
CSCI-1680
Transport Layer I

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• IP: due tonight!
– Look for email today/tomorrow about grading meetings

+ feedback survey

“Between the time you’ve handed in and the demo
meeting, you can continue to making small changes and

bug fixes and push them to your git repo”
–OK: Fixing bugs, code cleanup, README
– Not OK: Implementing RIP, adding new features

Administrivia

• HW2 is out (finally!): Due Monday, Oct 30
• HW3 will be super short: out Oct 31, due Nov 7

• TCP: Should be out tomorrow
– Gearup on Monday, Oct 23 6-8pm in CIT316

Today

Light overview of the transport layer and TCP
–Why we need TCP
–What components are involved
–What you will do in the project

Transport layer: the story so far
– Provides support for different applications via ports
– OS provides interface to applications via sockets

Transport Protocol Review

!

"#$

#%$ &'$

($

)*#+)*#,)*#!

-##$). #"#$

• Transport protocols sit on top of the network layer (IP)

• Can provide:
- Application-level multiplexing (“ports”)

- Error detection, reliability, etc.

ÞFor now: transport layer is part of OS, service provided to apps

The headers

UDP TCP

Port numbers are part of these headers
=> OS uses these to map to sockets

Motivation: sending a big file

$ cp ~/dir/all-my-files.zip ~/some-other-dir

A problem, in pseudocode:

What are some challenges with implementing the network part?

$ scp ~/dir/all-my-files.zip 1.2.3.4:/some-other-dir

Motivation: sending a big file

func sender() {
 fd, _ := os.Open("all-my-files.zip")
 conn, _ := net.Dial("1.2.3.4:80")
 buf := ReadTheWholeFile(fd)
 conn.Write(buf)

}

A problem, in pseudocode:

What are some challenges with implementing the network part?

func receiver() {
 conn, err := net.Listen(“:80”)
 buf := make([]byte, . . .)
 conn.Read(buf)

 fd = os.Open(”copy-of-files.zip”)
 fd.Write(buf)
}

Motivation: sending a big file

func sender() {
 fd, _ := os.Open("all-my-files.zip")
 conn, _ := net.Dial("1.2.3.4:80")
 buf := ReadTheWholeFile(fd)
 conn.Write(buf)

}

A problem, in pseudocode:

func receiver() {
 conn, err := net.Listen(“:80”)
 buf := make([]byte, . . .)
 conn.Read(buf)

 fd = os.Open(”copy-of-files.zip”)
 fd.Write(buf)
}

Þ How do we get data from A->B, reliably?

How does the transport layer help us do this?

SrcPort DstPort

ChecksumLength

Data

0 16 31

UDP: User Datagram Protocol
Send a message between ports… and nothing else

12

Map of the Internet, 2021 (via BGP)
OPTE project

UDP: What could possibly go wrong?

Problem: Reliability

Packets could…
• Dropped packets
• Duplicate packets
• Packets arrive out of order

Multiple hops and paths => Lots of opportunities for failure!
=> TCP has mechanisms to deal with this

Also: performance challenges
• Hosts have different (and unknown!) resources

• Network has unknown resources
=> Varying RTT, link bandwidth

Also: performance challenges
• Hosts have different (and unknown!) resources
 => Flow control: how much data can we send to receiver?

• Network has unknown resources
=> Varying RTT, link bandwidth
=> Congestion control: must not overload network

Also: performance challenges
• Hosts have different (and unknown!) resources
 => Flow control: how much data can we send to receiver?

• Network has unknown resources
=> Varying RTT, link bandwidth
=> Congestion control: must not overload network

Two performance goals:
1. Must not overwhelm receiver, or network (critical!!)
2. Maximize throughput => best performance

So how does it work?

TCP: the big picture

TCP – Transmission Control Protocol

• Service model: “reliable, connection oriented, full duplex ordered
byte stream”

• Flow control: If one end stops reading, writes at other eventually
stop/fail

• Congestion control: Keeps sender from overloading the network

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

TCP: Key features

• Initially: RFC 793 (1981) (+ many others now)

• Creates concept of connections between two endpoints
 => Each connection has its own state

TCP: Key features

• Initially: RFC 793 (1981) (+ many others now)

• Creates concept of connections between two endpoints
 => Each connection has its own state
• End-to-end protocol
–Minimal assumptions on the network
– All mechanisms run on the end points (ie, not routers)

TCP: Key features

• Initially: RFC 793 (1981) (+ many others now)

• Creates concept of connections between two endpoints
 => Each connection has its own state
• End-to-end protocol
–Minimal assumptions on the network
– All mechanisms run on the end points (ie, not routers)

Why is this important?

