add <D, c, N> (New route!)
2. If table has entry <D, M, cold>:

– if c < cold: update table to <D, c, M>. (Lower cost!)
– if c > cold and M == N: update table to <D, c, N> (Cost increased!)
– if c > cold and M != N: ignore (N is better)
– if c == cold and M ==N: no change (No new info)

(Just refresh timeout)

DV Example

D

G

A

F

E

B

C

DV Example

Dest. Cost Next
Hop

(B) (0) (B)
A 1 A
C 1 C
D 2 C
E 2 A
F 2 A
G 3 A

B’s routing table
D

G

A

F

E

B

C

Warmup

Suppose router R has the following table:

What happens when it gets
this update from router S?

Dest. Cost Next Hop

A 3 S

B 4 T

C 5 S

D 6 U

Dest. Cost

A 2

B 3

C 5

D 4

E 2

Dealing with Failures

• What happens when the D-A link fails?

A

B

C

D

=> “Count to Infinity” problem

How to avoid loops

• Does IP TTL help?
• Simple approach: consider a small cost n (e.g., 16) to be

infinity
– After n rounds decide node is unavailable
– But rounds can be long, this takes time

Problem: distance vector based only on local information

One way: Split Horizon

• When sending updates to node A, don’t include routes you
learned from A

• Prevents B and C from sending cost 2 to A

Split Horizon + Poison Reverse

• Rather than not advertising routes learned from A, explicitly
include cost of ∞.

• Faster to break out of loops, but increases advertisement sizes

Distance-vector updates

Even with split horizon + poison reverse,
can still create loops with >2 nodes

What else can we do?
• Triggered updates: send update as soon as link state

changes
• Hold down: delay using new routes for certain time, affects

convergence time

A

B

C

D

Practice

Routers A,B,C,D use RIP. When B sends a periodic update to A, what
does it send…
• When using standard RIP?
• When using split horizon + poison reverse?

A

B

C

D

Dest. Cost Next Hop

A 1 A

C 1 C

D 2 A

B’s routing table

Dealing with failures

• What happens when the D-A link fails?

A

B

C

D

Link State Routing

Link State Routing

• Strategy:
– send to all nodes information about directly connected

neighbors

• Link State Packet (LSP)
– ID of the node that created the LSP
– Cost of link to each directly connected neighbor
– Sequence number (SEQNO)
– TTL

Reliable Flooding

• Store most recent LSP from each node
– Ignore earlier versions of the same LSP

• Forward LSP to all nodes but the one that sent it
• Generate new LSP periodically

– Increment SEQNO
• Start at SEQNO=0 when reboot

– If you hear your own packet with SEQNO=n, set your next SEQNO
to n+1

• Decrement TTL of each stored LSP
– Discard when TTL=0

Calculating best path

• Djikstra’s single-source shortest path algorithm
– Each node computes shortest paths from itself

• Let:
– N denote set of nodes in the graph
– l(i,j) denote the non-negative link between i,j

• ∞ if there is no direct link between i and j
– s denotes yourself (node computing paths)
– C(n) denote the cost of path from s to n

• Initialize variables
– M = {s} (set of nodes incorporated thus far)
– For each n in N-{s}, C(n) = l(s,n)
– Next(n) = n if l(s,n) < ∞, – otherwise

Djikstra’s Algorithm

• While N≠M
– Let w ∈(N-M) be the node with lowest C(w)
– M = M ∪ {w}
– Foreach n ∈ (N-M), if C(w) + l(w,n) < C(n)

 then C(n) = C(w) + l(w,n), Next(n) = Next(w)
• Example: D: (D,0,-) (C,2,C) (B,5,C) (A,10,C)

D

A

B

C

5 3

2
11

10

Distance Vector vs. Link State

• # of messages (per node)
– DV: O(d), where d is degree of node
– LS: O(nd) for n nodes in system

• Computation
– DV: convergence time varies (e.g., count-to-infinity)
– LS: O(n2) with O(nd) messages

• Robustness: what happens with malfunctioning router?
– DV: Nodes can advertise incorrect path cost, which propagates

through network
– LS: Nodes can advertise incorrect link cost

Metrics

• Original ARPANET metric
– measures number of packets enqueued in each link
– neither latency nor bandwidth in consideration

• New ARPANET metric
– Stamp arrival time (AT) and departure time (DT)
– When link-level ACK arrives, compute

Delay = (DT – AT) + Transmit + Latency
– If timeout, reset DT to departure time for retransmission
– Link cost = average delay over some time period

• Fine Tuning
– Compressed dynamic range
– Replaced Delay with link utilization

• Today: commonly set manually to achieve specific goals

Examples

• RIPv2
– Fairly simple implementation of DV
– RFC 2453 (38 pages)

• OSPF (Open Shortest Path First)
– More complex link-state protocol
– Adds notion of areas for scalability
– RFC 2328 (244 pages)

