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Administrivia

• IP project grading:  happening now!  Sign up for a 
meeting if you haven’t already 

• TCP assignment:  out now—start early!   
– Gearup I:  Thursday 10/26 5-7pm 

–Milestone 1:  schedule meeting on/before Thursday, November 
2
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TCP – Transmission Control Protocol
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TCP – Transmission Control Protocol

TCP provides a “reliable, connection oriented, full duplex ordered 
byte stream”
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Important Header Fields:  Flags

• SYN: establishes connection (“synchronize”) 

• ACK: this segment ACKs some data (all packets except first) 

• FIN: close connection (gracefully) 

• RST: reset connection (used for errors) 

• PSH: push data to the application immediately 

• URG: whether there is urgent data 



Less important header fields

• Checksum:   Very weak, like IP 
– Has weird semantics (”pseudo header”), more on this later… 

• Data Offset: used to indicate TCP options (mostly unused) 

• Urgent Pointer



Establishing a Connection

• Three-way handshake 
– Two sides agree on respective initial sequence nums 

• If no one is listening on port: OS may send RST 

• If server is overloaded: ignore SYN 

• If no SYN-ACK: retry, timeout



Establishing a Connection

• Three-way handshake 
– Two sides agree on respective initial sequence nums 

• If no one is listening on port: OS may send RST 

• If server is overloaded: ignore SYN 

• If no SYN-ACK: retry, timeout

listen(),
accept()

accept()
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TCP State Diagram
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We are now here
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State for a TCP connection kept in Transmission Control Buffer (TCB) 

• Keeps initial sequence numbers, connection state, send/recv buffers, 
status of unACK’d segments, … 

When to allocate?
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State for a TCP connection kept in Transmission Control Buffer (TCB)

• Keeps initial sequence numbers, connection state, send/recv buffers, 
status of unACK’d segments, …

When to allocate?
– Server:  listening on a connection*

– Client:  Initiating a connection (sending a SYN)

– Server:  accepting a new connection (receiving SYN)

⇒When to deallocate?  

UNTIL ALL DATA HAS BEEN
ACK'D CLOSE PROCESS IS DONE



State for a TCP connection kept in Transmission Control Buffer (TCB)

• Keeps initial sequence numbers, connection state, send/recv buffers, 
status of unACK’d segments, …

When to allocate?
– Server:  listening on a connection*

– Client:  Initiating a connection (sending a SYN)

– Server:  accepting a new connection (receiving SYN)

When to deallocate?  
Only after connection termination is fully completed (CLOSED state) 
=> If no state, can’t meaningfully respond to packet!



RFC 9293, 
Sec 3.3.2



Recall:   the socket table

• Each connection has an associated TCB in the kernel 

• Depending on socket type, socket contains TCB

deemer@vesta ~ % netstat -anl      
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)    
tcp4       0      0  172.17.48.121.56915    192.168.1.58.7000      SYN_SENT   
tcp4       0      0  172.17.48.121.56908    142.250.80.35.443      ESTABLISHED
tcp4       0      0  172.17.48.121.56887    13.225.231.50.80       ESTABLISHED

 . . .
tcp4       0      0  *.22                   *.*                    LISTEN     

⇒For each packet, kernel maps the 5-tuple 
(tcp/udp, local IP, local port, remote IP, remote port)  => socket
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5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn 

– Kernel maintains socket table:  maps (5-tuple) => Socket 

• If a 5-tuple is reused => new ISN, so sequence numbers likely out 
of range from past connection

deemer@vesta ~ % netstat -anl      
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)    

tcp4       0      0  *.22                   *.*                    LISTEN     



 
5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn 

– Kernel maintains socket table:  maps (5-tuple) => Socket 

• If a 5-tuple is reused => new ISN, so sequence numbers likely out 
of range from past connection

deemer@vesta ~ % netstat -anl      
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)    
tcp4       0      0  172.17.48.121:22     192.168.1.58:34452       SYN_SENT   

tcp4       0      0  *.22                   *.*                    LISTEN     



 
5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn 

– Kernel maintains socket table:  maps (5-tuple) => Socket 

• If a 5-tuple is reused => new ISN, so sequence numbers likely out 
of range from past connection

deemer@vesta ~ % netstat -anl      
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)    
tcp4       0      0  172.17.48.121:22     192.168.1.58:34452       SYN_SENT   
tcp4       0      0  172.17.48.121:22     142.250.80.35:11435      ESTABLISHED
tcp4       0      0  172.17.48.121:22     13.225.231.50:12345      ESTABLISHED

