


#### Nick DeMarinis

Based partly on lecture notes by Rachit Agarwal, Rodrigo Fonseca, Jennifer Rexford, Rob Sherwood, David Mazières, Phil Levis, John Jannotti

### Administrivia

- IP: Due next Thursday (10/19)
- HW2: As soon as I can get there

## Recall: BGP

Exterior routing: between Autonomous Systems (ASes)

=> How networks with different goals/policies/incentives connect to each other (or don't)

=> A "path vector" protocol

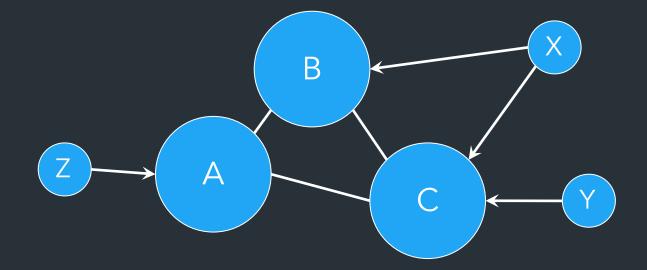
<u>A BGP update</u> "I can reach prefix 128.148.0.0/16 through ASes 44444 3356 14325 11078"

#### Key policy questions

<u>A BGP update</u> "I can reach prefix 128.148.0.0/16 through ASes 44444 3356 14325 11078"

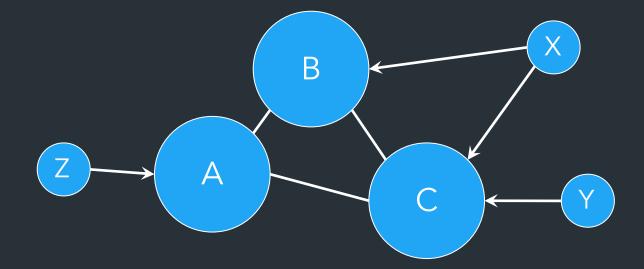
#### "How to use route info to update forwarding tables?"

#### "What routing info to send to neighbors?"

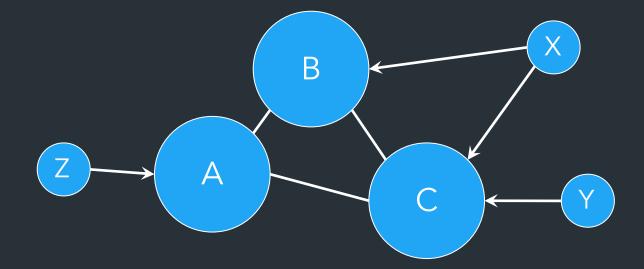

### Key policy questions

<u>A BGP update</u> "I can reach prefix 128.148.0.0/16 through ASes 44444 3356 14325 11078"

### "How to use route info to update forwarding tables?" => Local routing policy


### "What routing info to send to neighbors?" => Export policy

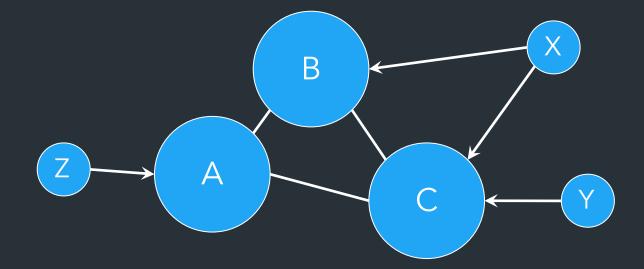
=> Policy Implications? What can go wrong?




• <u>Customer->Provider</u>:

• <u>Peers</u>:



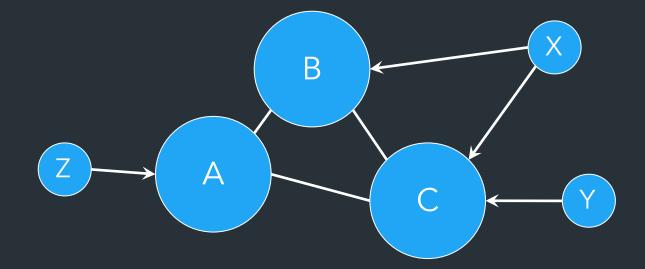

 <u>Customer->Provider</u>: Customer pays provider to advertise its routes, send it traffic



 <u>Customer->Provider</u>: Customer pays provider to advertise its routes, send it traffic ⇒Y pays C ⇒X pays B, C (multihomed)

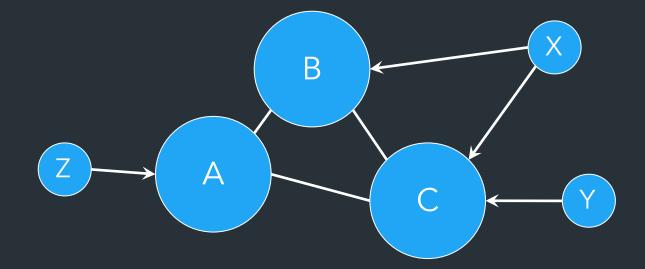
 $\Rightarrow$  B is transit [provider] for X: Traffic destined for X goes through B

 $\Rightarrow$  X is not transit for B, C: Traffic from B->C must not go through X!

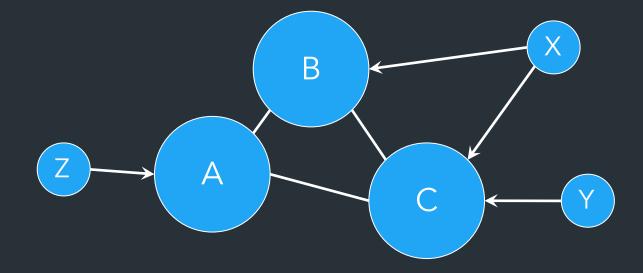



 <u>Customer->Provider</u>: Customer pays provider to advertise its routes, send it traffic >X pays B, C (multihomed)

 $\Rightarrow$  B is transit [provider] for X: Traffic destined for X goes through B


 $\Rightarrow$  X is not transit for B, C: Traffic from B->C must not go through X!

=> Why not? X gains nothing!




