
CSCI-1680
Transport Layer II

Data over TCP: Flow Control

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• IP project grading: happening now! Sign up for a
meeting if you haven’t already

• TCP assignment: out now—start early!
– Gearup I: Thursday 10/26 5-7pm

–Milestone 1: schedule meeting on/before Thursday, November
2

CIT368 4 Zoon RED

TCP – Transmission Control Protocol

yi

TCP – Transmission Control Protocol

TCP provides a “reliable, connection oriented, full duplex ordered
byte stream”

TCP Header

INDEFINITEeshNEXT BYTE
EXPECTED

Contiguous

CLIENT SERUM
LISENO

sa sina.LI
ewLSYNtAC
t SEE a

TAILS
ESTABLISHED

BOTH SIDES NEED TO AGREE
ON THEIR STARTING SEQ NUMBERS

Important Header Fields: Flags

• SYN: establishes connection (“synchronize”)

• ACK: this segment ACKs some data (all packets except first)

• FIN: close connection (gracefully)

• RST: reset connection (used for errors)

• PSH: push data to the application immediately

• URG: whether there is urgent data

Less important header fields

• Checksum: Very weak, like IP
– Has weird semantics (”pseudo header”), more on this later…

• Data Offset: used to indicate TCP options (mostly unused)

• Urgent Pointer

Establishing a Connection

• Three-way handshake
– Two sides agree on respective initial sequence nums

• If no one is listening on port: OS may send RST

• If server is overloaded: ignore SYN

• If no SYN-ACK: retry, timeout

Establishing a Connection

• Three-way handshake
– Two sides agree on respective initial sequence nums

• If no one is listening on port: OS may send RST

• If server is overloaded: ignore SYN

• If no SYN-ACK: retry, timeout

listen(),
accept()

accept()
returns

connect()

TCP State Diagram

T
RULA
FORWHAT
HAPPENSAT

EACHSTATE

We are now here

a

State for a TCP connection kept in Transmission Control Buffer (TCB)

• Keeps initial sequence numbers, connection state, send/recv buffers,
status of unACK’d segments, …

When to allocate?

it

SERVER LISTENING ON connection
LISTEN

FT INITIATING CONNECTION STN

SERVET AFTER EACH CLIENT CONNECTS
ACCENT

State for a TCP connection kept in Transmission Control Buffer (TCB)

• Keeps initial sequence numbers, connection state, send/recv buffers,
status of unACK’d segments, …

When to allocate?
– Server: listening on a connection*

– Client: Initiating a connection (sending a SYN)

– Server: accepting a new connection (receiving SYN)

⇒When to deallocate?

UNTIL ALL DATA HAS BEEN
ACK'D CLOSE PROCESS IS DONE

State for a TCP connection kept in Transmission Control Buffer (TCB)

• Keeps initial sequence numbers, connection state, send/recv buffers,
status of unACK’d segments, …

When to allocate?
– Server: listening on a connection*

– Client: Initiating a connection (sending a SYN)

– Server: accepting a new connection (receiving SYN)

When to deallocate?
Only after connection termination is fully completed (CLOSED state)
=> If no state, can’t meaningfully respond to packet!

RFC 9293,
Sec 3.3.2

Recall: the socket table

• Each connection has an associated TCB in the kernel

• Depending on socket type, socket contains TCB

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121.56915 192.168.1.58.7000 SYN_SENT
tcp4 0 0 172.17.48.121.56908 142.250.80.35.443 ESTABLISHED
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED

 . . .
tcp4 0 0 *.22 *.* LISTEN

⇒For each packet, kernel maps the 5-tuple
(tcp/udp, local IP, local port, remote IP, remote port) => socket

V6

43

KEI
43

VALUE

5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn

– Kernel maintains socket table: maps (5-tuple) => Socket

• If a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp4 0 0 *.22 *.* LISTEN

