CSCI-1680
Transport Layer |

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti



Administrivia

* |[P: due tonight!

— Look for email today/tomorrow about grading meetings
+ feedback survey

“Between the time you’'ve handed in and the demo
meeting, you can continue to making small changes and
bug fixes and push them to your git repo”

— OK: Fixing bugs, code cleanup, README

— Not OK: Implementing RIP, adding new features



Administrivia

« HW2 is out (finally!): Due Monday, Oct 30
» HW3 will be super short: out Oct 31, due Nov 7

* TCP: Should be out tomorrow
— Gearup on Monday, Oct 23 6-8pm in CIT316



Today

Light overview of the transport layer and TCP
— Why we need TCP

— What components are involved

— What you will do in the project



ANy Ay Ay @ JlhSSy
FTP  HTTP NV

DA

—

NET; NET,  NET,

Transport layer: the story so far
— Provides support for different applications via ports
— OS provides interface to applications via sockets

[ = For now: transport layer is part of OS, service provided to apps }




The headers

UDP TCP

0 31 0

UDP Length UDP Checksum Sequence Number

Acknowledgement Number

Data RIS
Giay| Reserved |FEEENT  windowsize |

Port numbers are part of these headers
=> OS uses these to map to sockets




Motivation: sending a big file

A problem, in pseudocode:

$ cp ~/dir/all-my-files.zip ~/some-other-dir

$ scp ~/dir/all-my-files.zip 1.2.3.4:/some-other-dir

[ What are some challenges with implementing the network part? }




Motivation: sending a big file

A problem, in pseudocode:

func sender() { func receiver() {
fd, _ := os.Open("all-my-files.zip") conn, err := net.Listen(*:80”)
conn, _ := net.Dial("1.2.3.4:80") buf := make([]byte, . . .)
buf := ReadTheWholeFile(fd) conn.Read(buf)

conn.Write(buf)
fd = os.0Open(”copy-of-files.zip”)
} fd.Write(buf)

[ What are some challenges with implementing the network part? }




Motivation: sending a big file

A problem, in pseudocode:

func sender() { func receiver() {
fd, _ := os.Open("all-my-files.zip") conn, err := net.Listen(*:80”)
conn, _ := net.Dial("1.2.3.4:80") buf := make([]byte, . . .)
buf := ReadTheWholeFile(fd) conn.Read(buf)

conn.Write(buf)
fd = os.0Open(”copy-of-files.zip”)
} fd.Write(buf)

— How do we get data from A->B, reliably?



How does the transport layer help us do this?



UDP: User Datagram Protocol

Send a message between ports... and nothing else

DstPort

Checksum




Map of the Internet,
OPTE project

2021

via BGP

12



Problem: Reliability

Packets could...

* Dropped packets

* Duplicate packets

e Packets arrive out of order

=> TCP has mechanisms to deal with this

{ Multiple hops and paths => Lots of opportunities for failure! }




Also: performance challenges
* Hosts have different (and unknown!) resources

 Network has unknown resources
=> Varying RTT, link bandwidth



Also: performance challenges
* Hosts have different (and unknown!) resources

=> Flow control: how much data can we send to receiver?

» Network has unknown resources
=> Varying RTT, link bandwidth
=> Congestion control: must not overload network



Also: performance challenges
* Hosts have different (and unknown!) resources

=> Flow control: how much data can we send to receiver?

» Network has unknown resources
=> Varying RTT, link bandwidth
=> Congestion control: must not overload network

Two performance goals:
1. Must not overwhelm receiver, or network (criticall!)
2. Maximize throughput => best performance




So how does it work?



TCP: the big picture



TCP = Transmission Control Protocol

Application process Application process
‘ [ ]

L]
P
b

TCP TC
Send buffer

Transmit segments

Service model: “reliable, connection oriented, full duplex ordered
byte stream”

Flow control: If one end stops reading, writes at other eventually
stop/fail

Congestion control: Keeps sender from overloading the network



TCP: Key features
e Initially: RFC 793 (1981) (+ many others now)

» Creates concept of connections between two endpoints
=> Each connection has its own state



TCP: Key features
e Initially: RFC 793 (1981) (+ many others now)
» Creates concept of connections between two endpoints

=> Fach connection has its own state
» End-to-end protocol

— Minimal assumptions on the network
— All mechanisms run on the end points (ie, not routers)



TCP: Key features
e Initially: RFC 793 (1981) (+ many others now)
» Creates concept of connections between two endpoints

=> Fach connection has its own state
» End-to-end protocol

— Minimal assumptions on the network
— All mechanisms run on the end points (ie, not routers)

{ Why is this important? }




TCP Header

0 31

Sequence Number

Acknowledgement Number

Data RIS
Otinay | Reserved |BEEEYT  windowsize




Important Header Fields

Ports: multiplexing

Sequence number
— Where segment is in the stream (in bytes)

Acknowledgment Number
— Next expected sequence number

Window

— How much data you're willing to receive

Flags...