 . . .
tcp4       0      0  *.22                   *.*                    LISTEN     



Two “types” of sockets: 

• “Normal” sockets 

• Listen sockets

deemer@vesta ~ % netstat -anl      
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)    
tcp4       0      0  172.17.48.121.56915    192.168.1.58.7000      SYN_SENT   
tcp4       0      0  172.17.48.121.56908    142.250.80.35.443      ESTABLISHED
tcp4       0      0  172.17.48.121.56887    13.225.231.50.80       ESTABLISHED

 . . .
tcp4       0      0  *.22                   *.*                    LISTEN     



“Normal” sockets 
– Connection between two specific endpoints 

– Can send/recv data 

Listen sockets 
– Created by receiver to accept new connections 

– When a client connects, client info gets queued by kernel 

– When server process calls accept(), a new (”normal”) socket is created 
between the server and that client

Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)    
tcp4       0      0  172.17.48.121.56887    13.225.231.50.80       ESTABLISHED

 . . .
tcp4       0      0  *.22                   *.*                    LISTEN     



How to pick the initial sequence number? 

• Protocols based on relative seq. numbers based on starting value 

• Why not start at 0?  

It



How to pick the initial sequence number? 

• Protocols based on relative seq. numbers based on starting value 

• Why not start at 0?   

         => Someone might guess the value!

=> RFC9293, Sec 3.4.1: Procedure for picking ISN, based on timer and 
cryptographic hash 

=> For project, just pick a random integer :) 

IF NUMBER ROREUSED SYSTEM RESTART CANT

TELL IF PACKET IS FOR DIFF CONNECTION



Relative Sequence Numbering



Observation:  new connections use memory!

A A Server
SYN

malloc()

What happens if you send a someone lots of SYN packets?

SYN flood => type of Denial of Service (DOS) attack



DoS, DNS, TLS10/24/23 32

A A Server

SYN flood => type of Denial of Service (DOS) attack 
=> Especially bad when attack traffic comes from multiple sources 
(more on this later)

SYN

malloc()malloc()malloc()malloc()malloc()malloc()malloc()malloc() 
...

SYNSYNSYNSYNSYNSYN



A hacky solution:  SYN cookies

• Don’t allocate TCB on first SYN

• Encode some state inside the initial 
sequence number that goes back to 
the client (in the SYN+ACK)

• What gets encoded?
– Coarse timestamp

– Hash of connection IP/port

– Other stuff (implementation dependent)

• Better ideas?



A hacky solution:  SYN cookies

• Don’t allocate TCB on first SYN

• Encode some state inside the initial 
sequence number that goes back to 
the client (in the SYN+ACK)

• What gets encoded?
– Coarse timestamp

– Hash of connection IP/port

– Other stuff (implementation dependent)

• Better ideas?

Nowadays:  filtering in kernel (or in network) on number of new 
connections per time (esp. on servers) 
= > More on this later!



Sending data
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Sending data:  the basic idea 

• Start:  app calls Send(), loads send buffer

PART OF KB



Sending data:  the basic idea 

• Start:  app calls Send(), loads send buffer 

• TCP stack divides data into packets called segments

D y g
SEGMENTS



Sending data:  the basic idea 

• Start:  app calls Send(), loads send buffer 

• TCP stack divides data into packets called segments 

Key challenges 

• When to send data? 

• How much data to send?

⇒Flow control (now):  don’t send more data than the receiver can handle 
⇒Congestion control (much later) don’t send more data than the network 

can handle

FLOW control

LATENT



Terminology:  MSS

MSS: Maximum segment size 

• Largest segment a TCP can send 

• Can be configurable 

• Nowadays:  sender and receiver negotiate using TCP options  
(out of scope for this class)

LARGEST POSSIBLE SEGMENT



Terminology:  MSS

MSS: Maximum segment size 

• Largest segment a TCP can send 

• Can be configurable 

• Nowadays:  sender and receiver negotiate using TCP options  
(out of scope for this class)

=> For project:  just a fixed value

A 1100 BYTES



Simplest TCP sender:  stop and wait
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Simplest method:  Stop and Wait

Consider sending one packet at a time 
– S: Send packet, wait 

– R: Receive packet, send ACK 

– S: Receive ACK, send next packet  
                     OR 

   No ACK within some time (RTO), timeout and retransmit

COHMEADAPT
TONETWORK

CONDITIONS MOREON THISLATER
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Simplest method:  Stop and Wait

Consider sending one packet at a time 
– S: Send packet, wait 

– R: Receive packet, send ACK 

– S: Receive ACK, send next packet  
                     OR 

   No ACK within some time (RTO), timeout and retransmit
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What can go wrong?



