CSCI-1680
Jransport.Layer ||

Data over TCP: Flow Control

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

"Hi, I'd like to hear a TCP joke."

"Hello, would you like to hear a TCP joke?"

"Yes, I'd like to hear a TCP joke."

"OK, I'll tell you a TCP joke."

"Ok, | will hear a TCP joke."

"Are you ready to hear a TCP joke?"

"Yes, | am ready to hear a TCP joke."

"Ok, | am about to send the TCP joke. It will last
10 seconds, it has two characters, it does not
have a setting, it ends with a punchline."

"Ok, | am ready to get your TCP joke that will last
10 seconds, has two characters, does not have
an explicit setting, and ends with a punchline."

"I'm sorry, your connection has timed out. ...
Hello, would you like to hear a TCP joke?"

Administrivia

* |P project grading: happening now! Sign up for a
meeting if you haven't already

« TCP assignment: out now—start early!
— Gearup |: Thursday 10/26 5-7pm C)T 24¢ (76 [0 , ﬂég}

— Milestone 1: schedule meeting on/before Thursday, November
2

TCP = Transmission Control Protocol

Application process m -

oS

TCP

[L:ind buffer [R4 ive buffer

Transmit SEgHiercs

TCP = Transmission Control Protocol

Application process Application process
.]

]
P
b

TCP TC
Send buffer

Transmit segments

TCP provides a “reliable, connection oriented, full duplex ordered
byte stream”

TCP Header

Sequence Number lﬁlﬂ%,J‘IN -~

Data 8|8 [YE
S]EEEIIﬂlw

g I
L Cenye~
— ¢y LI 7 L)
sp-sMl T 7 Qe Ligra”
—~— NE
P e
/,// f/f + ACK
& ey
.—,\\\\ ACK Y11
=
A Yzl = -
— EXTAS | 1ApNED —
— N O oD 10 AR
Yo Al (Thngns (e MMEoy

Important Header Fields: Flags

SYN: establishes connection (“synchronize”)
ACK: this segment ACKs some data (all packets except first)

FIN: close connection (gracefully)

RST: reset connection (used for errors)
PSH: push data to the application immediately
URG: whether there is urgent data

Less important header fields

e Checksum: Very weak, like IP

— Has weird semantics ("pseudo header”), more on this later...

« Data Offset: used to indicate TCP options (mostly unused)

« Urgent Pointer

Establishing a Connection

Active participant Passive participant
(server)

Three-way handshake

— Two sides agree on respective initial sequence nums
If no one is listening on port: OS may send RST
If server is overloaded: ignore SYN
If no SYN-ACK: retry, timeout

Establishing a Connection

Active participant Passive participant
(server)

listen(),
accept()

accept()
returns

Three-way handshake

— Two sides agree on respective initial sequence nums
If no one is listening on port: OS may send RST
If server is overloaded: ignore SYN
If no SYN-ACK: retry, timeout

TCP State Diagram

CONNECT/SYN ‘Step 1 of the 3-way-handshake)

seeeeee e UNUSUAl event
e R T 1 PPm——

CLOSEX-
= gerverisender path LISTEN/- l

A
CLOSE/-

Step 2 of the 3-way-handshake) SYN/SYN+ACK @

A

_RST- : SEND/SYN
SYNfSYN"ACK (simultaneous open}

Data exchange occurs
SYN+ACK/ACK
" ‘Step 3 of the 3-way-handshake)

STATE

CLOSE/FIN FIN/ACK

| Active CLOSEE |Passive CLOSE]

\

CLOSE/FIN

FINJACK
R CLOSING
FINSACKIACK

(Ge back to start)

We are now here

............... » unusual event
—— CleNUrecelver path
— SETVETISENdEr path

Step 2 of the 3-way-handshake) SYN/SYN+ACK

RSTL ? ... SENDISYN

SYN R voesssanbions
RECEIVED e SYNISYN#ACK | (zimultaneous open)

State for a TCP connection kept in Transmission Control Buffer (TCB)

\{

" X .
« Keeps initial sequencé numbers, connection state, send/recv buffers,
status of unACK'd segments, ...

When to allocate? (LISren)
Cpmyn_ - LlISTw /we on copnCTion”
/ ;

CLwr- IMTIAIRG copuetn ow (57W7

- CLIW7= ConveeTt
EA (Acesrr)

Senllanv: AFTen
/—/

State for a TCP connection kept in Transmission Control Buffer (TCB)

 Keeps initial sequence numbers, connection state, send/recv buffers,
status of unACK'd segments, ...

