CSCI-1680
Transport Layer |

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

Administrivia

 |IP: due tonight!

— Look for email today/tomorrow about grading meetings
+ feedback survey

“Between the time you've handed in and the demo meeting,
you can continue to making small changes and bug fixes and
push them to your git repo”

Administrivia

 |IP: due tonight!

— Look for email today/tomorrow about grading meetings
+ feedback survey

“Between the time you've handed in and the demo meeting,
you can continue to making small changes and bug fixes and
push them to your git repo”

— OK: Fixing bugs, code cleanup, README

— Not OK: Implementing RIP, adding new features

Administrivia

« HW2 is out (finally!): Due Monday, Oct 30
« HW3 will be super short: out Oct 31, due Nov 7

« TCP: Should be out tomorrow
— Gearup on Monday, Oct 23 6-8pm in CIT316

Today

Light overview of the transport layer and TCP
— Why we need TCP
— What components are involved

— What you will do in the project

ANy Ay ALY @Al
FTP HTTP NV 74\/710‘(

il ek

LY (renetrier)
S —

|P

NET; NET, NET,

Transport layer: the story so far

— Provides support for different applications via ports

— OS provides interface to applications via sockets

ANy LAY Ay 4Ly
FTP HTTP NV

il ek

—

|P

NET; NET, NET,

Transport layer: the story so far

— Provides support for different applications via ports

— OS provides interface to applications via sockets

= For now: transport layer is part of OS, service provided to apps }

The headers

UDP TCP

0 31

UDP Length UDP Checksum Sequence Number

Acknowledgement Number 20 Bytes

Data 8($
Giay| Reserved ERESEE windowsize | ‘

The headers

UDP TCP

0 31 0

UDP Length UDP Checksum Sequence Number

Acknowledgement Number

Data RIS
Otieay| Reserved ERSEYITl windowsize |

Port numbers are part of these headers
=> OS uses these to map to sockets

Motivation: sending a big file

A problem, in pseudocode:

func sender() { func receiver() {

fd, _ := os.Open("all-my- conn, err := net.Listen(“:80")
files.zip") buf := make([]byte, . . .)
conn, _ := net.Dial("1.2.3.4:80") conn.Read (buf)

buf := ReadTheWholeFile(£fd)

conn.Write(buf) fd = os.Open(”copy-of-files.zip”)

fd.Write(buf)

[What are some challenges with implementing the network part? J

Motivation: sending a big file

A problem, in pseudocode:

func sender() { func receiver() {

fd, @ := os.Open("all-my- conn, err := net.Listen(“:80")
files.zip") buf := make([]byte, . . .)

conn, := net.Dial("1.2.3.4:80") conn.Read (buf)

buf := ReadTheWholeFile(£fd)

conn.Write(buf) fd = os.Open(”copy-of-files.zip”)

fd.Write(buf)

How do we get data from A->B, reliably?

How does the transport layer help us do this?

UDP: User Datagram Protocol

Send a message between ports... and nothing else

DstPort

Checksum

OPTE project

12

Problem: Reliability

Packets could...
« Dropped packets
 Duplicate packets

o Packets arrive out of order

Multiple hops and paths => Lots of opportunities for failure!
=> TCP has mechanisms to deal with this

Also: performance challenges

« Hosts have different (and unknown!) resources

e Network has unknown resources
=> Varying RTT, link bandwidth

So how does it work?

TCP: the big picture

A \\\
2
~
—r~
{
\
=
pa
:
)

—J

EQ D ' : [
N \ f--(/l\//)
N Lochst” Ap) ﬂ\, ¥ !