5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn

– Kernel maintains socket table: maps (5-tuple) => Socket

• If a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121:22 192.168.1.58:34452 SYN_SENT

tcp4 0 0 *.22 *.* LISTEN

5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn

– Kernel maintains socket table: maps (5-tuple) => Socket

• If a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121:22 192.168.1.58:34452 SYN_SENT
tcp4 0 0 172.17.48.121:22 142.250.80.35:11435 ESTABLISHED
tcp4 0 0 172.17.48.121:22 13.225.231.50:12345 ESTABLISHED

 . . .
tcp4 0 0 *.22 *.* LISTEN

Two “types” of sockets:

• “Normal” sockets

• Listen sockets

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121.56915 192.168.1.58.7000 SYN_SENT
tcp4 0 0 172.17.48.121.56908 142.250.80.35.443 ESTABLISHED
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED

 . . .
tcp4 0 0 *.22 *.* LISTEN

“Normal” sockets
– Connection between two specific endpoints

– Can send/recv data

Listen sockets
– Created by receiver to accept new connections

– When a client connects, client info gets queued by kernel

– When server process calls accept(), a new (”normal”) socket is created
between the server and that client

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED

 . . .
tcp4 0 0 *.22 *.* LISTEN

How to pick the initial sequence number?

• Protocols based on relative seq. numbers based on starting value

• Why not start at 0?

It

How to pick the initial sequence number?

• Protocols based on relative seq. numbers based on starting value

• Why not start at 0?

 => Someone might guess the value!

=> RFC9293, Sec 3.4.1: Procedure for picking ISN, based on timer and
cryptographic hash

=> For project, just pick a random integer :)

IF NUMBER ROREUSED SYSTEM RESTART CANT

TELL IF PACKET IS FOR DIFF CONNECTION

Relative Sequence Numbering

Observation: new connections use memory!

A A Server
SYN

malloc()

What happens if you send a someone lots of SYN packets?

SYN flood => type of Denial of Service (DOS) attack

DoS, DNS, TLS10/24/23 32

A A Server

SYN flood => type of Denial of Service (DOS) attack
=> Especially bad when attack traffic comes from multiple sources
(more on this later)

SYN

malloc()malloc()malloc()malloc()malloc()malloc()malloc()malloc()
...

SYNSYNSYNSYNSYNSYN

A hacky solution: SYN cookies

• Don’t allocate TCB on first SYN

• Encode some state inside the initial
sequence number that goes back to
the client (in the SYN+ACK)

• What gets encoded?
– Coarse timestamp

– Hash of connection IP/port

– Other stuff (implementation dependent)

• Better ideas?

A hacky solution: SYN cookies

• Don’t allocate TCB on first SYN

• Encode some state inside the initial
sequence number that goes back to
the client (in the SYN+ACK)

• What gets encoded?
– Coarse timestamp

– Hash of connection IP/port

– Other stuff (implementation dependent)

• Better ideas?

Nowadays: filtering in kernel (or in network) on number of new
connections per time (esp. on servers)
= > More on this later!

Sending data

DROP PACKET RETRANSMIT IF
TIMEOUT RIO

LOST ACK I I 1

DUP ACK PACKET

ALWAYS KNOW WHAT SEGMENT
OR ACK TO EXPECT NEXT

IF YOU DON'T RECEIVE AN
EXPECTED SEGMENT IGNORE IT

IN THE WINDOW

OF EXPECTED PK

D Aces

Sending data: the basic idea

• Start: app calls Send(), loads send buffer

PART OF KB

Sending data: the basic idea

• Start: app calls Send(), loads send buffer

• TCP stack divides data into packets called segments

D y g
SEGMENTS

Sending data: the basic idea

• Start: app calls Send(), loads send buffer

• TCP stack divides data into packets called segments

Key challenges

• When to send data?

• How much data to send?

