
CSCI-1680
Transport Layer I

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• IP: due tonight!
– Look for email today/tomorrow about grading meetings

+ feedback survey

“Between the time you’ve handed in and the demo meeting,
you can continue to making small changes and bug fixes and

push them to your git repo”

Administrivia

• IP: due tonight!
– Look for email today/tomorrow about grading meetings

+ feedback survey

“Between the time you’ve handed in and the demo meeting,
you can continue to making small changes and bug fixes and

push them to your git repo”
–OK: Fixing bugs, code cleanup, README
– Not OK: Implementing RIP, adding new features

Administrivia

• HW2 is out (finally!): Due Monday, Oct 30

• HW3 will be super short: out Oct 31, due Nov 7

• TCP: Should be out tomorrow
– Gearup on Monday, Oct 23 6-8pm in CIT316

Today

Light overview of the transport layer and TCP
–Why we need TCP

–What components are involved

–What you will do in the project

Transport layer: the story so far
– Provides support for different applications via ports

– OS provides interface to applications via sockets

Apps

I Y TRANSPORT

Transport layer: the story so far
– Provides support for different applications via ports

– OS provides interface to applications via sockets
⇒ For now: transport layer is part of OS, service provided to apps

The headers

UDP TCP

P
TODAY

The headers

UDP TCP

Port numbers are part of these headers
=> OS uses these to map to sockets

Motivation: sending a big file

func sender() {
 fd, _ := os.Open("all-my-
files.zip")
 conn, _ := net.Dial("1.2.3.4:80")
 buf := ReadTheWholeFile(fd)
 conn.Write(buf)

}

A problem, in pseudocode:

What are some challenges with implementing the network part?

func receiver() {
 conn, err := net.Listen(“:80”)
 buf := make([]byte, . . .)
 conn.Read(buf)

 fd = os.Open(”copy-of-files.zip”)
 fd.Write(buf)
}

Motivation: sending a big file

func sender() {
 fd, _ := os.Open("all-my-
files.zip")
 conn, _ := net.Dial("1.2.3.4:80")
 buf := ReadTheWholeFile(fd)
 conn.Write(buf)

}

A problem, in pseudocode:

func receiver() {
 conn, err := net.Listen(“:80”)
 buf := make([]byte, . . .)
 conn.Read(buf)

 fd = os.Open(”copy-of-files.zip”)
 fd.Write(buf)
}

⇒ How do we get data from A->B, reliably?

How does the transport layer help us do this?

UDP: User Datagram Protocol
Send a message between ports… and nothing else

12

Map of the Internet, 2021 (via BGP)
OPTE project

UDP: What could possibly go wrong?

Problem: Reliability

Packets could…

• Dropped packets

• Duplicate packets

• Packets arrive out of order

Multiple hops and paths => Lots of opportunities for failure!
=> TCP has mechanisms to deal with this

Also: performance challenges

• Hosts have different (and unknown!) resources

• Network has unknown resources
=> Varying RTT, link bandwidth

So how does it work?

TCP: the big picture

TCP THE BIG PICTURE

sings
9ÉTIPSTACK KERNEL

my y

Th Xt

stIIIU

Send buffer: data waiting to be sent out

Receiving side

 - Arrange segments in order in recv
buffer

 - Sends back “acknowledgements” +
other info

 - App “pulls” data from the receive
buffer, frees up more space for data to
arrive from network

Receive buffer

Sending side

 - Buffers data from app to be sent

 - Divides data into segments

 - Track which segments have been received, which
have been dropped (retransmit on timeout)

 - Flow control: if receiver has no more buffer space,
stop sending

In practice, both sides of the connection can send and receive (full-duplex)
 => Both sides have send and receive buffers
 => (Can use the same socket to send and receive)

TCP: Key features

• Initially: RFC 793 (1981) (+ many others now)

• Creates concept of connections between two endpoints

 => Each connection has its own state

A B

HogTCPSII EACH CLIENT SERUM CONNECTION
HAS ITS OWN TOP STATE

TCP: Key features

• Initially: RFC 793 (1981) (+ many others now)

• Creates concept of connections between two endpoints

 => Each connection has its own state

• End-to-end protocol
–Minimal assumptions on the network

– All mechanisms run on the end points (ie, not routers)
Why is this important?

 SCALING

KEEPS ROUTERSSIMPL

TCP Header

Important Header Fields

• Ports: multiplexing

• Sequence number
–Where segment is in the stream (in bytes)

• Acknowledgment Number
– Next expected sequence number

• Window
– How much data you’re willing to receive

• Flags…

Important Header Fields: Flags

• SYN: establishes connection (“synchronize”)
• ACK: this segment ACKs some data (all packets except first)
• FIN: close connection (gracefully)

• RST: reset connection (used for errors)
• PSH: push data to the application immediately
• URG: whether there is urgent data

Less important header fields

• Checksum: Very weak, like IP
– Has weird semantics (”pseudo header”), more on this later…

• Data Offset: used to indicate TCP options (mostly unused)