(DP

7P STick(KEonEL

-

7CR -~ W/;Ub CovEcTI W (TNE

Send buffer: data waiting to be sent oyt ceive buffer

| 70] 2])
= — |
[ﬁbz %

GuipDL SELR ey £

Sending side,

Receiving_side
Arrange segments in order in recv

- Buffers data from app to be sent

- Divides data into segments tIf-fer

- Track which segments have been received, which Canda hark “anknamledaamanta?”
have been dropped (retransmit on timeout) other info °
Flow control: if receiver has no more buffer space “ »
X : e - App “pulls” data from the receive
stop sending
buffer, frees up more space for data
arrive from network
In ice, both sides of the connection can send and receive (full-duplex)
=> Both sides have send and receive buffers

=> (Can use the same socket to send and receive)

TCP: Key features

e Initially: RFC 793 (1981) (+ many others now)

» Creates concept of connections between two endpoints

=> Each connection has its own state

CcF r: _ @
% LACH)y s~ Sy~ CenVtCr7 9V

KAS /ML o P STATE

TCP: Key features

e Initially: RFC 793 (1981) (+ many others now)

» Creates concept of connections between two endpoints
=> Each connection has its own state

 End-to-end protocol

— Minimal assumptions on the network

— All mechanis outers) /
Why is this important? } C/Q L//Ué)

KETPS ROUTENS SnPlE

TCP Header

0 31

Sequence Number

Acknowledgement Number

Data RIS
Oiay | Reserved [BIEEEYIE windowsize

Important Header Fields

Ports: multiplexing

Sequence number
— Where segment is in the stream (in bytes)

Acknowledgment Number

— Next expected sequence number

Window

— How much data you're willing to receive

Flags...

Important Header Fields: Flags

SYN: establishes connection (“synchronize”)
ACK: this segment ACKs some data (all packets except first)
FIN: close connection (gracefully)

RST: reset connection (used for errors)
PSH: push data to the application immediately
URG: whether there is urgent data

Less important header fields

e Checksum: Very weak, like IP

— Has weird semantics (“pseudo header”), more on this later...

« Data Offset: used to indicate TCP options (WT gF $CoPE 5
» Urgent Pointer /ppufen”) For 7RIS ¢

TCP Standards: The Many RFCs

RFC documents | edit]

e RFC 675 (2 — Specification of Internet Transmission Control Program, December 1974 Version
e RFC 7932 — TCP v4

e RFC 11222 — includes some error corrections for TCP

e RFC 1323 2 — TCP Extensions for High Performance [Obsoleted by RFC 7323]

e RFC 1379 2 — Extending TCP for Transactions—Concepts [Obsoleted by RFC 6247]

e RFC 1948 2 — Defending Against Sequence Number Attacks

e RFC 20182 — TCP Selective Acknowledgment Options

e RFC 5681 2 — TCP Congestion Control

e RFC 6247 2 — Moving the Undeployed TCP Extensions RFC 1072, 11062, 1110, 11452, 11462, 137
e RFC 6298 2 — Computing TCP's Retransmission Timer

e RFC 6824 2 — TCP Extensions for Multipath Operation with Multiple Addresses

e RFC 73232 — TCP Extensions for High Performance

e RFC 74142 — A Roadmap for TCP Specification Documents

e RFC 9293 (1 — Transmission Control Protocol (TCP)

tene mosr e A BETTOS

STD: 7

Request for Comments:

Obsoletes: 793, 879,

6691
Updates: 1011, 1122,
Category: Standards Track
ISSN: 2070-1721

The One RFC

9293

2873, 6093, 6429, 6528,

5961

Internet Standard
W. Eddy, Ed.

V] =11

August 2022

Establishing a Connection

Goals
« Contact the other side (or error)
« Both sides agree on initial sequence numbers

ANy

CSTABLISNG A TTP ConNECTTOA

JAW CLiEm CEp V%, LICTEN (3
L) O C(CEATEL L .”fevtj
wegre) —~=7 rgs P N SekeT
_ Sz T - ‘ |
1}”9 d \\/\ A/f/ _ RECRWED
e SpHAL —] 2% .
== I /<7 srare]
/ \/ ACk K+ /\ JUADE NE
! £,> i Fot EACH cuenr
C + —
/‘”'c’q")(jaca! /=)
Acceprt
RETVANS NERE
— ESTABLISNED

