CSCI-1680 Network Layer: Inter-domain Routing

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Rob Sherwood, David Mazières, Phil Levis, John Jannotti

Warmup

Suppose router R has the following table:

What happens when it gets this update from router S?

Warmup

Suppose router R has the following table:

Dest.	Cost	Next Hop
А	3	S
В	4	Т
С	5	S
D	6	U

What happens when it gets this update from router S?

Warmup

Suppose router R has the following table:

Administrivia

- You should have completed your IP milestone meeting
 - If not, contact us ASAP
- HW2: Out today, probably

- IP: Due next Thursday, October 19
 - New Wireshark testing guide, other resources
 - Do not leave this until the last minute

Topics for today

- More on intra-domain (interior) routing
 - Challenges in RIP
 - Link-state routing

• Inter-domain routing: BGP

What happens when the D-A link fails?

Updates occur in a loop with increasing cost until cost reaches infinity (16)! => Count to infinity => long time to converge when links fail

Can we avoid loops?

- Does IP TTL help? Nope.
- Simple approach: consider a small cost n (e.g., 16) to be infinity
 - After n rounds decide node is unavailable
 - But rounds can be long, this takes time

Fundamental problem: distance vector only based on local information! => Not enough info to resolve loops, race conditions, count-to-infinity, but there are some tricks we can do...

Split Horizon + Poison Reverse

- Rather than not advertising routes learned from A, explicitly include cost of ∞.
- Faster to break out of loops, but increases advertisement sizes (D, P, I) (D, A, L) (D, P, I) (D, A, L) A (D, A, L) POISON PEVERCE IS A COMMON CONVERSION, MIGHT WELP TIME TO CONVERSE IN SOME CASES, BUT MARD TO SEE EFFECT IS. SPLIT HOW ZON. \bullet

Practice

B's routing table

 $(\langle \rangle 1)$

 (A, ∞)

(C, I)

Routers A,B,C,D use RIP. When B sends a periodic update to A, what does it send... SU + PA

- When using standard RIP?
- When using split horizon + poison reverse?

Link State Routing

(INTERIOR ROUTING: LITHIN AN ORGANIZATION)

Example: OSPF

Strategy: each router sends information about its neighbors to all nodes

• Nodes build the full graph, not just neighbor info

= MORE UPPATE, TO MORE NODES.

• Updates have more state info

=> VENSIONINB, TTL, ...

Example: OSPF

Strategy: each router sends information about its neighbors to all nodes

• Nodes build the full graph, not just neighbor info

• Updates have more state info

Tradeoffs?

Strategy: each router sends information about its neighbors to all nodes

- Nodes build the full graph, not just neighbor info => Can define "areas" to scale this in large networks
- Updates have more state info
 - Node IDs, version info (sequence number, TTL), ...

=> Can be used to detect loops, stale info NAND PROBLEM TO GET INFO TO AU NODES.

Strategy: each router sends information about its neighbors to all nodes

- Nodes build the full graph, not just neighbor info => Can define "areas" to scale this in large networks
- Updates have more state info
 - Node IDs, version info (sequence number, TTL), ...
 - => Can be used to detect loops, stale info

 \Rightarrow Focuses on building a consistent view of network state

Link State Routing: how it works

- Each node computes shortest paths from itself
- How? Dijkstra's algorithm
 - Given: full graph of nodes
 - Find best next hop to each other node

Tradeoffs?

Tradeoffs: Link State (LS) vs. Distance Vector (DV)

- LS sends more messages vs. DV -> MORE INFO IN LS LS sends more messages vs. DV LS requires more computation vs. DV = MORE COMP VTRITION NT EACH NODE
- Convergence time
 - DV: Varies (count-to-infinity)
 - LS: Reacts to updates better
- Robustness
 - DV: Bad updates can affect whole network
 - LS: Bad updates affect a single node's update

LS: HARDEN YO NAVE BAD INFO PROPAGATE.

Tradeoffs: Link State (LS) vs. Distance Vector (DV)

- LS sends more messages vs. DV
- LS requires more computation vs. DV
- Convergence time
 - DV: Varies (count-to-infinity)
 - LS: Reacts to updates better
- Robustness
 - DV: Bad updates can affect whole network
 - LS: Bad updates affect a single node's update

=> RIP isn't used in production environments anymore...

Examples

- RIPv2 K PROJECT.
- - Fairly simple implementation of DV
 - RFC 2453 (38 pages)
- OSPF (Open Shortest Path First) •
 - More complex link-state protocol
 - Adds notion of areas for scalability
 - RFC 2328 (244 pages)
- ISIS (Intermediate System to Intermediate System) ullet
 - OSI standard (210 pages)
 - Link-state protocol (similar to OSPF) —
 - Does not depend on IP —

So why not just use OSPF everywhere?

Does it scale?

Why not?

