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Administrivia

• IP project grading:  happening now!  Sign up for a 
meeting if you haven’t already

• TCP assignment:  out now—start early!  
– Gearup I:  Thursday 10/26 5-7pm
–Milestone 1:  schedule meeting on/before Thursday, 

November 2



TCP:  The story so far

Last lecture
• Sockets
• TCP:  connection setup

Today
• Basic flow control:  How to send data
• Connection teardown



TCP – Transmission Control Protocol

TCP provides a “reliable, connection oriented, full duplex ordered 
byte stream”
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TCP Header



Important Header Fields

• Ports: multiplexing
• Sequence number
– Where segment is in the stream (in bytes)

• Acknowledgment Number
– Next expected sequence number

• Window
– How much data you’re willing to receive

• Flags…



Important Header Fields:  Flags

• SYN: establishes connection (“synchronize”)
• ACK: this segment ACKs some data (all packets except first)
• FIN: close connection (gracefully)

• RST: reset connection (used for errors)
• PSH: push data to the application immediately
• URG: whether there is urgent data 



Less important header fields

• Checksum:   Very weak, like IP
– Has weird semantics (”pseudo header”), more on this later…

• Data Offset: used to indicate TCP options (mostly unused)
• Urgent Pointer



Establishing a Connection

• Three-way handshake
– Two sides agree on respective initial sequence nums

• If no one is listening on port: OS may send RST
• If server is overloaded: ignore SYN
• If no SYN-ACK: retry, timeout

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

listen(),
accept()

accept()
returns

connect()



Summary of TCP States
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TCP State Diagram
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State for a TCP connection kept in Transmission Control Buffer (TCB)
• Keeps initial sequence numbers, connection state, send/recv 

buffers, status of unACK’d segments, …

When to allocate?
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State for a TCP connection kept in Transmission Control Buffer (TCB)
• Keeps initial sequence numbers, connection state, send/recv 

buffers, status of unACK’d segments, …

When to allocate?
– Server:  listening on a connection*
– Client:  Initiating a connection (sending a SYN)
– Server:  accepting a new connection (receiving SYN)

When to deallocate? 
Only after connection termination is fully completed (CLOSED state) 
=> If no state, can’t meaningfully respond to packet!



RFC 9293, 
Sec 3.3.2



Recall:   the socket table

• Each connection has an associated TCB in the kernel
• Depending on socket type, socket contains TCB

deemer@vesta ~ % netstat -anl   
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address      Foreign Address     (state)  
tcp4    0    0  172.17.48.121.56915   192.168.1.58.7000    SYN_SENT  
tcp4    0    0  172.17.48.121.56908   142.250.80.35.443    ESTABLISHED
tcp4    0    0  172.17.48.121.56887   13.225.231.50.80    ESTABLISHED

 . . .
tcp4    0    0  *.22          *.*           LISTEN   



Recall:   the socket table

• Each connection has an associated TCB in the kernel
• Depending on socket type, socket contains TCB

deemer@vesta ~ % netstat -anl   
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address      Foreign Address     (state)  
tcp4    0    0  172.17.48.121.56915   192.168.1.58.7000    SYN_SENT  
tcp4    0    0  172.17.48.121.56908   142.250.80.35.443    ESTABLISHED
tcp4    0    0  172.17.48.121.56887   13.225.231.50.80    ESTABLISHED

 . . .
tcp4    0    0  *.22          *.*           LISTEN   

ÞFor each packet, kernel maps the 5-tuple
(tcp/udp, local IP, local port, remote IP, remote port)  => socket



5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn
– Kernel maintains socket table:  maps (5-tuple) => Socket

• If a 5-tuple is reused => new ISN, so sequence numbers likely out 
of range from past connection

deemer@vesta ~ % netstat -anl   
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address      Foreign Address     (state)  

tcp4    0    0  *.22          *.*           LISTEN   



5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn
– Kernel maintains socket table:  maps (5-tuple) => Socket

• If a 5-tuple is reused => new ISN, so sequence numbers likely out 
of range from past connection

deemer@vesta ~ % netstat -anl   
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address      Foreign Address     (state)  
tcp4    0    0  172.17.48.121:22    192.168.1.58:34452     SYN_SENT  

tcp4    0    0  *.22          *.*           LISTEN   



5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn
– Kernel maintains socket table:  maps (5-tuple) => Socket