When to allocate?

— Server: listening on a connection*
— Client: Initiating a connection (sending a SYN)

— Server: accepting a new connection (receiving SYN)

[=>When to deallocate? 1

AKD, Coore Proctts L ppuk.

State for a TCP connection kept in Transmission Control Buffer (TCB)

 Keeps initial sequence numbers, connection state, send/recv buffers,
status of unACK'd segments, ...

When to allocate?

— Server: listening on a connection*
— Client: Initiating a connection (sending a SYN)

— Server: accepting a new connection (receiving SYN)

When to deallocate?
Only after connection termination is fully completed (CLOSED state)

=> |f no state, can't meaningfully respond to packet!

This diagram is only a summary and must not be taken as

NOTA BENE:
Many details are not included.

the total specification.

\ active OPEN

\
\
\

\ create TCB

\

N X
\

\

<
~

passive OPEN CLOSE

create TCB delete TCB

rcv RST (note 1)

LISTEN

>

rcv SYN |
I I

snd SYN,ACK / N

rcv SYN

snd SYN, ACK

R e

rcv ACK of SYN \ rcv SYN,ACK

snd ACK

snd FIN

RFC 9293,
Sec 3.3.2

Recall: the socket table

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address
tcp4 0 0 172.17.48.121.56915 192.168.1.58.7000
tcp4 0 0 172.17.48.121.56908 142.250.80.35.443
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80
tcp4 0 0 *.22 * ok

L — A
« Each connection has an associated TCB in'the kernel

« Depending on socket type, socket contains TCB

[

(state) 11;g
SYN SENT
ESTABLISHED 7212

ESTABLISHED 172{3

Llffff;} fzzg
AWE

= For each packet, kernel maps the 5-tuple
(tcp/udp, local IP, local port, remote [P, remote port) => socket

5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn

— Kernel maintains socket table: maps (5-tuple) => Socket

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcpd 0 0 *.22 * LISTEN

* If a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn

— Kernel maintains socket table: maps (5-tuple) => Socket

deemerf@vesta ~ % netstat -anl
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4d 0 0 172.17.48.121:22 192.168.1.58:34452 SYN SENT
tcp4 0 0 =*.22 k% LISTEN

* If a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn

— Kernel maintains socket table: maps (5-tuple) => Socket

deemerf@vesta ~ % netstat -anl
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4d 0 0 172.17.48.121:22 192.168.1.58:34452 SYN SENT
tcp4 0 0 172.17.48.121:22 142.250.80.35:11435 ESTABLISHED
tcp4 0 0 172.17.48.121:22 13.225.231.50:12345 ESTABLISHED
tcp4 0 0 =*.22 k% LISTEN

* If a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 172.17.48.121.56915 192.168.1.58.7000 SYN SENT
tcp4 0 0 172.17.48.121.56908 142.250.80.35.443 ESTABLISHED
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80 ESTABLISHED
tcp4 0 0 *.22 * ok LISTEN

Two "types” of sockets:

e "Normal” sockets

e Listen sockets

Proto Recv-Q Send-Q Local Address Foreign Address
tcp4 0 0 172.17.48.121.56887 13.225.231.50.80

tcp4 0 0 *.22 *,*

“"Normal” sockets

— Connection between two specific endpoints

— Can send/recv data

Listen sockets

— Created by receiver to accept new connections

— When a client connects, client info gets queued by kernel

(state)
ESTABLISHED

LISTEN

— When server process calls accept(), a new ("normal”) socket is created

between the server and that client

How to pick the initial sequence number?

* Protocols based on relative seq. numbers based on starting value
« Why not start at 0? C 74' ¥

\§

-

How to pick the initial sequence number?

* Protocols based on relative seq. numbers based on starting value
« Why not start at 07
=> Someone might guess the value!