Important Header Fields: Flags

SYN:
ACK:
FIN:

RST: reset connection (used for errors)
PSH: push data to the application immediately

URG: whether there is urgent data



Important Header Fields: Flags

» SYN: establishes connection (“synchronize”)

» ACK: this segment ACKs some data (all packets except
first)

* FIN: close connection (gracetully)

e RST: reset connection (used for errors)
» PSH: push data to the application immediately
* URG: whether there is urgent data




Less important header tields

* Checksum: Very weak, like IP

— Has weird semantics ("pseudo header”), more on this later...

» Data Offset: used to indicate TCP options (mostly
unused)

* Urgent Pointer



TCP Standards: The Many RFCs

N M [ e

RFC793 (Origina)
Q REC1122 (Some corrections)

" . L
‘_;- /\\ - ' | RFC5681 [(Congestion control)

Rl A _ "REC7414 (Roadmanp to TCP RFCS)
s = Various Errata ...



TCP Standards: The Many RFCs

RFC documents |edit]

e RFC 675 2 — Specification of Internet Transmission Control Program, December 1974 Version
e RFC 7932 — TCP v4

e RFC 11222 —includes some error corrections for TCP

e RFC 1323 2 — TCP Extensions for High Performance [Obsoleted by RFC 7323]

e RFC 1379 2 — Extending TCP for Transactions—Concepts [Obsoleted by RFC 6247]

e RFC 1948 (' — Defending Against Sequence Number Attacks

e RFC 20182 — TCP Selective Acknowledgment Options

e RFC 5681 (2 — TCP Congestion Control

e RFC 6247 (2 — Moving the Undeployed TCP Extensions RFC 10722, 11062, 11102, 11452, 11462, 137
e RFC 6298 (2 — Computing TCP's Retransmission Timer

e RFC 6824 (2 — TCP Extensions for Multipath Operation with Multiple Addresses

e RFC 7323 (2! — TCP Extensions for High Performance

e RFC 7414 2 — A Roadmap for TCP Specification Documents

e RFC 9293 (2 — Transmission Control Protocol (TCP)




: 4

STD: 7
Request f

Obsoletes:

Updates:
Category:
ISSN: 2070-1721

The One RFC

or Comments: 9293

6691

1011, 1122, 5961

Standards Track

793, 879, 2873, 6093, 6429, 6528,

Internet Standard
W. Eddy, Ed.

M =

August 2022



Establishing a Connection

Goals
« Contact the other side (or error)
* Both sides agree on initial sequence numbers



Establishing a Connection

Active participant Passive participant
(client) (server)

listen(),
accept()

accept()
returns

Three-way handshake

— Two sides agree on respective initial sequence nums
f no one is listening on port: OS may send RST
f server is overloaded: ignore SYN

f no SYN-ACK: retry, timeout




Summary ot TCP States

Passive open Close

Active open/SY

SYN/SYN + ACK Send/SYN

SYN/SYN + ACK

ACK SYN + ACK/ACK

Connection Establishment

Close/FIN

Active close:
Can still receive

_ Passive close:
Can still send!
ACK Close/FIN

FIN_WAIT_2 LAST_ACK
ACK

ACK Timeout aftef two
FIN/ACK

segment lifetimes

TIME_WAIT |~ : CLOSED




TCP State Diagram

CONNECT/SYN (Step 1 of the 3-way-handshake)

ceeveeneen. e UNusual event
————> client/receiver path (Start) _ P ORI

———> server/sender path LISTEN/-¢

T TR
i CLOSE/-

(St 2 of the 3- -handshake) SYN/SYN+ACK
ep o e way-handshake | LISTEN |

.

RST- SEND/SYN

SYN :
RECEIVED | <o SYNSYNFACK  (simultancous open)

Data exchange occurs
SYN+ACK/ACK

- (Step 3 of the 3-way-handshake)

.
v

{ CLOSE/FIN
‘ CLOSE/FIN FINJACK

| Active CLOSE| |Passive CLOSE|-
\
| CLOSEWAIT |

FIN/ACK

| FIN WAIT 1

CLOSING |
FIN+ACK/ACK :

£ ACK- CLOSE/FIN

| Y
FIN/ACK

Timeout




Sequence numbers

How to pick the initial sequence number?