 <u>Customer->Provider</u>: Customer pays provider to advertise its routes, send it traffic

<u>Peers</u>: Providers may share routes at no cost for mutual benefit



- <u>Customer->Provider</u>: Customer pays provider to advertise its routes, send it traffic >X pays B, C (multihomed)
- <u>Peers</u>: Providers may share routes at no cost for mutual benefit



- <u>Providers</u>: highly connected ISPs
  - Most connected ("Tier 1") have no default route!
  - Tier 2 is customer of Tier 1, ...
- <u>Peers</u>: Providers may share routes at no cost for mutual benefit => A peers with B => A peers with C

#### How to turn this into a policy?

• <u>Selection Policy</u>: which path to use in your network

• <u>Export Policy</u>: which path to advertise

### How to think about policies

## Update processing

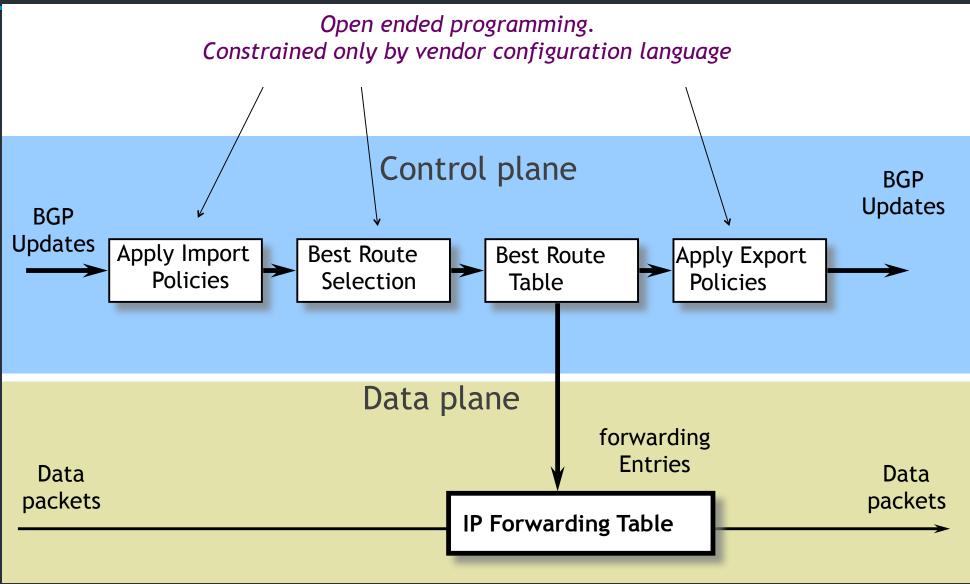



Image credit Rachit Agarwal

# AS relationships

- Customer pays provider for connectivity
  - E.g. Brown contracts with OSHEAN
  - Customer is stub, provider is a transit
- Many customers are multi-homed
   E.g., OSHEAN connects to Level3, Cogent
- Typical policies:
  - Provider tells all neighbors how to reach customer
  - Provider wants to send traffic to customers (\$\$\$)
  - Customer does not provide transit service

# Peer Relationships

- Peer ASs agree to exchange traffic for free
  - Penalties/Renegotiate if imbalance
- Tier 1 ISPs have no default route: all peer with each other
- You are Tier *i* + 1 if you have a default route to a Tier *i*
- Typical policies
  - AS only exports customer routes to peer
  - AS exports a peer's routes only to its customers
  - Goal: avoid being transit when no gain

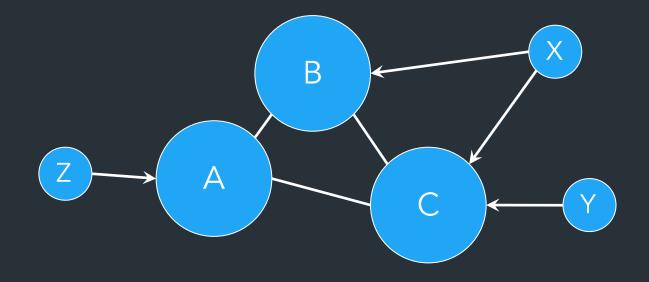
# Typical route selection policy

In decreasing priority order:

- 1. Make or save money (send to customer > peer > provider)
- 2. Try to maximize performance (smallest AS path length)
- 3. Minimize use of my network bandwidth ("hot potato routing"

4. ...

## Gao-Rexford Model


- (simplified) Two types of relationships: peers and customer/provider
- Export rules:
  - Customer route may be exported to all neighbors
  - Peer or provider route is only exported to customers
- Preference rules:
  - Prefer routes through customer (\$\$)
- If all ASes follow this, shown to lead to stable network



# Typical Export Policy

| Destination prefix<br>advertised by | Export route to                              |
|-------------------------------------|----------------------------------------------|
| Customer                            | Everyone (providers, peers, other customers) |
| Peer                                | Customers only                               |
| Provider                            | Customers only                               |

Known as Gao-Rexford principles: define common practices for AS relationships



#### How to prevent X from forwarding transit between B and C?

#### How to avoid transit between CBA?

What can go wrong?

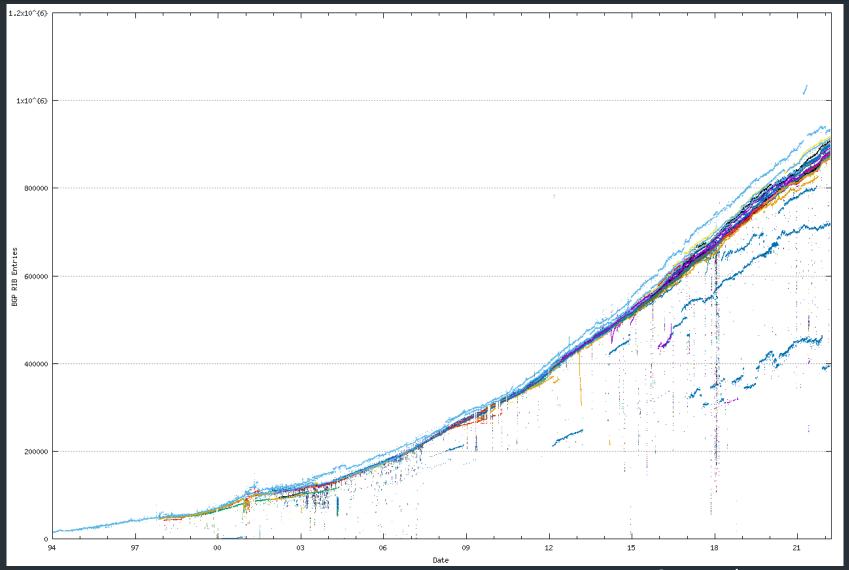
## How to advertise your prefixes?