• If a 5-tuple is reused => new ISN, so sequence numbers likely out 
of range from past connection

deemer@vesta ~ % netstat -anl   
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address      Foreign Address     (state)  
tcp4    0    0  172.17.48.121:22    192.168.1.58:34452     SYN_SENT  
tcp4    0    0  172.17.48.121:22    142.250.80.35:11435    ESTABLISHED
tcp4    0    0  172.17.48.121:22    13.225.231.50:12345    ESTABLISHED

 . . .
tcp4    0    0  *.22          *.*           LISTEN   



Two “types” of sockets:
• “Normal” sockets

• Listen sockets

deemer@vesta ~ % netstat -anl   
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address      Foreign Address     (state)  
tcp4    0    0  172.17.48.121.56915   192.168.1.58.7000    SYN_SENT  
tcp4    0    0  172.17.48.121.56908   142.250.80.35.443    ESTABLISHED
tcp4    0    0  172.17.48.121.56887   13.225.231.50.80    ESTABLISHED

 . . .
tcp4    0    0  *.22          *.*           LISTEN   



“Normal” sockets
– Connection between two specific endpoints
– Can send/recv data

Listen sockets
– Created by receiver to accept new connections
– When a client connects, client info gets queued by kernel
– When server process calls accept(), a new (”normal”) socket is created 

between the server and that client

Proto Recv-Q Send-Q  Local Address      Foreign Address     (state)  
tcp4    0    0  172.17.48.121.56887   13.225.231.50.80    ESTABLISHED

 . . .
tcp4    0    0  *.22          *.*           LISTEN   



How to pick the initial sequence number?
• Protocols based on relative seq. numbers based on starting value
• Why not start at 0?  
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How to pick the initial sequence number?
• Protocols based on relative seq. numbers based on starting value
• Why not start at 0?  
         => Someone might guess the value!

=> RFC9293, Sec 3.4.1: Procedure for picking ISN, based on timer and 
cryptographic hash

=> For project, just pick a random integer :)



Relative Sequence Numbering



Observation:  new connections use memory!

A A Server
SYN

malloc()



Observation:  new connections use memory!

A A Server
SYN

malloc()

What happens if you send a someone lots of SYN packets?



Observation:  new connections use memory!

A A Server
SYN

malloc()

What happens if you send a someone lots of SYN packets?

SYN flood => type of Denial of Service (DOS) attack



10/24/23 DoS, DNS, TLS 33

A A Server

SYN flood => type of Denial of Service (DOS) attack
=> Especially bad when attack traffic comes from multiple sources 
(more on this later)

SYN

malloc()
malloc()

malloc()
malloc()

malloc()
malloc()

malloc()
malloc()
...

SYN
SYN

SYN
SYN

SYN
SYN



A hacky solution:  SYN cookies

• Don’t allocate TCB on first SYN
• Encode some state inside the initial 

sequence number that goes back to 
the client (in the SYN+ACK)

• What gets encoded?
– Coarse timestamp
– Hash of connection IP/port
– Other stuff (implementation dependent)

• Better ideas?

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1



A hacky solution:  SYN cookies

• Don’t allocate TCB on first SYN
• Encode some state inside the initial 

sequence number that goes back to 
the client (in the SYN+ACK)

• What gets encoded?
– Coarse timestamp
– Hash of connection IP/port
– Other stuff (implementation dependent)

• Better ideas?

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

Nowadays:  filtering in kernel (or in network) on number of new 
connections per time (esp. on servers)
= > More on this later!
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Sending data

Flow control:  don’t send more data than the receiver can handle
• TCP stack divides data into packets called segments

Questions
• When to send data?
• How much data to send?
– Data is sent in MSS-sized segments

• MSS = Maximum Segment Size (TCP packet that can fit in an IP packet)
• Chosen to avoid fragmentation



Sending data:  the basic idea
• Start:  app calls Send(), loads send buffer
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Sending data:  the basic idea
• Start:  app calls Send(), loads send buffer
• TCP stack divides data into packets called segments

Key challenges
• When to send data?
• How much data to send?