Q\V

—k

N

Sender sends SYN with random sequence number X
eceiver sends SYN+ACK with its own random sequence number Y,

icknowledges sender’s sequence number with ACK=X+1

W

N T D
v

ender acknowledges receiver’s sequence num with ACK for Y+

VWHCC

packet also has SEQ=X+1, since it comes after packet (1))

/ (A b4

—_—)
| (

= A NAMDSHAE

TCP State Diagram

CONNECT/SYN ‘Step 1 of the 3-way-handshake)

seeeeee e UNUSUAl event
e R T 1 PPm——

—y gerver/sender path LISTEN/- A
CLOSE/-

Step 2 of the 3-way-handshake) SYN/SYN+ACK @
l A 5

SYN
SYNJ'SYN*ACK (simul r*no ous open}

Data exchange occurs

CLOSE~

_RST- : SEND/SYN

CET

SYN+ACK/ACK

CLOSE/FIN

FIN/ACK

q—z Step 3 of the 3-way-handshake)
| CLOSE/FIN

] Active CLOSEE

| Passive CLOSE—I

FINIACK

CLOSING

FIN*ACK/ACK :

FIN/ACK

Timeout

back to start)

\

)

CLOSE/FIN

/’74/)/5,
%,

—

/| r—\/"/

JUEF

I
_~7

//

A
7

k//l//

\//)Al

e Ol

T

Sequence numbers

How to pick the initial sequence number?

« Protocols based on relative sequence numbers based on starting
value

« Why not start at 07

« RFC9293, Sec 3.4.1: Procedure for picking ISN, based on timer and
cryptographic hash

=> For project, just pick a random integer :)

Relative Sequence Numbering

Ethernet II, Src: Apple_cd:6a:23 (c8:89:f3:cd:6a:23), Dst: IntelCor_63:c4:45 (0 ¢ 00 1b 21 63 c4 45 c8 89 f3 cd 6a 23 08 00 45 00
Internet Protocol Version 4, Src: 172.17.48.156, Dst: 172.17.48.22 00 40 00 00 40 00 40 06 81 e3 ac 11 30 9c ac 11

Transmission Control Protocol, Src Port: 49719, Dst Port: 22, Seq: 0, Len: 0 0020 30 16 c2 37 00 16 77 42 38 e5 00 00 00 00 bo 02
Source Port: 49719 ' . RS ff ff b7 2a 00 00 02 94 05 b4 01 03 03 06 01 01

) : 08 0a 0d c7 46 cO 00 00 00 00 04 02 00 00
Destination Port: 22

[Stream index: 8]

[Conversation completeness: Complete, WITH_DATA (31)]
[TCP Segment Len: 0]

Sequence Number: 0 (relative sequence number)
Sequence Number (raw): 2000828645

[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: @

Acknowledgment number (raw): @

1011 = Header Length: 44 bytes (11)

Flags: 0x002 (SYN

How do we tell two connections apart?

=> Port numbers

— 5-tuple (proto., source IP, source port, dest IP, dest port) => 1
Connection

— Kernel maintains socket table: maps (5-tuple) => Socket

* |f a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

Netstat

deemer@vesta ~/Development % netstat -an

Active Internet connections
Proto Recv-Q Send-Q

tcp4
tcpd
tcpb6
tcpd
tcp4
tcpd
tcpb6
tcpd
tcp4

0

O O O O O O o o

0

O O O O O O o o

10.3.146.161.51094
10.3.146.161.51076
2620:6e:6000:900.51074
10.3.146.161.51065
10.3.146.161.51055
10.3.146.161.51038
*.51036

*.51036
127.0.0.1.14500

(including servers)
Local Address

Foreign Address
104.16.248.249.443
172.66.43.67.443
2606:4700:3108::.443
35.82.230.35.443
162.159.136.234.443
17.57.147.5.5223

* %

L

* %
L J

(state)
ESTABLISHI
ESTABLISH]I
ESTABLISHI
ESTABLISH]I
ESTABLISHI
ESTABLISHI
LISTEN
LISTEN
LISTEN

Keeping state: the TCB

State for a TCP connection kept in Transmission Control Buffer (TCB)

 Keeps initial sequence numbers, connection state, send/recv buffers,
status of unACK'd segments, ...

e When to allocate?