Sequence number example
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HOW WE THINK ABOUT BUFFERING
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WHAT'STHISABOUTA BUFFER
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Better Flow Control:  Sliding window

• Part of TCP specification (even before 1988) 

• Send multiple packets at once, based on a window 

• Receiver uses window header field to tell sender how much space 
it has



TCP and buffering

Recall:  TCP stack responsibilities 

• Sender:  breaking application data into segments  

• Receiver:  receiving segments, reassembling them in order 

• Need to buffer data



Sliding window:  in abstract terms

• Window of size w

• Can send at most w packets before 
waiting for an ACK



Sliding window:  in abstract terms

• Window of size w

• Can send at most w packets before 
waiting for an ACK

• Goal
– Network “pipe” always filled with data

– ACKs come back at rate data is delivered => 
“self-clocking”



Sender example



Receiver example



Flow Control:   Sender

Invariants 
• LastByteSent – LastByteAcked <= AdvertisedWindow 
• EffectiveWindow = AdvertisedWindow – (BytesInFlight) 
• LastByteWritten – LastByteAcked <= MaxSendBuffer



Flow Control:   Sender

Invariants 
• LastByteSent – LastByteAcked <= AdvertisedWindow 
• EffectiveWindow = AdvertisedWindow – (BytesInFlight) 
• LastByteWritten – LastByteAcked <= MaxSendBuffer

Useful Sliding Window 
Terminology:   

RFC 9293, Sec 3.3.1



Flow control:  receiver

• Can accept data if space in window 

• Available window =  
     BufferSize– ((NextByteExpected-1) - LastByteRead 

• On receiving segment for byte S 
– if s is outside window, ignore packet 
– if s == NextByteExpected: 

• Deliver to application (Update LastByteReceived) 
• If next segment was early arrival, deliver it too 

– If s > NextByteExpected, but within window 
• Queue as early arrival 

• Send ACK for highest contiguous byte received, available window



Flow control:  receiver

• Can accept data if space in window 

• Available window =  
     BufferSize– ((NextByteExpected-1) - LastByteRead 

• On receiving segment for byte S 
– if s is outside window, ignore packet 
– if s == NextByteExpected: 

• Deliver to application (Update LastByteReceived) 
• If next segment was early arrival, deliver it too 

– If s > NextByteExpected, but within window 
• Queue as early arrival 

• Send ACK for highest contiguous byte received, available window

Useful Sliding Window 
Terminology:   

RFC 9293, Sec 3.3.1



Flow Control

• Advertised window can fall to 0 
– How? 

– Sender eventually stops sending, blocks application 

• Resolution:  zero window probing:  sender sends 1-byte 
segments until window comes back > 0
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Some Visualizations

• Normal conditions:  https://www.youtube.com/watch?
v=zY3Sxvj8kZA 

• With packet loss:  https://www.youtube.com/watch?
v=lk27yiITOvU 

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU
https://www.youtube.com/watch?v=lk27yiITOvU


How do ACKs work?

• ACK contains next expected sequence number 

• If one segment is missed but new ones received, send duplicate 
ACK 

• Retransmit when: 
– Receive timeout (RTO) expires 

– Possibly other conditions, for certain TCP variants (eg. 3 dup ACKs) 

• How to set RTO?



When to time out?

Should expect an ACK within one Round Trip Time (RTT)

• Problem:  RTT can be highly variable

• Strategy:  expected RTT based on ACKs received
– Use exponentially weighted moving average (EWMA)

– RFC793 version (“smoothed RTT”):

RFC793, Sec 3.7



When to time out?

Should expect an ACK within one Round Trip Time (RTT)

• Problem:  RTT can be highly variable

• Strategy:  expected RTT based on ACKs received
– Use exponentially weighted moving average (EWMA)

– RFC793 version (“smoothed RTT”):

SRTT = (⍺ * SRTT) + (1 - ⍺)* RTTMeasured 

RTO = max(RTOMin, min(β * SRTT, RTOMax))

⍺ = “Smoothing factor”: .8-.9

β = “Delay variance factor”:   1.3—2.0

RFC793, Sec 3.7



This is only the beginning…

• Problem 1:  what if segment is a retransmission?



This is only the beginning…

• Problem 1:  what if segment is a retransmission?
– Solution:  don’t update RTT if segment was retransmitted