» Protocols based on relative sequence numbers based on
starting value

* Why not start at 07

» RFC9293, Sec 3.4.1: Procedure for picking ISN, based on timer and
cryptographic hash

=> For project, just pick a random integer :)



Relative Sequence Numbering

Ethernet II, Src: Apple_cd:6a:23 (c8:89:f3:cd:6a:23), Dst: IntelCor_63:c4:45 (0 00¢ 00 1b 21 63 c4 45 c8 89 23 08 00 45 00

Internet Protocol Version 4, Src: 172.17.48.156, Dst: 172.17.48.22 00 40 00 00 40 00 40 06 11 30 9c ac 11

o - - . . 0020 30 16 c2 37 00 16 77 42 00 00 00 bo 02
Transmission Control Protocol, Src Port: 49719, Dst Port: 22, Seq: @, Len: 0 2030 £f £f b7 2a 00 00 02 04 03 03 06 01 01

source Port: 43719 1040 08 0a 0d c7 46 cO 00 00 02 00 00
Destination Port: 22

[Stream index: 8]

[Conversation completeness: Complete, WITH_DATA (31)]
[TCP Segment Len: @]

Sequence Number: 0 (relative sequence number)
Sequence Number (raw): 2000828645

[Next Sequence Number: (relative sequence number)]
Acknowledgment Number: 0

Acknowledgment number (raw): @

1011 .... = Header Length: 44 bytes (11)




How do we tell two connections apart?

=> Port numbers

— 5-tuple (proto., source IP, source port, dest IP, dest port) => 1
Connection

— Kernel maintains socket table: maps (5-tuple) => Socket

* |t a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection



Netstat

deemer@vesta ~/Development % netstat -an
Active Internet connections (including servers)

Proto Recv-Q Send-Q

tcpd
tcpd
tcpb
tcpd
tcpd
tcpd
tcpb
tcpd
tcpd

0

OO OO0

0

OO OO0

Local Address
10.3.146.161.51094
10.3.146.161.51076
2620:6€:6000:900.51074
10.3.146.161.51065
10.3.146.161.51055
10.3.146.161.51038
*.51036

*.51036
127.0.0.1.14500

Foreign Address
104.16.248.249.443
172.66.43.67.443
2606:4700:3108::.443
35.82.230.35.443
162.159.136.234.443
17.57.147.5.5223

*.*

*.*

*.*

(state)
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
LISTEN
LISTEN
LISTEN



Keeping state: the TCB

State for a TCP connection kept in Transmission Control Buffer (TCB)

» Keeps initial sequence numbers, connection state, send/recv
buffers, status of unACK'd segments, ...

* When to allocate?
— Server: listening on a connection*
— Client: Initiating a connection (sending a SYN)
— Server: accepting a new connection (receiving SYN)



Recall: the socket table

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcpd (%] 0 172.17.48.121.56915 192.168.1.58.7000 SYN_SENT
tcpd (%] 0 172.17.48.121.56908 142.250.80.35.443 ESTABLISHED
tcpd (%] 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED
tcpa 0 0 *.22 * % LISTEN

 Each connection has an associated TCB in the kernel

» For each packet, kernel maps the 5-tuple
(tcp/udp, local IP, local port, remote IP, remote port) => socket

» Depending on socket type, socket contains TCB



deemer@vesta ~ % netstat -anl

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address
tcpd (%] 0 172.17.48.121.56915

tcpd %] 0 172.17.48.121.56908
tcpd %] 0 172.17.48.121.56887
tcpld 0 0 *.22

Two “types” of sockets:
* “Normal” sockets

e Listen sockets

Foreign Address

192.168.1.58.7000
142.250.80.35.443
13.225.231.50.80

(state)
SYN_SENT
ESTABLISHED
ESTABLISHED

LISTEN



Proto Recv-Q Send-Q Local Address Foreign Address
tcpd (%] 0 172.17.48.121.56887 13.225.231.50.80
tcpd 0 0 *.22 * K

“Normal” sockets

— Connection between two specific endpoints
— Can send/recv data

lListen sockets

— Created by receiver to accept new connections

— When a client connects, client info gets queued by kernel

(state)
ESTABLISHED

LISTEN

— When server process calls accept(), a new (“normal”) socket is created

between the server and that client




NOTA BENE: This diagram is only a summary and must not be taken as
the total specification. Many details are not included.

passive OPEN

active OPEN

\ create TCB
\

create TCB

rcv RST (note 1)

rcv SYN

snd SYN,ACK /

rcv SYN

CLOSE

delete TCB

snd SYN,ACK

rcv ACK of SYN \ /

snd FIN

rcv SYN,ACK

RFC 9293,
Sec 3.3.2



SYN flooding

What happens if you send a someone huge number of SYN
packets?



A hacky solution: SYN cookies

* Don't allocate TCB on first SYN
Active participant Passive participant

e Encode some state inside the initial (cliene) (server)

sequence number that goes back to
the client (in the SYN+ACK)

* What gets encoded?
— Coarse timestamp
— Hash of connection IP/port
— Other stuft (implementation

dependent)
» Better ideas?




Next class

» Sending data over TCP



Connection Termination

* FIN bit says no more data to send
— Caused by close or shutdown

— Both sides must send FIN to close a connection

» Typical close

Close £
FIN WAIT 1 IN

ACK CLOSE_WAIT

FIN WAIT 2
Close

FIN LAST ACK
TIME_WAIT
ACk CLOSED

CLOSED

2MSL



The IPv4 Header

Identification m

Defined by RFC 791
RFC (Request for Comment): defines network standard 52