Try to aggregate (summarize) prefixes for networks you own, but not always possible

More specific prefix => More preferred => Can have policy, security implications...

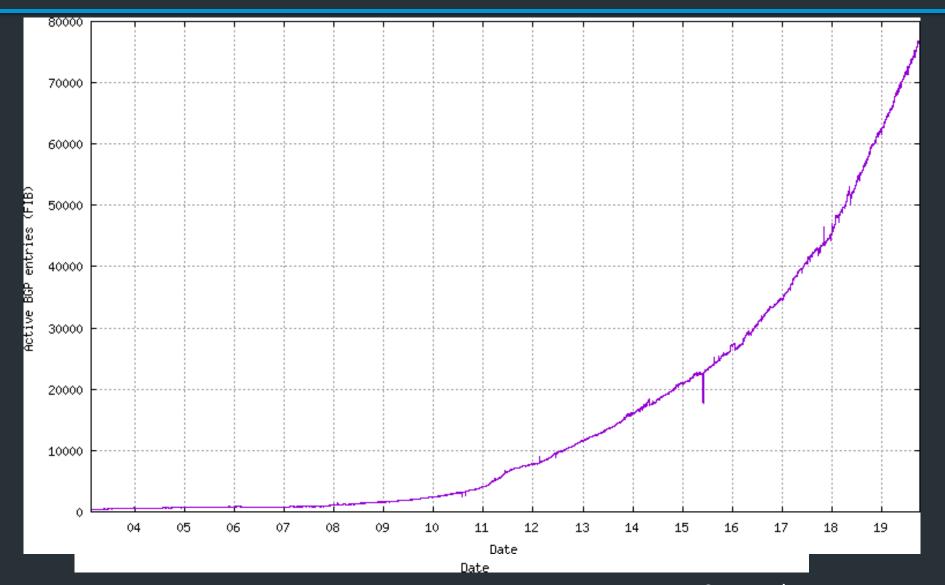
## How to advertise your prefixes?

Try to aggregate (summarize) prefixes for networks you own, but not always possible


Problem: smaller allocations => more prefixes in table => Forwarding table size limited by fast memory (TCAM) inside routers

# What can lead to table growth?

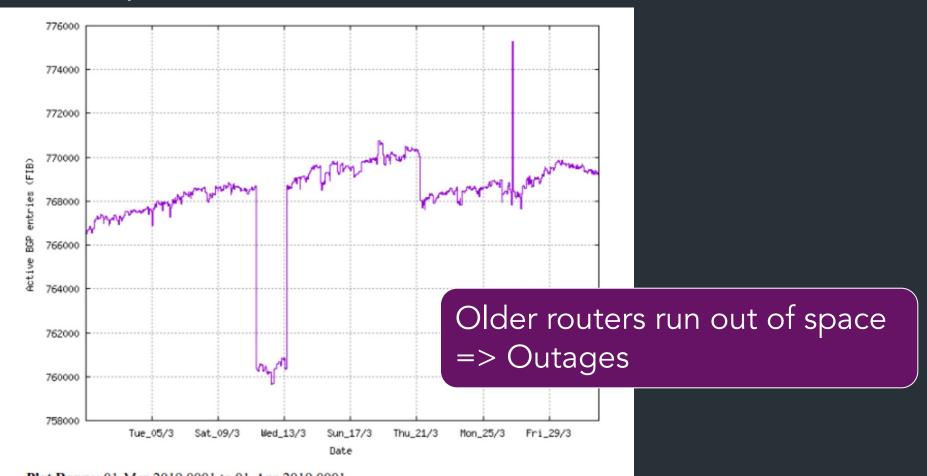
- More addresses being allocated
- Fragmentation
  - Multihoming
  - Change of ISPs
  - Address re-selling


Map of the Internet, 2021 (via BGP) OPTE project

### BGP Table Growth



Source: bgp.potaroo.net


## BGP Table Growth for v6



Source: bgp.potaroo.net

How big can the table get?

- August 12, 2014: the full IPv4 BGP table reached 512k prefixes
- March 5, 2019: 768k prefixes



# Peering Drama

- Cogent vs. Level3 were peers
- In 2003, Level3 decided to start charging Cogent
- Cogent said no
- Internet partition: Cogent's customers couldn't get to Level3's customers and vice-versa
  - Other ISPs were affected as well
- Took 3 weeks to reach an undisclosed agreement

# BGP can be fragile!

 Individual router configurations and policy can affect whole network

• Consequences sometimes disastrous...

## **BGP** Problems and Security Issues

### Who owns a prefix?

- Allocated by Internet authorities
  - Regional Internet Registries (ARIN, RIPE, APNIC)
  - Internet Service Providers
- Ideally, AS who owns prefix (or its providers) should advertise it
- However: BGP does not verify this

### The Five RIRs



# What can go wrong?

# Prefix Hijacking

- Consequences for the affected ASes ullet
  - Sinkhole: data traffic is discarded
  - Snooping: data traffic is inspected, and then redirected
    Impersonation: data traffic is sent to bogus destinations

#### Sub-Prefix Hijacking

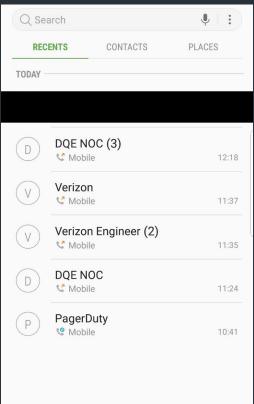
#### 12.34.158.0/24

12.34.0.0/1

- Originating a more-specific prefix
  - Every AS picks the bogus route for that prefix
  - Traffic follows the longest matching prefix

#### Some Notable incidents

# June 24, 2019: Misconfigured small customer router accepted lots of transit traffic

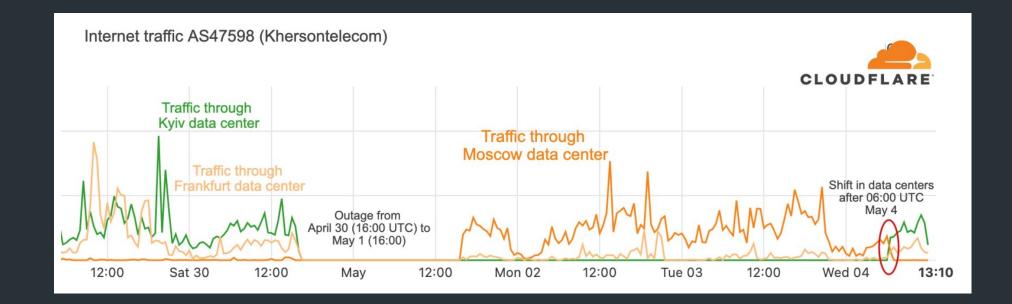

#### Jérôme Fleury

[URGENT] Route-leak from your customer

To: CaryNMC-IP@one.verizon.com, peering@verizon.com, help4u

help4u@verizon.com,

At this level, solving problems involves a lot of human expertise!






