
CSCI-1680
Transport Layer Warmup (ish)

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Jennifer Rexford, Rob Sherwood, David Mazières, Phil Levis, John Jannotti



Warmup

XA Y Z

B C D

Customer (“A is customer of X”)

Peer

Given the following AS relationships,
Which ASes will A know about?

Advertised by… Export to…

Customer Everyone

Peer Customers only

Provider Customers only



Administrivia:  This week

• IP:  Due Thursday
– Signups for grading meetings after that
– Code cleanup, README, etc after deadline is okay

• HW2:  Out today, due in ~2wks
• TCP:  Out on Friday

– Maybe a short intro/gearup on Thursday



This week

• Start of transport layer
• Intro to TCP



One more fun BGP thing…



Anycast

Advertise the same prefix (IP) from multiple places
=> Multiple devices have the same IP!!

• Used to make certain IPs highly available
– Public DNS:  8.8.8.8 (Google), 1.1.1.1 (Cloudflare)

Problems?



Anycast

Advertise the same prefix (IP) from multiple places
=> Multiple devices have the same IP!!

• Used to make certain IPs highly available
– Public DNS:  8.8.8.8 (Google), 1.1.1.1 (Cloudflare)

=> If you send multiple packets to 8.8.8.8, no guarantee you’re 
talking to the same server!
=> Protocol must be able to account for this
 (DNS does, more on this later)



Ports & Sockets



Layers, Services, Protocols

Network

Link

Physical

Transport

Application

Service: move bits to other node across link 

Move data across individual links

Moving data between hosts (nodes)

How to support multiple applications?

Service: user-facing application.
Application-defined messages



The story so far
Network layer (L3):  move packets between hosts
 (anywhere on Internet)



How to support multiple applications?

Network layer:  moving data between hosts
Transport layer:  abstraction for getting data to different 
applications on a host



How to support multiple applications?

Network layer:  moving data between hosts
Transport layer:  abstraction for getting data to different 
applications on a host
• Multiplexing multiple connections at the same IP using port 

numbers
• Turns series of packets =>  stream of data/messages



How to support multiple applications?

Network layer:  moving data between hosts
Transport layer:  abstraction for getting data to different 
applications on a host
• Multiplexing multiple connections at the same IP using port 

numbers
• Turns series of packets =>  stream of data/messages

ÞProvided by OS as sockets
ÞUse this abstraction to build other application protocols!



The transport layer MAY provide…
• Reliable data delivery
• Creating a data stream
• Managing throughput/sharing bandwidth

– “Congestion control”



The transport layer MAY provide…
• Reliable data delivery
• Creating a data stream
• Managing throughput/sharing bandwidth

– “Congestion control”

These are provided by TCP, which is our main focus.  However:
ÞNot required for all transport layer (UDP has none of these)
ÞOther protocols do this too (eg. QUIC)



Transport Layer
Transport Protocol Review

!

"#$

#%$ &'$

($

)*#+ )*#, )*#!

-##$ ). #"#$

• Transport protocols sit on top of the network layer (IP)

• Can provide:
- Application-level multiplexing (“ports”)

- Error detection, reliability, etc.



From Lec 2: OSI Model

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Application Protocol

Transport Protocol

Network Protocol

Link-Layer Protocol



What’s a port number?

• 16-bit unsigned integer, 0-65535
• Ports define a communication endpoint, usually a 

process/service on the host



What’s a port number?

• 16-bit unsigned integer, 0-65535
• Ports define a communication endpoint, usually a 

process/service on the host



What’s a port number?

• 16-bit unsigned integer, 0-65535
• Ports define a communication endpoint, usually a 

process/service on the host
• OS keeps track of which ports map to which applications

Port numbering
• port < 1024:  “Well known port numbers”
• port > 20000: “ephemeral ports”, for general app use



Some common ports

Port Service

20, 21 File Transfer Protocol (FTP)
22 Secure Shell (SSH)
23 Telnet (pre-SSH remote login)
25 SMTP (Email)
53 Domain Name System (DNS)

67, 68 DHCP
80 HTTP (Web traffic)

443 HTTPS (Secure HTTP over TLS)



How ports work

The kernel maps ports to sockets, which are used in applications like 
file descriptors to access the network

Two modes for using ports/sockets:
• Listen mode: apps “bind” to a port to accept new connections
• “Outgoing” mode *:  make a connection 
• Individual connections use 5-tuple of source-dest port

 (protocol, source IP, source port, dest IP, dest port) => connection N

*:  Nick made this term up so it has a name



How ports work

The kernel maps ports to sockets, which are used in applications like 
file descriptors to access the network

Two modes for using ports/sockets:
• Listen mode: apps “bind” to a port to accept new connections