—"7 (F VRPN fe¥ piused (Syrrm /2/4774/2-7') y CA}c}T
W (P Pk 1 Rt DFF COAWELT 1P

=> RFC9293, Sec 3.4.1: Procedure for picking ISN, based on timer and
cryptographic hash

=> For project, just pick a random integer :)

Relative Sequence Numbering

Ethernet II, Src: Apple_cd:6a:23 (c8:89:f3:cd:6a:23), Dst: IntelCor_63:c4:45 (0
Internet Protocol Version 4, Src: 172.17.48.156, Dst: 172.17.48.22
Transmission Control Protocol, Src Port: 49719, Dst Port: 22, Seq: 0, Len: @

Source Port: 49719

Destination Port: 22

[Stream index: 8]

[Conversation completeness: Complete, WITH_DATA (31)]

[TCP Segment Len: @]

Sequence Number: 0 (relative sequence number)

Sequence Number (raw): 2000828645

[Next Sequence Number: 1 (relative sequence number)]

Acknowledgment Number: @

Acknowledgment number (raw): @

1011 = Headen Length: 44 bytes (11)

Flags: 0x002 (SYN

0020

00 1b 21 63 c4 45 c8 89
00 40 00 00 40 00 40 06
30 16 c2 37 00 16 77 42
ff ff b7 2a 00 00 02 04
08 0a 0d c7 46 c0 00 00

f3 cd 6a
81 e3 ac
38 e5 00
05 b4 01
00 00 04

23 08 00 45 00
11 30 9c ac 11
00 00 00 bo 02
03 03 06 01 01
02 00 00

Observation: new connections use memory!

SYN

malloc()

What happens if you send a someone lots of SYN packets?

[SYN flood => type of Denial of Service (DOS) attack }

SYN flood => type of Denial of Service (DOS) attack
=> Especially bad when attack traffic comes from multiple sources
(more on this later)

10/24/23 DoS, DNS, TLS 32

A hacky solution: SYN cookies

Active participant

Don't allocate TCB on first SYN

Encode some state inside the initial

seguence number that goes back to
the client (in the SYN+ACK)

What gets encoded?

— Coarse timestamp
— Hash of connection IP/port

— Other stuff (implementation dependent)
Better ideas?

Passive participant
(server)

A hacky solution: SYN cookies

Active participant Passive participant

(server)

Don't allocate TCB on first SYN

Encode some state inside the initial

seguence number that goes back to
the client (in the SYN+ACK)

What gets encoded?

— Coarse timestamp

— Hash of connection IP/port

Nowadays: filtering in kernel (or in network) on number of new
connections per time (esp. on servers)
= > More on this later!

Sending data

Data exchange occurs

‘Step 3 of the 3-way-handshake)

LT RETINCAIT | 1=

NE0V] (/7

/ /R

EXfPror MEXT

W T~ JOLCl Ve

N
—~ X ¢

EEMEIT, JEmE)T

| |
"I AE o

Ct YW lerio L

A

AL f\

A Klow (WEN~ Crofhta

Sending data: the basic idea

o Start: app calls Send(), loads send bufter
> T o7 120

Sending data: the basic idea

« Start: app calls Send(), loads send buffer

« TCP stack divides data into packets called segments

colp

Sending data: the basic idea

« Start: app calls Send(), loads send buffer

« TCP stack divides data into packets called segments

V4
Key challenges /F(ou) C,o/wmw>
« When to send data?
e How much data to send? M/;;DZDZV)/)

= Flow control (now): don’t send more data than the receiver can handle
=> Cdngestion cﬁtrol (much later) dont send more data than the network
can handle < LATEI)

Terminology: MSS

(Apeety Pocl 12LE (romepm

MSS: Maximum segment size

« Largest segment a TCP can send

« Can be configurable

« Nowadays: sender and receiver negotiate using TCP options
(out of scope for this class)

Terminology: MSS

MSS: Maximum segment size

« Largest segment a TCP can send

« Can be configurable

« Nowadays: sender and receiver negotiate using TCP options
(out of scope for this class)

/ 7¢ /900 ﬂm‘«’s)

Simplest TCP sender: stop and wait

St o0 (o 4 whir
(lpepe CASE)
/5)[_'WDEK <@75C(5/V5'& *

W e
—

Ak Sed=/, Mk
@ EG=I ALk =)

G Secl Ak
: &) se6=f, Ack *]

D s A
— SO SewD SEGHELT, lop!T Fore
Ak e O0)
— R o7 For. Stopewy Seww ALK
(cx. Q@
KEY r/E1DC (Por Sowe A7)
= S&&. Steqpwr ST AT PoSirion X
S ENTA STEE
—Ack: ! AVE e 75 Brre (Y)), [Expecr
Bore Y pNEAT

TLWDs . Nowd Alny BYTES 2eFT mI RS
el T BUTFE roK€ onv e S ool)

Simplest method: Stop and Wait

Consider sending one packet at a time

— S: Send packet, wait
— R: Receive packet, send ACK

— S: Receive ACK, send next packet
OR

No ACK within some time (RTO), timeout and retransmit

LI 77mE ADAPIS 10 WETORE
CopWoircons , AOUE o WY LATEE .