#### Pakistan Youtube incident

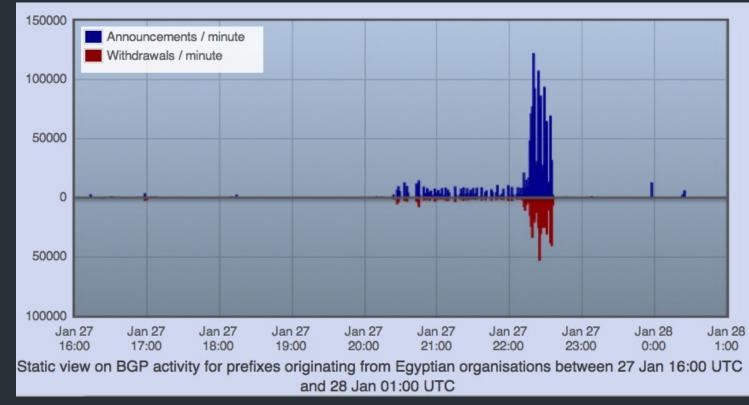
- Youtube's has prefix 208.65.152.0/22
- Pakistan's government order Youtube blocked
- Pakistan Telecom (AS 17557) announces 208.65.153.0/24 in the wrong direction (outwards!)
- Longest prefix match caused worldwide outage
- <u>http://www.youtube.com/watch?v=IzLPKuAOe50</u>

- ISP outage in Russian-occupied city of Kherson, Ukraine
- Comes back several days later... with traffic routed through a Russian ISP



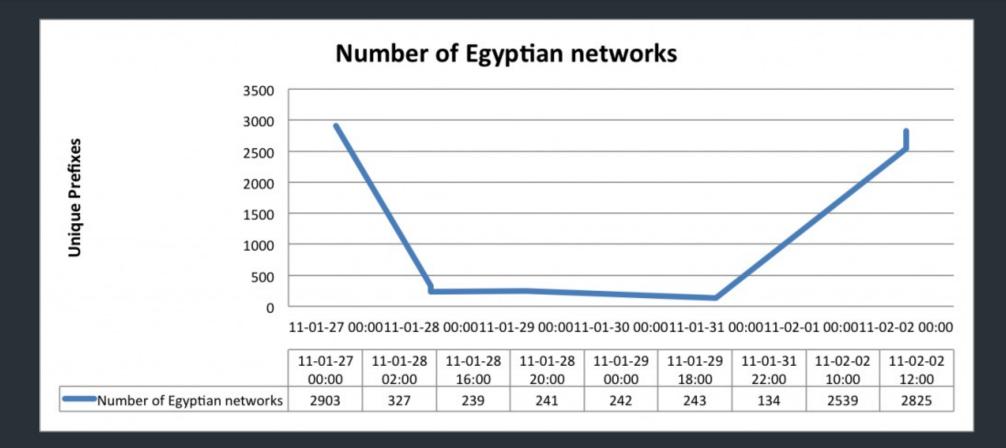
https://blog.cloudflare.com/tracking-shifts-in-internet-connectivity-in-kherson-ukraine/

### Many other incidents


- China incident, April 8<sup>th</sup> 2010
  - China Telecom's AS23724 generally announces 40 prefixes
  - On April 8<sup>th</sup>, announced ~37,000 prefixes
  - About 10% leaked outside of China
  - Suddenly, going to <u>www.dell.com</u> might have you routing through AS23724!

# Russian hackers intercept Amazon DNS, steal \$160K in cryptocurrency




## "Shutting off" the Internet

- Starting from Jan 27<sup>th</sup>, 2011, Egypt was disconnected from the Internet
  - 2769/2903 networks withdrawn from BGP (95%)!



Source: RIPEStat - http://stat.ripe.net/egypt/

# Egypt Incident



Source: BGPMon (http://bgpmon.net/blog/?p=480)

#### What can be done?

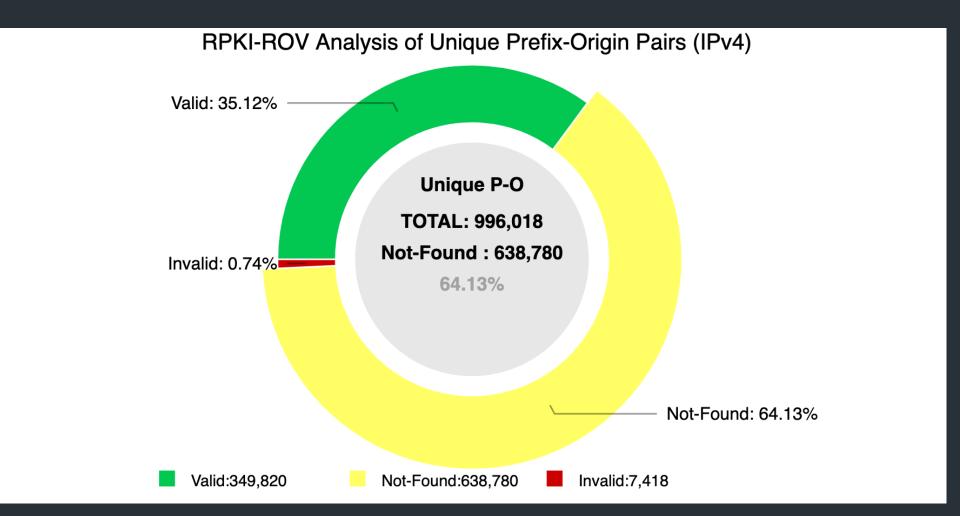
# Originally: Internet Routing Registries (IRRs): public database listing IP allocations

route: 10.0.0.0/8
descr: University of Blogging
descr: Anytown, USA
origin: AS65099
mnt-by: MNT-UNIVERSITY
notify: person@example.com
changed: person@example.com 20180101
source: RADB