⇒Flow control (now): don’t send more data than the receiver can handle
⇒Congestion control (much later) don’t send more data than the network

can handle

FLOW control

LATENT

Terminology: MSS

MSS: Maximum segment size

• Largest segment a TCP can send

• Can be configurable

• Nowadays: sender and receiver negotiate using TCP options
(out of scope for this class)

LARGEST POSSIBLE SEGMENT

Terminology: MSS

MSS: Maximum segment size

• Largest segment a TCP can send

• Can be configurable

• Nowadays: sender and receiver negotiate using TCP options
(out of scope for this class)

=> For project: just a fixed value

A 1100 BYTES

Simplest TCP sender: stop and wait

SIMPLOST SENDER STOP t WAIT
IDEALCASE

5 ENDER NECEIVER
I SYN SEGOACKO

STNTAY.joACE

k seat

HANDSHAKE

SEA I ACK I
HELLO S

ÉSEG 6 Ack l
WORLD

SEE 1ACK it

S SEND SEGMENT WAIT FOR
ACK EX 130

R WAIT FOR SEGMENTSENDALK
EX

KEY FIELDS FOR SOME X Y

SEE SEGMENT STARTS AT POSITION X
IN DATA STREAM

ACI I HAVE UP TO BYTE YO I EXPECT
BYTE Y NEXT

Window HOW MANY BYTES LEFT IN R's
EEL UFFE MORE ON II Soon

Simplest method: Stop and Wait

Consider sending one packet at a time
– S: Send packet, wait

– R: Receive packet, send ACK

– S: Receive ACK, send next packet
 OR

 No ACK within some time (RTO), timeout and retransmit

COHMEADAPT
TONETWORK

CONDITIONS MOREON THISLATER

STOP T WAIT WHAT CAN GO WRONG

c s

THE

TifRte
LOSTDAI LOSTICI

c s

THE
SEQUENCE

RETRANSMISSIONS

Raven From
ALL OF THESE

LATE ACK

Simplest method: Stop and Wait

Consider sending one packet at a time
– S: Send packet, wait

– R: Receive packet, send ACK

– S: Receive ACK, send next packet
 OR

 No ACK within some time (RTO), timeout and retransmit

S R

SEGMENT

IN FLIGHT
t

PENDING

Phat
LOST ACK

DOP Parrot

ACK

What can go wrong?

Sequence number example

l

STOPAWAIT

pero

pitting

D

WOULD TO HAVE MORE SEGMENTS

IN FLIGHT AT ONE TIME TO

USE MORE NETWORK BANDWIDTH

CHALLENGES

RECEIVEN NEEDS TO PUT CLEMENTS

IN ORDER

RD SEGMENTS MIGHT BE
SEN RECEIVED OUT OF ORDER

SENDER FLOWIDN

HOW WE THINK ABOUT BUFFERING

SEND BUFFER CIRCULAR BUFFED

INST
A

APP LOADS AT
D TP Stack

DECIDES HOW
CONN WRITE L TO SEND OUT

C
IN FLIGHT
SENT BUT NOT
ACK'D

REMOVE AFTER ALK
RECEIVED

REV BUFFER CIRCULAR BUFFER

G
EARLY ARRIVALS

11A
q DATA From

Teesta
ÉÉ

conan

APPS DATA
DATA REV'D INWHEN SEGMENTS

ORDER READY FORµnn
APP

MAX AMOUNT APP
CAN READ

WHAT'STHISABOUTA BUFFER

SEND BIÉÉ ÉYÉcuI LEVEL overview

Immel
p

APPADDS DATA TOP STACK
DECIDES HowTO BUFFER WHEN TO

CONN WRITE SEND OUT

REMoros DATA
ONCE RECEIVER
ACES IT

RECV BUFFER CIRCULAR

Mullion
TCP STALK IDA LEONEAN
DATA AS IT'S REV'D READS DATA
PIGOT BE OUT OF ORDER FROM BUFFER
MORE ON THIS LATER REMOVING ITS

MORE NOTES

IF YOU WANT

TO READ

AHEAD

Better Flow Control: Sliding window

• Part of TCP specification (even before 1988)