N L
N AN ¥ LT TN IR
X / T R 580y
S) RN N
N &% %3 §s
N "\ i} g) S :
N I \ \ 3 A3 &4 ES
Mw. \ - T r .\ L\ [
N Y AT
X — + 2\ N W
S Nl \ .r,w /% \ /,4/ \J
/.W W\ — />\ = qt\ / j
~ R / Aﬂ \ SN / \
S AN AN A Y
s F /vy *E
3 N . 1 X
R] B irw >
U2 N \
3 — 3 3
/V/ 22’ N SN
=%

Simplest method: Stop and Wait

Consider sending one packet at a time
— S: Send packet, wait
— R: Receive packet, send ACK

— S: Receive ACK, send next packet
OR

No ACK within some time (RTO), timeout and retransmit

C 1
2 i
~—__ Dpm
_\\ \\ § ,DLV oWt
, o~ (LT)
= Pc;/’)l//} /C[,/g;(//
e (PLOIG)
~— s A MY OVE T
\\\
D
s //
N e |
&« |

B , .

/ T .
%
yd

, K/)///
0 KE) /VR
\ Lot T 7Y
\ X
\g DUP - PACRST,
PN S
ALK

What can go wrong?

Sender Receiver Sender Receiver

Receiver Data[N]

Timeout Data[N] Timeout

Expecting
ACK[N+1]

‘M

Lost ACK

Lost Data

Late ACK

Sequence number example

' A sends
| SYN, seq=0

ACK, seq=1, ack=1 (ACK of SYN)
“abc”, seq=1, ack=I

“defg”, seq=4, ack=1

| “foobar”, seq=8, ack=1

' seq=14, ack=6, “goodbye”
seq=21, ack=6, FIN

seq=22. ack=7 :: ACK of FIN

' B sends

seq=1, ack=8

| seq=1, ack=14

seq=6, ack=21
seq=06, ack=22

| seq=6, ack=22,

| SYN+ACK, seq=0), ack=1 (expecting)

' ACK, seq=1, ack=4

, “hello™

;2 ACK of “goodbye”, crossing packets
;2 ACK of FIN
FIN

SHF AWM -
M

g \\?&ﬁ% mxl
| / %

v

T

v NAVR Mont féc./m:;
Iwouwﬁgﬂy// AT ave 77 j/pm
Y //;/LE Lttaprd ({40
“ . Lhgrtanurt
ClnL b/ggﬁ c.m/ o
— KL T
5
y: ?ép‘:ﬁ A 9/2 A;/zﬁm,
3 7& VLD QU A
Lo Res e

N,
DL, [FLow Corss
T Coupen

L TNWA — Asovr BUEFE

)

POES / C//Z-:%A/& BVFFEL

(,__——\)"\
| X FCP LAk
7 0ADC 47 Db
oUN, VOLITE 70 S0
N
77 | y
IV =~ ELIGKT

Lewppe Af Jin

PECE YLD,

v Burkon. (Ciecopn BUEFbL)

LAy ARPIyALS

—_—

T\ N e pesar

NN\ oo s

A JFvFFne (Comm.Red

/)

JCECE LY

2)f’ﬁéﬁm?’/'/ \ \ Z)/Hq\)Kﬂf(/
/\ 0

NS

MAS Atovpy APL

LOAT ' Tt Agovr A BVF)‘A:IZ?

jZP Vel4 (ENANG Qﬂ//éyﬂ(/ LEVEL. DVenyyry
Sewn gupFP= CIRETLR)

| w/&/ /
/’ \WP CTACk

%
AP APk D DECIZyr Now)

70 Bt Lo 70
CONW (it TE SavD oy
//2/:%01@ DA
OGrct KECEWEr_
Ackl 77

Precy .)ZI/FFM/ [Cincue)

IO Jie

+c P SThek /10@; \)Cowpo
JOTA AL 78 R) R rAp [AT
Hle& 7 BE: pU7T oF OnDER- .. [Totr Burrs
OLE OO THL 4/(72%/,/ [(ﬂc’ﬂaVWé’ /7

N~
—

C

Y2

&

AD

K

<

ANLAO

e

Ya’