But, database not verified and often incomplete/wrong

#### What can be done?

| \$whois -h w | hois.radb.net AS14325              |
|--------------|------------------------------------|
| aut-num:     | AS14325                            |
| as-name:     | ASN-OSHEAN                         |
| descr:       | OSHEAN, Inc.                       |
| import:      | from AS14325:AS-MBRS accept PeerAS |
| mp-import:   | from AS14325:AS-MBRS accept PeerAS |
| export:      | to AS-ANY announce AS14325:AS-MBRS |
| mp-export:   | to AS-ANY announce AS14325:AS-MBRS |
| admin-c:     | Tim Rue                            |
| tech-c:      | Ventsislav Gotov                   |
| notify:      | vgotov@oshean.org                  |
| mnt-by:      | MAINT-AS14325                      |
| changed:     | vgotov@oshean.org 20210512         |
| source:      | RADB                               |
|              |                                    |


## **Proposed Solution: RPKI**

- Based on a public key infrastructure
- Address attestations
  - Claims the right to originate a prefix
  - Signed and distributed out of band, checked on BGP updates
  - Checked through delegation chain from ICANN
- Can avoid
  - Prefix hijacking
  - Addition, removal, or reordering of intermediate ASes

#### **Proposed Solution: RPKI**

- Every AS adds signature of its route info in database
   Max prefix size, etc.
- Other ASes using routes can cryptographically verify advertised routes against signature
- Can avoid
  - Prefix hijacking
  - Addition, removal, or reordering of intermediate ASes

# RPKI deployment



#### **RPKI** at Brown?

#### FAILURE

Your ISP (Verizon, AS701) does not implement BGP safely. It should be using RPKI to protect the Internet from BGP hijacks. Tweet this  $\rightarrow$ 

▼ Details

fetch https://valid.rpki.cloudflare.com

correctly accepted valid prefixes

 Following slides not covered, but interesting

#### **BGP** Protocol Details

 <u>BGP speakers</u>: nodes that communicates with other ASes over BGP

• Speakers connect over TCP on port 179

 Exact protocol details are out of scope for this class; most important messages have type UPDATE

#### Prefixes

- Nodes in local network share prefix
  - Key to decide whether to send message locally
- Prefixes can also aggregate multiple networks
   E.g., 100.20.33.128/25, 100.20.33.0/25 -> 100.20.33.0/24
- If networks connected hierarchically, can have significant aggregation
- But allocations aren't so hierarchical... what does this mean?

## Anatomy of an UPDATE

- Withdrawn routes: list of withdrawn IP prefixes
- Network Layer Reachability Information (NLRI)
  - List of prefixes to which path attributes apply
- Path attributes
  - ORIGIN, AS\_PATH, NEXT\_HOP, MULTI-EXIT-DISC, LOCAL\_PREF, ATOMIC\_AGGREGATE, AGGREGATOR, ...
  - Extensible: can add new types of attributes

# Example

- NLRI: 128.148.0.0/16
- AS-Path: ASN 44444 3356 14325 11078
- Next Hop IP
- Various knobs for traffic engineering:
  - Metric, weight, LocalPath, MED, Communities
  - Lots of voodoo

#### Demo: AS11078

## **BGP Security Goals**

- Confidential message exchange between neighbors
- Validity of routing information
  - Origin, Path, Policy
- Correspondence to the data path

#### Origin: IP Address Ownership and Hijacking

- IP address block assignment
  - Regional Internet Registries (ARIN, RIPE, APNIC)
  - Internet Service Providers
- Proper origination of a prefix into BGP
  - By the AS who owns the prefix
  - ... or, by its upstream provider(s) in its behalf
- However, what's to stop someone else?
  - Prefix hijacking: another AS originates the prefix
  - BGP does not verify that the AS is authorized
  - Registries of prefix ownership are inaccurate

# Prefix Hijacking

- Consequences for the affected ASes ullet
  - Blackhole: data traffic is discarded
  - Snooping: data traffic is inspected, and then redirected
    Impersonation: data traffic is sent to bogus destinations

#### Hijacking is Hard to Debug

- Real origin AS doesn't see the problem
  - Picks its own route
  - Might not even learn the bogus route
- May not cause loss of connectivity
  - E.g., if the bogus AS snoops and redirects
  - ... may only cause performance degradation
- Or, loss of connectivity is isolated
  - E.g., only for sources in parts of the Internet
- Diagnosing prefix hijacking
  - Analyzing updates from many vantage points
  - Launching traceroute from many vantage points

#### Sub-Prefix Hijacking

#### 12.34.158.0/24

12.34.0.0/1

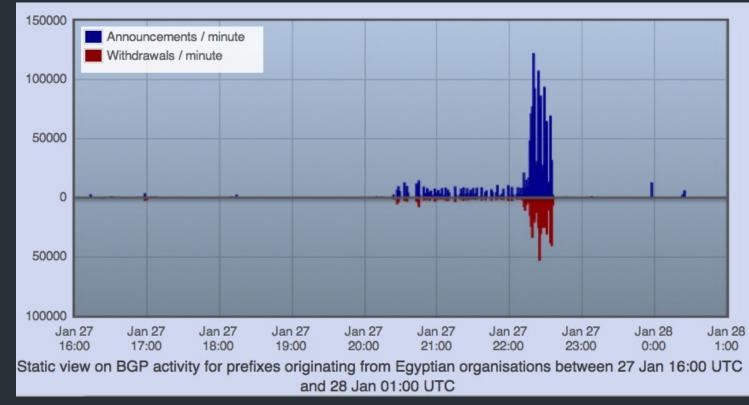
- Originating a more-specific prefix
  - Every AS picks the bogus route for that prefix
  - Traffic follows the longest matching prefix

#### How to Hijack a Prefix

- The hijacking AS has
  - Router with eBGP session(s)
  - Configured to originate the prefix
- Getting access to the router
  - Network operator makes configuration mistake
  - Disgruntled operator launches an attack
  - Outsider breaks into the router and reconfigures
- Getting other ASes to believe bogus route
  - Neighbor ASes not filtering the routes
  - ... e.g., by allowing only expected prefixes
  - But, specifying filters on peering links is hard