• “Outgoing” mode*:  make a connection to another socket

*:  Nick made this term up so it has a name



How ports work

The kernel maps ports to sockets, which are used in applications like 
file descriptors to access the network

Two modes for using ports/sockets:
• Listen mode: apps “bind” to a port to accept new connections
     => Used to receive/wait for new connections

• “Normal” mode*:  make a connection to another socket
 => Used to make outgoing connections

*:  Nick made this term up so it has a name



A
1.2.3.4

B
5.6.7.8

listen(80)



A
1.2.3.4

B
5.6.7.8

listen(80)

Src       Dst
IP       1.2.3.4   5.6.7.8
Port       12345        80

connect(1.2.3.4, 80)



A
1.2.3.4

B
5.6.7.8

listen(80)

Src       Dst
IP       1.2.3.4   5.6.7.8
Port       12345        80

connect(1.2.3.4, 80)

•  A must know B is listening on port 80
 => "well known numbers"!

• When connecting, A's OS picks random source port (eg. 12345), 
for its side of connection



A
1.2.3.4

B
5.6.7.8

listen(80)

Src       Dst
IP       1.2.3.4   5.6.7.8
Port       12345        80

connect(1.2.3.4, 80)

Src       Dst
IP       5.6.7.8   1.2.3.4
Port          80     12345

B responds to A using this port



Demo:  netcat



How sockets work

Socket:  OS abstraction for a network connection 
(like a file descriptor)

Kernel receives all packets => needs to map each packet 
to a socket to deliver to app
• Socket table:  list of all open sockets
• Each socket has some kernel state too (buffers, etc.)

You will build this!!!



How to map packets to sockets?

Proto Local (yours) Remote (theirs) Socket

IP Port IP Port

tcp/udp (some struct)

…

Kernel table looks something like this:



How to map packets to sockets?

Proto Local (yours) Remote (theirs) Socket

IP Port IP Port

tcp/udp (some struct)

…
... ... ... … … …

Kernel table looks something like this:

Key:  5-tuple of (local IP, local port, remote IP, remote port, protocol) Value: kernel state for 
socket
(state, buffers, …)



How to map packets to sockets?

Proto Local (yours) Remote (theirs) Socket

IP Port IP Port

tcp 1.2.3.4 12345 5.6.7.8 80 (some struct)

…
... ... ... … … …

Kernel table looks something like this:

Key:  5-tuple of (local IP, local port, remote IP, remote port, protocol) Value: kernel state for 
socket
(state, buffers, …)



Netstat

deemer@vesta ~/Development % netstat -an
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address      Foreign Address     (state)  
tcp4    0    0  10.3.146.161.51094   104.16.248.249.443   ESTABLISHED
tcp4    0    0  10.3.146.161.51076   172.66.43.67.443    ESTABLISHED
tcp6    0    0  2620:6e:6000:900.51074 2606:4700:3108::.443  ESTABLISHED
tcp4    0    0  10.3.146.161.51065   35.82.230.35.443    ESTABLISHED
tcp4    0    0  10.3.146.161.51055   162.159.136.234.443   ESTABLISHED
tcp4    0    0  10.3.146.161.51038   17.57.147.5.5223    ESTABLISHED
tcp6    0    0  *.51036         *.*           LISTEN   
tcp4    0    0  *.51036         *.*           LISTEN   
tcp4    0    0  127.0.0.1.14500     *.*           LISTEN  



Proto Local (yours) Remote (theirs) Socket

IP Port IP Port

tcp 1.2.3.4 12345 5.6.7.8 80 (normal struct)

tcp * 22 * * (listen struct)
... ... ... … … …

Key:  5-tuple of (local IP, local port, remote IP, remote port, protocol) Value: kernel state for 
socket
(state, buffers, …)=> For listen sockets, some fields may be blank

What if A does:   listen(22)



Ports are part of the transport layer

Port numbers are the first two fields of these headers!  (Not 
part of IP!)

UDP TCP



An interface to applications

• Ports define an interface to applications
• If you can connect to the port, you can (usually) use it!

Problems?



Port scanning

What can we learn if we just start connecting to well-known 
ports?
• Applications have common port numbers
• Network protocols use well-defined patterns

deemer@vesta ~/Development % nc <IP addr> 22
SSH-2.0-OpenSSH_9.1



Port scanning

What can we learn if we just start connecting to well-known 
ports?
• Applications have common port numbers
• Network protocols use well-defined patterns

deemer@vesta ~/Development % nc <IP addr> 22
SSH-2.0-OpenSSH_9.1

ÞCan discover things about the network
ÞCan learn about open (vulnerable) systems



Port scanning

What can we learn if we just start connecting to well-known 
ports?
• Applications have common port numbers
• Network protocols use well-defined patterns

deemer@vesta ~/Development % nc <IP addr> 22
SSH-2.0-OpenSSH_9.1

ÞCan discover things about the network
ÞCan learn about open (vulnerable) systems

Port scanners:  try to connect to lots of ports, determine 
available services, find vulnerable services...