• Send multiple packets at once, based on a window

• Receiver uses window header field to tell sender how much space
it has

TCP and buffering

Recall: TCP stack responsibilities

• Sender: breaking application data into segments

• Receiver: receiving segments, reassembling them in order

• Need to buffer data

Sliding window: in abstract terms

• Window of size w

• Can send at most w packets before
waiting for an ACK

Sliding window: in abstract terms

• Window of size w

• Can send at most w packets before
waiting for an ACK

• Goal
– Network “pipe” always filled with data

– ACKs come back at rate data is delivered =>
“self-clocking”

Sender example

Receiver example

Flow Control: Sender

Invariants
• LastByteSent – LastByteAcked <= AdvertisedWindow
• EffectiveWindow = AdvertisedWindow – (BytesInFlight)
• LastByteWritten – LastByteAcked <= MaxSendBuffer

Flow Control: Sender

Invariants
• LastByteSent – LastByteAcked <= AdvertisedWindow
• EffectiveWindow = AdvertisedWindow – (BytesInFlight)
• LastByteWritten – LastByteAcked <= MaxSendBuffer

Useful Sliding Window
Terminology:

RFC 9293, Sec 3.3.1

Flow control: receiver

• Can accept data if space in window

• Available window =
 BufferSize– ((NextByteExpected-1) - LastByteRead

• On receiving segment for byte S
– if s is outside window, ignore packet
– if s == NextByteExpected:

• Deliver to application (Update LastByteReceived)
• If next segment was early arrival, deliver it too

– If s > NextByteExpected, but within window
• Queue as early arrival

• Send ACK for highest contiguous byte received, available window

Flow control: receiver

• Can accept data if space in window

• Available window =
 BufferSize– ((NextByteExpected-1) - LastByteRead

• On receiving segment for byte S
– if s is outside window, ignore packet
– if s == NextByteExpected:

• Deliver to application (Update LastByteReceived)
• If next segment was early arrival, deliver it too

– If s > NextByteExpected, but within window
• Queue as early arrival

• Send ACK for highest contiguous byte received, available window

Useful Sliding Window
Terminology:

RFC 9293, Sec 3.3.1

Flow Control

• Advertised window can fall to 0
– How?

– Sender eventually stops sending, blocks application

• Resolution: zero window probing: sender sends 1-byte
segments until window comes back > 0

Unfilled buffer

Data received,but not acknowledged

Data receive
d, acknowledged

and delive
red to applica

tion

Sequence numbers
(Circumference = 0 to 2^32 slots)

Data received, acknowledged,
but not yet delivered to application

Initial
sequence
number

Receiver's window
(Allocation buffer)
Up to 2^16-1 slots

Window
shifts

rw
nd advertisem

ent

Some Visualizations

• Normal conditions: https://www.youtube.com/watch?
v=zY3Sxvj8kZA

• With packet loss: https://www.youtube.com/watch?
v=lk27yiITOvU

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU
https://www.youtube.com/watch?v=lk27yiITOvU

How do ACKs work?

• ACK contains next expected sequence number

• If one segment is missed but new ones received, send duplicate
ACK

• Retransmit when:
– Receive timeout (RTO) expires

– Possibly other conditions, for certain TCP variants (eg. 3 dup ACKs)

• How to set RTO?

When to time out?

Should expect an ACK within one Round Trip Time (RTT)

• Problem: RTT can be highly variable

• Strategy: expected RTT based on ACKs received
– Use exponentially weighted moving average (EWMA)

– RFC793 version (“smoothed RTT”):

RFC793, Sec 3.7

When to time out?

Should expect an ACK within one Round Trip Time (RTT)

• Problem: RTT can be highly variable

• Strategy: expected RTT based on ACKs received
– Use exponentially weighted moving average (EWMA)

– RFC793 version (“smoothed RTT”):

SRTT = (⍺ * SRTT) + (1 - ⍺)* RTTMeasured

RTO = max(RTOMin, min(β * SRTT, RTOMax))

⍺ = “Smoothing factor”: .8-.9

β = “Delay variance factor”: 1.3—2.0

RFC793, Sec 3.7

This is only the beginning…

• Problem 1: what if segment is a retransmission?

This is only the beginning…

• Problem 1: what if segment is a retransmission?
– Solution: don’t update RTT if segment was retransmitted