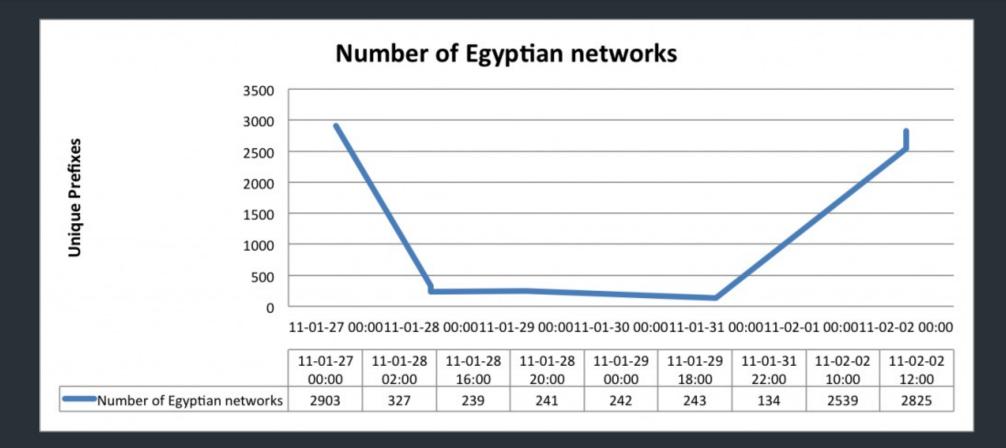
#### Recent Notable incidents

- October 4 2021: Facebook accidentally removed routes for its DNS servers
  - Outside world couldn't resolve facebook.com, and neither could Facebook!
- June 24, 2019: Misconfigured router accepted lots of transit traffic


#### Jérôme Fleury

[URGENT] Route-leak from your customer

To: CaryNMC-IP@one.verizon.com, peering@verizon.com, help4u@verizon.com,


## "Shutting off" the Internet

- Starting from Jan 27<sup>th</sup>, 2011, Egypt was disconnected from the Internet
  - 2769/2903 networks withdrawn from BGP (95%)!



Source: RIPEStat - http://stat.ripe.net/egypt/

# Egypt Incident



Source: BGPMon (http://bgpmon.net/blog/?p=480)

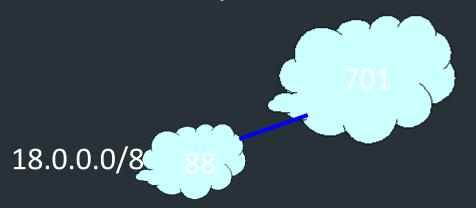
#### Pakistan Youtube incident

- Youtube's has prefix 208.65.152.0/22
- Pakistan's government order Youtube blocked
- Pakistan Telecom (AS 17557) announces 208.65.153.0/24 in the wrong direction (outwards!)
- Longest prefix match caused worldwide outage
- <u>http://www.youtube.com/watch?v=IzLPKuAOe50</u>

## Many other incidents

- Spammers steal unused IP space to hide
  - Announce very short prefixes (e.g., /8). Why?
  - For a short amount of time
- China incident, April 8<sup>th</sup> 2010
  - China Telecom's AS23724 generally announces 40 prefixes
  - On April 8<sup>th</sup>, announced ~37,000 prefixes
  - About 10% leaked outside of China
  - Suddenly, going to <u>www.dell.com</u> might have you routing through AS23724!

#### Attacks on BGP Paths


- Remove an AS from the path
  - E.g., 701 3715 88 -> 701 88
- Why?
  - Attract sources that would normally avoid AS 3715
  - Make path through you look more attractive
  - Make AS 88 look like it is closer to the core
  - Can fool loop detection!
- May be hard to tell whether this is a lie
   88 could indeed connect directly to 701!

#### Attacks on BGP Paths

- Adding ASes to the path
  - E.g., 701 88 -> 701 3715 88
- Why?
  - Trigger loop detection in AS 3715
    - This would block unwanted traffic from AS 3715!
  - Make your AS look more connected
- Who can tell this is a lie?
  - AS 3715 could, if it could see the route
  - AS 88 could, but would it really care?

#### Attacks on BGP Paths

- Adding ASes at the end of the path
  - E.g., 701 88 into 701 88 3
- Why?
  - Evade detection for a bogus route (if added AS is legitimate owner of a prefix)
- Hard to tell that the path is bogus!





# Proposed Solution: S-BGP

- Based on a public key infrastructure
- Address attestations
  - Claims the right to originate a prefix
  - Signed and distributed out of band
  - Checked through delegation chain from ICANN
- Route attestations
  - Attribute in BGP update message
  - Signed by each AS as route along path
- S-BGP can avoid
  - Prefix hijacking
  - Addition, removal, or reordering of intermediate ASes

# S-BGP Deployment

- Very challenging
  - PKI (RPKI)
  - Accurate address registries
  - Need to perform cryptographic operations on all path operations
  - Flag day almost impossible
  - Incremental deployment offers little incentive
- But there is hope! [Goldberg et al, 2011]
  - Road to incremental deployment
  - Change rules to break ties for secure paths
  - If a few top Tier-1 ISPs
    - Plus their respective stub clients deploy simplified version (just sign, not validate)
    - Gains in traffic => \$ => adoption!