• Urgent Pointer

WHEN KÉIE0Ms

TCP Standards: The Many RFCs

 THERE MUST BE A BETTER WAY

RFC9293

The One RFC

Establishing a Connection

Goals
• Contact the other side (or error)
• Both sides agree on initial sequence numbers

ESTABLISHING A TCP CONNECTION
LISTEN

puff CLIENT SERVER LISTEN1
CREATES LISTEN

CONNECT I SOCKET

syn SENT Éd gym RECEIVED

Mje
yky TCPstatt

XMADENEW
FOREACHCLIEN

staffFreya
ACCEPHI
RETURNS HERE

ESTABLISHED

3 YMD E

Each connection has a “State”: defines what
actions the sender/receiver is allowed to do at
that time, what packets might get received

Sender sends SYN with random sequence number X
1.
Receiver sends SYN+ACK with its own random sequence number Y, 2.
acknowledges sender’s sequence number with ACK=X+1

Sender acknowledges receiver’s sequence num with ACK for Y+1
3.

 (packet also has SEQ=X+1, since it comes after packet (1))

TCP State Diagram

SETUP

f NORMAL OPERATION

Y
CONNECHO

TEAR
DOWN

EXTRA STUFF

FOR NEXT

Class

Sequence numbers

How to pick the initial sequence number?
• Protocols based on relative sequence numbers based on starting

value
• Why not start at 0?

• RFC9293, Sec 3.4.1: Procedure for picking ISN, based on timer and
cryptographic hash
=> For project, just pick a random integer :)

Relative Sequence Numbering

How do we tell two connections apart?

=> Port numbers

– 5-tuple (proto., source IP, source port, dest IP, dest port) => 1
Connection

– Kernel maintains socket table: maps (5-tuple) => Socket

• If a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

Netstat

deemer@vesta ~/Development % netstat -an
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 10.3.146.161.51094 104.16.248.249.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51076 172.66.43.67.443 ESTABLISHED
tcp6 0 0 2620:6e:6000:900.51074 2606:4700:3108::.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51065 35.82.230.35.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51055 162.159.136.234.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51038 17.57.147.5.5223 ESTABLISHED
tcp6 0 0 *.51036 *.* LISTEN
tcp4 0 0 *.51036 *.* LISTEN
tcp4 0 0 127.0.0.1.14500 *.* LISTEN

Keeping state: the TCB

State for a TCP connection kept in Transmission Control Buffer (TCB)

• Keeps initial sequence numbers, connection state, send/recv buffers,
status of unACK’d segments, …

• When to allocate?

Keeping state: the TCB

State for a TCP connection kept in Transmission Control Buffer (TCB)

• Keeps initial sequence numbers, connection state, send/recv buffers,
status of unACK’d segments, …

• When to allocate?
– Server: listening on a connection*

– Client: Initiating a connection (sending a SYN)

– Server: accepting a new connection (receiving SYN)

Recall: the socket table

• Each connection has an associated TCB in the kernel

• For each packet, kernel maps the 5-tuple
(tcp/udp, local IP, local port, remote IP, remote port) => socket

• Depending on socket type, socket contains TCB

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121.56915 192.168.1.58.7000 SYN_SENT
tcp4 0 0 172.17.48.121.56908 142.250.80.35.443 ESTABLISHED
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED

 . . .
tcp4 0 0 *.22 *.* LISTEN

Two “types” of sockets:

• “Normal” sockets

• Listen sockets

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121.56915 192.168.1.58.7000 SYN_SENT
tcp4 0 0 172.17.48.121.56908 142.250.80.35.443 ESTABLISHED
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED

 . . .
tcp4 0 0 *.22 *.* LISTEN

“Normal” sockets
– Connection between two specific endpoints

– Can send/recv data

Listen sockets
– Created by receiver to accept new connections

– When a client connects, client info gets queued by kernel

– When server process calls accept(), a new (”normal”) socket is created
between the server and that client

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED

 . . .
tcp4 0 0 *.22 *.* LISTEN

RFC 9293,
Sec 3.3.2

SYN flooding

What happens if you send a someone huge number of SYN
packets?

A hacky solution: SYN cookies

• Don’t allocate TCB on first SYN

• Encode some state inside the initial
sequence number that goes back to
the client (in the SYN+ACK)

A hacky solution: SYN cookies

• Don’t allocate TCB on first SYN

• Encode some state inside the initial
sequence number that goes back to
the client (in the SYN+ACK)

• What gets encoded?
– Coarse timestamp

– Hash of connection IP/port

– Other stuff (implementation dependent)

• Better ideas?

OWN

NORMAL
OPERATION

Joy
on

Next class

• Sending data over TCP

Connection Termination

• FIN bit says no more data to send
– Caused by close or shutdown

– Both sides must send FIN to close a connection

• Typical close
FIN

ACK

FIN

ACK

Close

Close

FIN_WAIT_1

CLOSE_WAIT

FIN_WAIT_2

LAST_ACK
TIME_WAIT

CLOSED

CLOSED

…

2M
SL

The IPv4 Header

48

The IPv4 Header

48

Defined by RFC 791
RFC (Request for Comment): defines network standard