TCP Header

Important Header Fields

• Ports: multiplexing
• Sequence number
–Where segment is in the stream (in bytes)

• Acknowledgment Number
– Next expected sequence number

• Window
– How much data you’re willing to receive

• Flags…

Important Header Fields: Flags

• SYN:
• ACK:
• FIN:

• RST: reset connection (used for errors)
• PSH: push data to the application immediately
• URG: whether there is urgent data

Important Header Fields: Flags

• SYN: establishes connection (“synchronize”)
• ACK: this segment ACKs some data (all packets except

first)
• FIN: close connection (gracefully)

• RST: reset connection (used for errors)
• PSH: push data to the application immediately
• URG: whether there is urgent data

Less important header fields

• Checksum: Very weak, like IP
– Has weird semantics (”pseudo header”), more on this later…

• Data Offset: used to indicate TCP options (mostly
unused)

• Urgent Pointer

TCP Standards: The Many RFCs

TCP Standards: The Many RFCs

The One RFC

Establishing a Connection

Goals
• Contact the other side (or error)
• Both sides agree on initial sequence numbers

Establishing a Connection

• Three-way handshake
– Two sides agree on respective initial sequence nums

• If no one is listening on port: OS may send RST
• If server is overloaded: ignore SYN
• If no SYN-ACK: retry, timeout

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

listen(),
accept()

accept()
returns

connect()

Summary of TCP States

Passive close:
Can still send!Active close:

Can still receive

C
on

ne
ct

io
n

Es
ta

bl
is

hm
en

t

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

TCP State Diagram
CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK
(Step 3 of the 3-way-handshake)

Data exchange occurs

ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-

Sequence numbers

How to pick the initial sequence number?
• Protocols based on relative sequence numbers based on

starting value
• Why not start at 0?

• RFC9293, Sec 3.4.1: Procedure for picking ISN, based on timer and
cryptographic hash
=> For project, just pick a random integer :)

Relative Sequence Numbering

How do we tell two connections apart?

=> Port numbers
– 5-tuple (proto., source IP, source port, dest IP, dest port) => 1

Connection
– Kernel maintains socket table: maps (5-tuple) => Socket

• If a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

Netstat

deemer@vesta ~/Development % netstat -an
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 10.3.146.161.51094 104.16.248.249.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51076 172.66.43.67.443 ESTABLISHED
tcp6 0 0 2620:6e:6000:900.51074 2606:4700:3108::.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51065 35.82.230.35.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51055 162.159.136.234.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51038 17.57.147.5.5223 ESTABLISHED
tcp6 0 0 *.51036 *.* LISTEN
tcp4 0 0 *.51036 *.* LISTEN
tcp4 0 0 127.0.0.1.14500 *.* LISTEN

Keeping state: the TCB

State for a TCP connection kept in Transmission Control Buffer (TCB)
• Keeps initial sequence numbers, connection state, send/recv

buffers, status of unACK’d segments, …
• When to allocate?
– Server: listening on a connection*
– Client: Initiating a connection (sending a SYN)
– Server: accepting a new connection (receiving SYN)

Recall: the socket table

• Each connection has an associated TCB in the kernel
• For each packet, kernel maps the 5-tuple

(tcp/udp, local IP, local port, remote IP, remote port) => socket

• Depending on socket type, socket contains TCB

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121.56915 192.168.1.58.7000 SYN_SENT
tcp4 0 0 172.17.48.121.56908 142.250.80.35.443 ESTABLISHED
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED

 . . .
tcp4 0 0 *.22 *.* LISTEN

Two “types” of sockets:
• “Normal” sockets

• Listen sockets

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121.56915 192.168.1.58.7000 SYN_SENT
tcp4 0 0 172.17.48.121.56908 142.250.80.35.443 ESTABLISHED
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED

 . . .
tcp4 0 0 *.22 *.* LISTEN

“Normal” sockets
– Connection between two specific endpoints
– Can send/recv data

Listen sockets
– Created by receiver to accept new connections
– When a client connects, client info gets queued by kernel
– When server process calls accept(), a new (”normal”) socket is created

between the server and that client

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED

 . . .
tcp4 0 0 *.22 *.* LISTEN

RFC 9293,
Sec 3.3.2

SYN flooding

What happens if you send a someone huge number of SYN
packets?

A hacky solution: SYN cookies

• Don’t allocate TCB on first SYN
• Encode some state inside the initial

sequence number that goes back to
the client (in the SYN+ACK)

• What gets encoded?
– Coarse timestamp
– Hash of connection IP/port
– Other stuff (implementation

dependent)

• Better ideas?

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

Next class

• Sending data over TCP

Connection Termination

• FIN bit says no more data to send
– Caused by close or shutdown
– Both sides must send FIN to close a connection

• Typical close FIN

ACK

FIN

ACK

Close

Close

FIN_WAIT_1

CLOSE_WAIT

FIN_WAIT_2

LAST_ACK

TIME_WAIT

CLOSED

CLOSED

…

2M
SL

The IPv4 Header

52

Defined by RFC 791
RFC (Request for Comment): defines network standard