#### FAILURE

Your ISP (Verizon, AS701) does not implement BGP safely. It should be using RPKI to protect the Internet from BGP hijacks. Tweet this  $\rightarrow$ 

Details

fetch https://valid.rpki.cloudflare.com

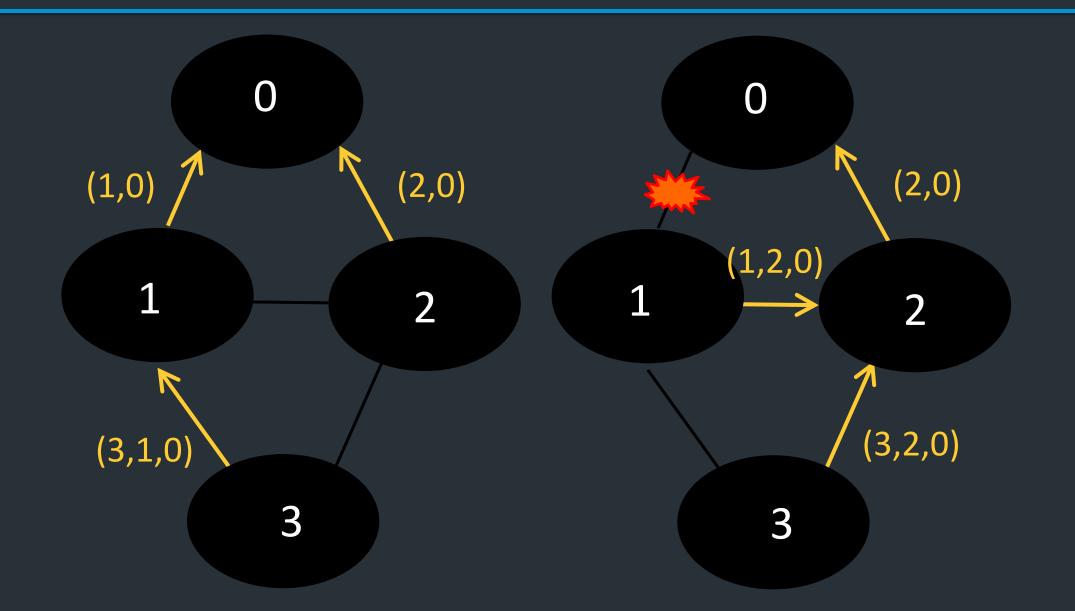
correctly accepted valid prefixes

# Data Plane Attacks

- Routers/ASes can advertise one route, but not necessarily follow it!
- May drop packets
  - Or a fraction of packets
  - What if you just slow down some traffic?
- Can send packets in a different direction
  - Impersonation attack
  - Snooping attack
- How to detect?
  - Congestion or an attack?
  - Can let ping/traceroute packets go through
  - End-to-end checks?
- Harder to pull off, as you need control of a router

# **BGP** Recap

- Key protocol that holds Internet routing together
- Path Vector Protocol among Autonomous Systems
- Policy, feasibility first; non-optimal routes
- Important security problems


#### Next Class

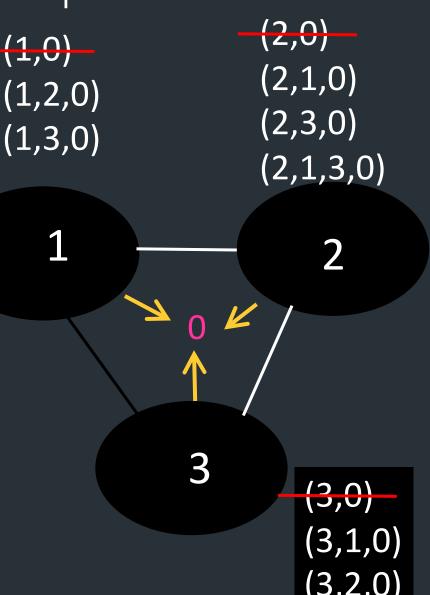
Network layer wrap up



- Given a change, how long until the network re-stabilizes?
  - Depends on change: sometimes never
  - Open research problem: "tweak and pray"
  - Distributed setting is challenging
- Some reasons for change
  - Topology changes
  - BGP session failures
  - Changes in policy
  - Conflicts between policies can cause oscillation

#### Routing Change: Before and After



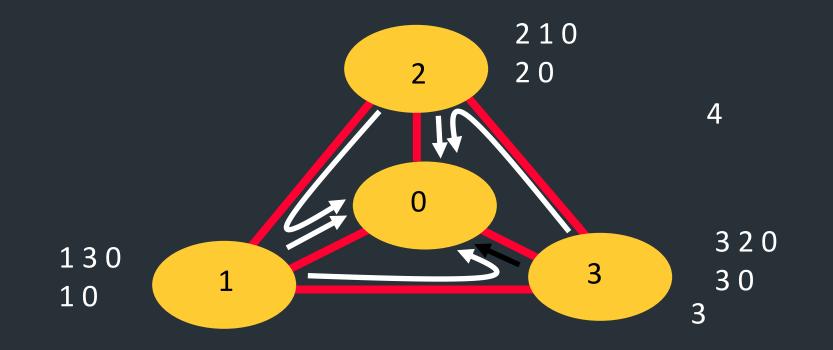

#### Routing Change: Path Exploration

- AS 1
  - Delete the route (1,0)
  - Switch to next route (1,2,0)
  - Send route (1,2,0) to
     AS 3
- AS 3
  - Sees (1,2,0) replace(1,0)
  - Compares to route(2,0)
  - Switches to using AS 2



#### Routing Change: Path Exploration

- Initial situation
  - Destination 0 is alive
  - All ASes use direct path
- When destination dies
  - All ASes lose direct path
  - All switch to longer paths
  - Eventually withdrawn
- E.g., AS 2
  - (2,0) → (2,1,0)
  - (2,1,0) → (2,3,0)
  - (2,3,0)  $\rightarrow$  (2,1,3,0)
  - (2,1,3,0) → null
- Convergence may be slow!

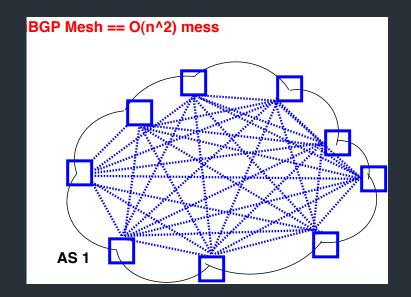



# Route Engineering

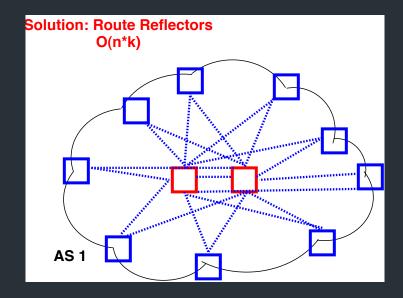
- Route filtering
- Setting weights
- More specific routes: longest prefix
- AS prepending: "477 477 477 477 "
- More of an art than science

## Unstable Configurations

• Due to policy conflicts (Dispute Wheel)