1 Ik

/VLL

Better Flow Control: Sliding window

« Part of TCP specification (even before 1988)
« Send multiple packets at once, based on a window

* Receiver uses window header field to tell sender how much space
it has

TCP and buffering

Recall: TCP stack responsibilities
« Sender: breaking application data into segments

« Receiver: receiving segments, reassembling them in order

 Need to buffer data

Sliding window: in abstract terms

e« Window of size w

« Can send at most w packets before
waiting for an ACK

Sliding window: in abstract terms

e« Window of size w

« Can send at most w packets before
waiting for an ACK

« Goal
— Network “pipe” always filled with data

— ACKs come back at rate data is delivered =>
“self-clocking”

Sender example

Receiver example

Flow Control: Sender

Sending application

Invariants

« LastByteSent — LastByteAcked <= AdvertisedWindow

« EffectiveWindow = AdvertisedWindow — (BytesInFlight)
« LastByteWritten — LastByteAcked <= MaxSendBuffer

Flow Control: Sender

Sending application

LastByteSent

Invariants Useful Sliding Window
« LastByteSent — LastByteAcked <= AdvertisedWindow Terminology:
« EffectiveWindow = AdvertisedWindow — (BytesInFlight) RFC 9293, Sec 3.3.1

« LastByteWritten — LastByteAcked <= MaxSendBuffer

Flow control: receiver

 Can accept data if space in window

« Available window =
BufferSize— ((NextByteExpected-1) - LastByteRead

Receiving application

« On receiving segment for byte S LastByteRead
— if s is outside window, ignore packet

— if s == NextByteExpected:

« Deliver to application (Update LastByteReceived) NextByteExpected LastByteRcvd

« If next segment was early arrival, deliver it too b

— If s > NextByteExpected, but within window

+ Queue as early arrival

« Send ACK for highest contiguous byte received, available window

Flow control: receiver [UsefulSliding Window

Terminology:
RFC 9293, Sec 3.3.1

 Can accept data if space in window

« Available window =
BufferSize— ((NextByteExpected-1) - LastByteRead

Receiving application

« On receiving segment for byte S LastByteRead
— if s is outside window, ignore packet

— if s == NextByteExpected:

« Deliver to application (Update LastByteReceived) NextByteExpected LastByteRcvd

« If next segment was early arrival, deliver it too b

— If s > NextByteExpected, but within window

+ Queue as early arrival

« Send ACK for highest contiguous byte received, available window

Flow Control

o Advertised window can fall to O
— How?

— Sender eventually stops sending, blocks application

* Resolution: zero window probing: sender sends 1-byte
segments until window comes back > 0

Initial
sequence

Sequence numbers
(Circumference = 0 to 2”32 slots)

Data received, acknowledged,
but not yet delivered to application

Window
shifts

Receiver's window
(Allocation buffer)
Up to 2*16-1 slots

Some Visualizations

« Normal conditions: https://www.youtube.com/watch?
v=2Y3Sxvj8kZA

« With packet loss: https://www.youtube.com/watch?
v=Ik27yilTOvVU

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU
https://www.youtube.com/watch?v=lk27yiITOvU

How do ACKs work?

ACK contains next expected sequence number

If one segment is missed but new ones received, send duplicate
ACK

Retransmit when:
— Receive timeout (RTO) expires

— Possibly other conditions, for certain TCP variants (eg. 3 dup ACKs)

How to set RTO?

When to time out?

[RFC793, Sec 3.7 }
Should expect an ACK within one Round Trip Time (RTT)

e Problem: RTT can be highly variable

« Strategy: expected RTT based on ACKs received

— Use exponentially weighted moving average (EWMA)
— RFC793 version (“smoothed RTT"):

When to time out?

[RFC793, Sec 3.7 }
Should expect an ACK within one Round Trip Time (RTT)

e Problem: RTT can be highly variable

« Strategy: expected RTT based on ACKs received

— Use exponentially weighted moving average (EWMA)

— RFC793 version (“smoothed RTT"):
SRTT = (a * SRTT) + (1 - &)* RTT},..c0red
RTO = max(RTO,,. ., min(B * SRTT, RTO,,_)

a = “Smoothing factor”: .8-.9

B = "Delay variance factor”: 1.3—2.0

This is only the beginning...

« Problem 1: what if segment is a retransmission?

This is only the beginning...

« Problem 1: what if segment is a retransmission?

— Solution: don't update RTT if segment was retransmitted