• ISIS (Intermediate System to Intermediate System)
– OSI standard (210 pages)
– Link-state protocol (similar to OSPF)
– Does not depend on IP

OSPFv2

• Link state protocol
• Runs directly over IP (protocol 89)

– Must provide its own reliability

• All exchanges are authenticated
• Adds notion of areas for scalability

OSPF Areas

• Area 0 is “backbone” area (includes all boundary routers)
• Traffic between two areas must always go through area 0
• Only need to know how to route exactly within area
• Otherwise, just route to the appropriate area
• Tradeoff: scalability versus optimal routes

OSPF AreasOSPF areas

RIPv2

• Runs on UDP port 520
– (IP assignment: directly in IP, protocol 200)

• Link cost = 1
• Periodic updates every 30s, plus triggered updates
• Relies on count-to-infinity to resolve loops

– Maximum diameter 15 (∞ = 16)
– Supports split horizon, poison reverse

• Deletion
– If you receive an entry with metric = 16 from parent OR
– If a route times out

Packet format

RIPv2 packet format

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| command (1) | version (1) | must be zero (2) |

+---------------+---------------+-------------------------------+

| |

~ RIP Entry (20) ~

| |

+---------------+---------------+---------------+---------------+

RIPv2 Entry
RIPv2 Entry

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| address family identifier (2) | Route Tag (2) |

+-------------------------------+-------------------------------+

| IP address (4) |

+---+

| Subnet Mask (4) |

+---+

| Next Hop (4) |

+---+

| Metric (4) |

+---+

Route Tag field

• Allows RIP nodes to distinguish internal and external
routes

• Must persist across announcements
• E.g., encode AS

Next Hop field

• Allows one router to advertise routes for multiple routers
on the same subnet

• Suppose only XR1 talks RIPv2:

Next Hop Field

• Allows one router to advertise routes for multiple
routers on same subnet

• Suppose only XR1 talks RIP2:
----- ----- ----- ----- ----- -----

|IR1| |IR2| |IR3| |XR1| |XR2| |XR3|

--+-- --+-- --+-- --+-- --+-- --+--

| | | | | |

--+-------+-------+---------------+-------+-------+--

<-------------RIP-2------------->

G, 1, G

Adapting to Failures

• F-G fails
• F sets distance to G to infinity, propagates
• A sets distance to G to infinity
• A receives periodic update from C with 2-hop path to G
• A sets distance to G to 3 and propagates
• F sets distance to G to 4, through A

G, ∞, -G, 4, A

D

G

A

F

E

B

C
G, 2, F

G, 2, D
G, 3, C

G, 3, A

G, 1, GG, ∞,-G, 3,C

G, 4, A

Count-to-Infinity

• Link from A to E fails
• A advertises distance of infinity to E
• B and C advertise a distance of 2 to E
• B decides it can reach E in 3 hops through C
• A decides it can reach E in 4 hops through B
• C decides it can reach E in 5 hops through A, …
• When does this stop?

D

G

A

F

E

B

C

Good news travels fast

• A decrease in link cost must be fresh information
• Network converges at most in O(diameter) steps

A

B

C

4 1

10

1

Bad news travels slowly

• An increase in cost may cause confusion with old information, may form loops
• Consider routes to A
• Initially, B:A,4,A; C:A,5,B
• Then B:A,12,A, selects C as next hop -> B:A,6,C
• C -> A,7,B; B -> A,8,C; C -> A,9,B; B -> A,10,C;
• C finally chooses C:A,10,A, and B -> A,11,C!

A

B

C

4 1

10

12

Next Class

• Inter-domain routing: how scale routing to the entire
Internet

IP Connectivity

For each destination address, a router must either:
– Have matching prefix in its forwarding table
– Know a “smarter router”, ie default route for unknown prefixes

• Core routers know everything => no default route!
• Manage using notion of Autonomous System (AS)

Scaling Issues

Problem: Every router must be able to forward based on
any destination IP address

– Map destination address => next hop
– Could we have one entry per IP? No!

Solutions
– Leverage hierarchy in network topology
– Address aggregation

• Address allocation is very important (should mirror topology)
– Default routes

Autonomous Systems (ASes)

• Correspond to an administrative domain
– AS’s reflect organization of the Internet
– E.g., Brown, large company, etc.
– Identified by a 16-bit number (now 32)

• Goals
– AS’s choose their own local routing algorithm
– AS’s want to set policies about non-local routing
– AS’s need not reveal internal topology of their network

NSFNET backboneStanford

BARRNET
regional

Berkeley
PARC

NCAR

UA

UNM

Westnet
regional

UNL KU

ISU

MidNet
regional…

Internet structure, 1990

• Several independent organizations
• Hierarchical structure with single backbone

Internet structure, today

• Multiple backbones, more arbitrary structure

Backbone service provider

Peering
point

Peering
point

Large corporation

Large corporation

Small
corporation

“Consumer” ISP

“Consumer” ISP

“Consumer” ISP