Large-scale port scanning

• Can reveal lots of open/insecure systems!
• Examples:

– shodan.io
– VNC roulette
– Open webcam viewers…
– …



Disclaimer

• Network scanning is easy to detect

• Unless you are the owner of the network, it’s seen as malicious 
activity

• If you scan the whole Internet, the whole Internet will get mad at 
you (unless done very politely)

Do NOT try this on the Brown network.  I warned you.



Internet scanning I have done
• Scanned IPv4 space for ROS (Robot Operating System)
• Found ~200 “things” using ROS (some robots, some 

other stuff)

Scanning the Internet for ROS:
A View of Security in Robotics Research

Nicholas DeMarinis, Stefanie Tellex, Vasileios P. Kemerlis, George Konidaris, and Rodrigo Fonseca
Department of Computer Science, Brown University

Email: {ndemarin, stefie10, vpk, gdk, rfonseca}@cs.brown.edu

Abstract— Security is particularly important in robotics, as
robots can directly perceive and affect the physical world.
We describe the results of a scan of the entire IPv4 address
space of the Internet for instances of the Robot Operating
System (ROS), a widely used robotics software platform. We
identified a number of hosts supporting ROS that are exposed to
the public Internet, thereby allowing anyone to access robotic
sensors and actuators. As a proof of concept, and with the
consent of the relevant researchers, we were able to read image
sensor information from and actuate a physical robot present
in a research lab in an American university. This paper gives
an overview of our findings, including our methodology, the
geographic distribution of publicly-accessible platforms, the
sorts of sensor and actuator data that is available, and the
different kinds of robots and sensors that our scan uncovered.
Additionally, we offer recommendations on best practices to
mitigate these security issues in the future.

I. INTRODUCTION

Security is particularly important in robotics. A robot can
sense the physical world using sensors, or directly change
it with its actuators. Thus, it can leak sensitive information
about its environment, or even cause physical harm if ac-
cessed by an unauthorized party. Existing work has assessed
the state of industrial robot security and found a number
of vulnerabilities [1, 2]. However, we are unaware of any
studies that gauge the state of security in robotics research.

To address this problem we conducted several scans of the
whole IPv4 address space, in order to identify unprotected
hosts using the Robot Operating System (ROS) [3], which
is widely used in robotics research. Like many research
platforms, the ROS designers made a conscious decision
to exclude security mechanisms because they did not have
a clear model of security threats and were not security
experts themselves. The ROS master node trusts all nodes
that connect to it, and thus should not be exposed to the
public Internet. Nonetheless, our scans identified over 100
publicly-accessible hosts running a ROS master, shown in
Figure 1. Of those we found, a number of them are connected
to simulators, such as Gazebo [4], while others appear to
be real robots capable of being remotely moved in ways
dangerous both to the robot and those around it. We present
both a quantitative and qualitative overview of our findings.

Quantitatively, we assessed the number of topics that
appear to be sensors and actuators of various types. We
noticed a roughly Zipfian distribution, with a few common
types and a long tail of one-off sensors and actuators. We also
observed that many robots are online for a relatively short
period of time (hours or days) and then go offline again.

Camera
Actuator

Other Instances

Fig. 1: Approximate locations (slightly jittered to illustrate
multiple points) of ROS masters identified across all scans.
Red indicates a host publishing camera information. Green
indicates a host that showed evidence of a robot which could
be actuated. Other hosts are in blue.

As a qualitative case study, we also present a proof-of-
concept “takeover” of one of the robots (with the consent of
its owner), to demonstrate that an open ROS master indicates
a robot whose sensors can be remotely accessed, and whose
actuators can be remotely controlled.

This scan was eye-opening for us, too—we found two of
our own robots as part of the scan, one Baxter [5] robot and
one drone. Neither was intentionally made available on the
public Internet, and both have the potential to cause physical
harm if used inappropriately.

Our goal is not to single out any researchers or
robot platforms, but to promote security as an important
consideration—not just in production systems, but in re-
search settings as well. We aim to provide information about
a concerning situation and guidance on how roboticists can
improve their security. Note that prior to the release of this
work, we reached out to the owners of all affected robots
and provided them with a summary of our findings.1

II. RELATED WORK

Anecdotally, we are aware of a number of compromised
robots. For example, Baxter [7] robots use an SSH server
with a known default username and password that cannot be
changed by the owner [8]. While the SSH account does not
directly give administrative access, it is still a significant risk

1Further details on our findings and recommendations for ROS users are
available at https://systems.cs.brown.edu/robotsecurity

and in an extended version of our paper [6].