\Rightarrow Can't build a full routing graph with the whole Internet

\Rightarrow More a policy problem than a technical problem

- No unified way to represent cost <</p>
- No single administrator
- DIFFERENT FOR EVELY AS, MMIN. - Networks (ASes) have different policies on what "best" routes to choose

Why not?

\Rightarrow Can't build a full routing graph with the whole Internet

\Rightarrow More a policy problem than a technical problem

- No unified way to represent cost
- No single administrator
- Networks (ASes) have different policies on what "best" routes to choose

Need a different routing mechanism for exterior routing => BGP

With BGP: we talk about routing to Autonomous Systems (ASes)

= > Generally, large networks that advertise some set of IP prefixes to the Internet

=> Each AS has its own policy for how it does routing

AS11078 Brown University				
x Links	AS Info Graph v4 Graph v6 Prefixes v4	Prefixes v6 Peers v4 Peers v6		
polkit Home	Whois IRR Traceroute			
refix Report	Drofix	Description		
eer Report	Freix	Description		
Traceroute	<u>128.148.0.0/21</u>	Brown University		
nge Report	<u>128.148.8.0/21</u>	Brown University		
Routes	128.148.16.0/20	Brown University		
rigin Routes	128.148.32.0/19	Brown University		
eport	128.148.64.0/18			
st Report	128.148.128.0/17	Brown University		
g Glass	<u>138.16.0.0/17</u>	Brown University		
k Tools App	138.16.128.0/18	Brown University		
v6 Tunnel	138.16.192.0/19	Brown University		
rogress	138.16.224.0/19			
Native	192.91.235.0/24	Brown University		
t 1 Io				

With BGP: we talk about routing to Autonomous Systems (ASes) = > Generally, large networks that advertise some set of IP prefixes to the Internet

=> Each AS has its own policy for how it does routing

SEPARAJE GOALS (INTENEST! LAWYENS POLIFICAL AGENDAS FINANCIAL INCENTIVES.

ORGANIZATTOU-LEVEL ENTITIEL

Distance vector algorithm with extra information eg. "I can reach prefix 128.148.0.0/16 through ASes 44444 3356 14325 11078"

- For each route, router store the complete path (ASs)
- No extra computation, just extra storage (and traffic)

 \Rightarrow Can look at path to decide what to do with route \Rightarrow Can easily avoid loops!

Distance vector algorithm with extra information eg. "I can reach prefix 128.148.0.0/16 through ASes 44444 3356 14325 11078"

- For each route, router store the complete path (ASs)

- No extra computation, just extra storage (and traffic)

333

S BGP gets to decide what paths to propagate (send to neighbors)

S CUSYOM LOGIC TO DECIDE WHICH NETGHEBER GET UPDATES, AND WHICH DON'T.

Distance vector algorithm with extra information eg. "I can reach prefix 128.148.0.0/16 through ASes 44444 3356 14325 11078"

- For each route, router store the complete path (ASs)
- No extra computation, just extra storage (and traffic)
- BGP gets to decide what paths to propagate (send to neighbors)

 \Rightarrow Allows enforcing custom <u>policy</u> on how to do routing

BGP Implications

- Explicit AS Path == Loop free (most of the time)
- Not all ASs know all paths
- Reachability not guaranteed
 - Decentralized combination of policies
- AS abstraction -> loss of efficiency
- Scaling
 - 74K ASs
 - 959K+ prefixes
 - ASs with one prefix: 25K
 - Most prefixes by one AS: 10008 (Uninet S.A. de C.V., MX)

Source: cidr-report 18Oct2022

Why study BGP?

- Critical protocol: makes the Internet run
 - Only widely deployed EGP
- Active area of problems!
 - Efficiency
 - Cogent vs. Level3: Internet Partition
 - Spammers use prefix hijacking
 - Pakistan accidentally took down YouTube
 - Egypt disconnected for 5 days
 - NOW: Russia taking over Ukraine's traffic

Demo: AS11078

BGP Protocol Details

• <u>BGP speakers</u>: nodes that communicates with other ASes over BGP

• Speakers connect over TCP on port 179

 Exact protocol details are out of scope for this class; most important messages have type UPDATE

Where do we use policies?

DON

YOU THE OTHES

Policies are imposed in how routes are selected and exported

- <u>Selection</u>: which path to use in your network
 <u>Controls if/how traffic leaves the network</u>
- <u>Export</u>: which path to advertise
 - Controls how/if traffic enters the network

AS Relationships

NODE (MONE NIGHLY CONNETE) NOOS)

016652

Policies are defined by relationships between Ases PROVIDER: NIGHLY - CONNECTED, CUSTONERS PAY THEM FUR CONNECTIVITY (A,B,C IN EXAMPLE) CUSTOMEN: PAYS PROVIDEN TO CONNECT, SMALLER (X,Y,Z) PEER: MUTUALLY-BENEFICIAL COST-FREE PAILING BETWEEN PROVIDERS Example from Kurose and Ross, 5th Ed