Keeping state: the TCB

State for a TCP connection kept in Transmission Control Buffer (TCB)

 Keeps initial sequence numbers, connection state, send/recv buffers,
status of unACK'd segments, ...

« When to allocate?
— Server: listening on a connection*

— Client: Initiating a connection (sending a SYN)

— Server: accepting a new connection (receiving SYN)

Recall: the socket table

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address
tcp4 0 0 172.17.48.121.56915 192.168.1.58.7000
tcp4 0 0 172.17.48.121.56908 142.250.80.35.443
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80
tcp4 0 0 *.22 * %

(state)

SYN SENT
ESTABLISHED
ESTABLISHED

LISTEN

e« Each connection has an associated TCB in the kernel

 For each packet, kernel maps the 5-tuple

(tcp/udp, local IP, local port, remote IP, remote port) => socket

« Depending on socket type, socket contains TCB

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121.56915 192.168.1.58.7000 SYN SENT
tcp4 0 0 172.17.48.121.56908 142.250.80.35.443 ESTABLISHED
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED
tcp4 0 0 *.22 * ok LISTEN

Two "types” of sockets:

e "Normal” sockets

e Listen sockets

Proto Recv-Q Send-Q Local Address Foreign Address
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80

tcp4 0 0 *.22 *,*

“"Normal” sockets

— Connection between two specitfic endpoints

— Can send/recv data

Listen sockets

— Created by receiver to accept new connections

— When a client connects, client info gets queued by kernel

(state)
ESTABLISHED

LISTEN

— When server process calls accept(), a new ("normal”) socket is created

between the server and that client

NOTA BENE: This diagram is only a summary and must not be taken as
the total specification. Many details are not included.

\ active OPEN
\
< \ \ create TCB
\ \
passive OPEN CLOSE X\
\
create TCB delete TCB \

rcv RST (note 1)

>| LISTEN

rcv SYN |

I I
snd SYN,ACK / N

rcv SYN

snd SYN, ACK

rcv ACK of SYN \ rcv SYN,ACK

snd ACK

snd FIN

This diagram is only a summary and must not be taken as

NOTA BENE:
Many details are not included.

the total specification.

\ active OPEN

\
\
\

\ create TCB

\

N X
\

\

<
~

passive OPEN CLOSE

create TCB delete TCB

rcv RST (note 1)

LISTEN

>

rcv SYN |
I I

snd SYN,ACK / N

rcv SYN

snd SYN, ACK

R e

rcv ACK of SYN \ rcv SYN,ACK

snd ACK

snd FIN

RFC 9293,
Sec 3.3.2

SYN flooding

What happens if you send a someone huge number of SYN
packets?

A hacky solution: SYN cookies

« Don't allocate TCB on first SYN

* Encode some state inside the initial
sequence number that goes back to
the client (in the SYN+ACK)

Active participant Passive participant
(client) (server)

A hacky solution: SYN cookies

Don't allocate TCB on first SYN

Encode some state inside the initial (client)

sequence number that goes back to
the client{in-the-SYN+ACK)

What gets encoded?

— Coarse timestamp

Active participant

— Hash of connection IP/port

— Other stuff (implementation dependent)

Better ideas?

Passive participant
(server)

Next class

« Sending data over TCP

Connection Termination

« FIN bit says no more data to send

— Caused by close or shutdown

— Both sides must send FIN to close a connection

« Typical close

Close £
FIN WAIT 1 IN

ACK CLOSE_WAIT

FIN WAIT 2
Close

FIN LAST ACK
TIME WAIT
ACk CLOSED

CLOSED

2MSL

The IPv4 Header

16

0 4 8
— ldentifcation _[Fisgs| Fromentoffset

48

The IPv4 Header

16

0 4 8
— ldentifcation _[Fisgs| Fromentoffset

Defined by RFC 791 }
RFC (Request for Comment): defines network standard a8