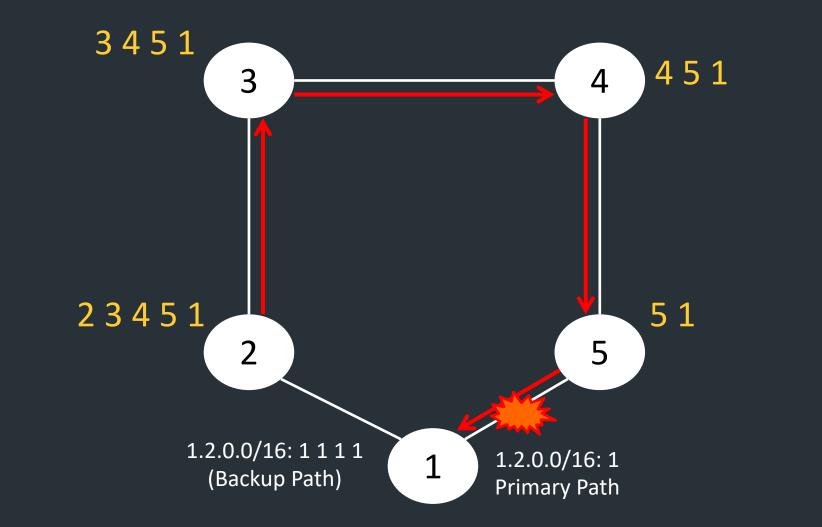

# Avoiding BGP Instabilities


- Detecting conflicting policies
  - Centralized: NP-Complete problem!
  - Distributed: open research problem
  - Requires too much cooperation
- Detecting oscillations
  - Monitoring for repetitive BGP messages
- Restricted routing policies and topologies
  - Some topologies / policies proven to be safe\*

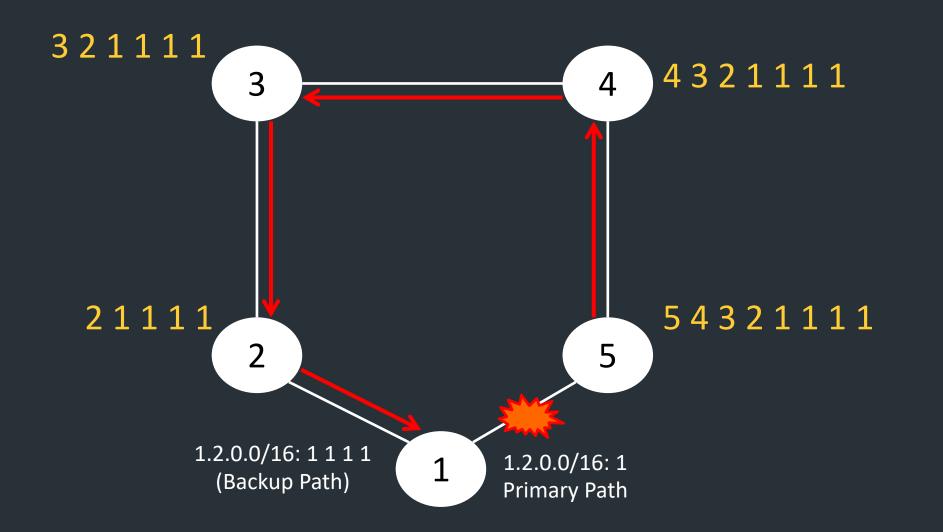
\* Gao & Rexford, "Stable Internet Routing without Global Coordination", IEEE/ACM ToN, 2001

### Scaling iBGP: route reflectors

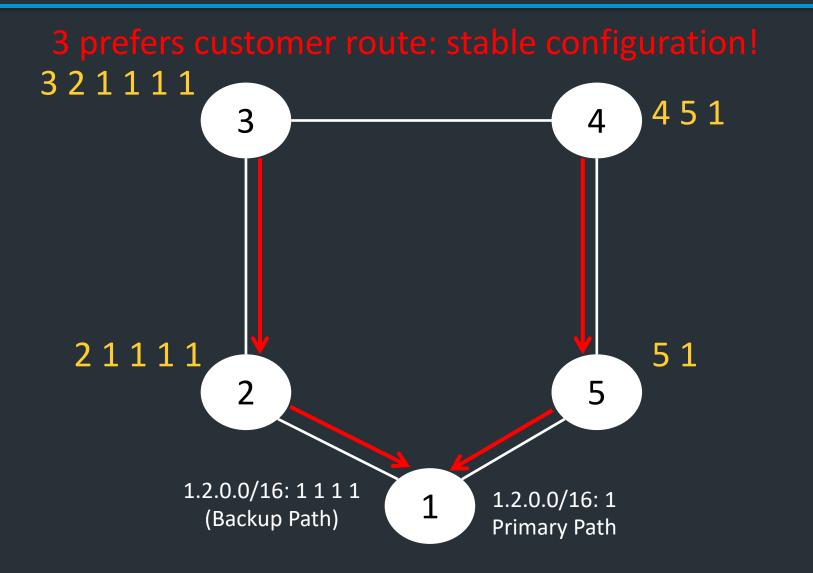



### Scaling iBGP: route reflectors




## Multiple Stable Configurations BGP Wedgies [RFC 4264]

- Typical policy:
  - Prefer routes from customers
  - Then prefer shortest paths


## **BGP Wedgies**



# **BGP Wedgies**



#### **BGP** Wedgies



# Warmup for discussion

Given this routing table, to which prefix would a router map each IP?

- 1.2.3.4
- 138.16.100.5
- 138.16.10.200
- 12.34.5.120
- 12.34.18.5

| Prefix          | Next Hop |
|-----------------|----------|
| 1.0.0.0/8       | • • •    |
| 12.34.0.0/16    | • • •    |
| 12.34.16.0/20   | • • •    |
| 138.16.0.0/16   | • • •    |
| 138.16.100.0/24 | • • •    |

# Longest Prefix Match

When performing a forwarding table lookup, select the most specific prefix that matches an address

• Eg. 12.34.18.5

| Prefix          | Next Hop |
|-----------------|----------|
| 1.0.0.0/8       | •••      |
| 12.34.0.0/16    | •••      |
| 12.34.16.0/20   | •••      |
| 138.16.0.0/16   | •••      |
| 138.16.100.0/24 | •••      |

Internet routers have specialized memory called TCAM (Ternary Content Addressable Memory) to do longest prefix match *fast* (one clock cycle!) Goal: forward at *line rate* (as fast as link allows)