ÞFlow control (now):  don’t send more data than the receiver can handle
ÞCongestion control (much later) don’t send more data than the network 

can handle



Terminology:  MSS

MSS: Maximum segment size
• Largest segment a TCP can send
• Can be configurable

• Nowadays:  sender and receiver negotiate using TCP options 
(out of scope for this class)

=> For project:  just a fixed value



Simplest TCP sender:  stop and wait



Simplest method:  Stop and Wait

Consider sending one packet at a time
– S: Send packet, wait
– R: Receive packet, send ACK
– S: Receive ACK, send next packet 

                     OR
   No ACK within some time (RTO), timeout and retransmit



What can go wrong?

An Introduction to Computer Networks, Release 2.0.6

Sender SenderReceiver Receiver

Timeout

Lost Data Lost ACK

Data[N]

Data[N]

ACK[N]

Data[N]

ACK[N]

Timeout Data[N]

ACK[N]

The right half of the diagram, by comparison, illustrates the case of a lost ACK. The receiver has received
a duplicate Data[N]. We have assumed here that the receiver has implemented a retransmit-on-duplicate
strategy, and so its response upon receipt of the duplicate Data[N] is to retransmit ACK[N].

As a final example, note that it is possible for ACK[N] to have been delayed (or, similarly, for the first
Data[N] to have been delayed) longer than the timeout interval. Not every packet that times out is actually
lost!

Sender Receiver

Timeout

Late ACK

Data[N]

Data[N]
ACK[N]

ACK[N]

Data[N+1]

Expecting
ACK[N+1]

In this case we see that, after sending Data[N], receiving a delayed ACK[N] (rather than the expected
ACK[N+1]) must be considered a normal event.

In principle, either side can implement retransmit-on-timeout if nothing is received. Either side can also
implement retransmit-on-duplicate; this was done by the receiver in the second example above but not by
the sender in the third example (the sender received a second ACK[N] but did not retransmit Data[N+1]).

8.1 Building Reliable Transport: Stop-and-Wait 175

An Introduction to Computer Networks, Release 2.0.6

Sender SenderReceiver Receiver

Timeout

Lost Data Lost ACK

Data[N]

Data[N]

ACK[N]

Data[N]

ACK[N]

Timeout Data[N]

ACK[N]

The right half of the diagram, by comparison, illustrates the case of a lost ACK. The receiver has received
a duplicate Data[N]. We have assumed here that the receiver has implemented a retransmit-on-duplicate
strategy, and so its response upon receipt of the duplicate Data[N] is to retransmit ACK[N].

As a final example, note that it is possible for ACK[N] to have been delayed (or, similarly, for the first
Data[N] to have been delayed) longer than the timeout interval. Not every packet that times out is actually
lost!

Sender Receiver

Timeout

Late ACK

Data[N]

Data[N]
ACK[N]

ACK[N]

Data[N+1]

Expecting
ACK[N+1]

In this case we see that, after sending Data[N], receiving a delayed ACK[N] (rather than the expected
ACK[N+1]) must be considered a normal event.

In principle, either side can implement retransmit-on-timeout if nothing is received. Either side can also
implement retransmit-on-duplicate; this was done by the receiver in the second example above but not by
the sender in the third example (the sender received a second ACK[N] but did not retransmit Data[N+1]).

8.1 Building Reliable Transport: Stop-and-Wait 175

An Introduction to Computer Networks, Release 2.0.6

Sender SenderReceiver Receiver

Timeout

Lost Data Lost ACK

Data[N]

Data[N]

ACK[N]

Data[N]

ACK[N]

Timeout Data[N]

ACK[N]

The right half of the diagram, by comparison, illustrates the case of a lost ACK. The receiver has received
a duplicate Data[N]. We have assumed here that the receiver has implemented a retransmit-on-duplicate
strategy, and so its response upon receipt of the duplicate Data[N] is to retransmit ACK[N].

As a final example, note that it is possible for ACK[N] to have been delayed (or, similarly, for the first
Data[N] to have been delayed) longer than the timeout interval. Not every packet that times out is actually
lost!

Sender Receiver

Timeout

Late ACK

Data[N]

Data[N]
ACK[N]

ACK[N]

Data[N+1]

Expecting
ACK[N+1]

In this case we see that, after sending Data[N], receiving a delayed ACK[N] (rather than the expected
ACK[N+1]) must be considered a normal event.

In principle, either side can implement retransmit-on-timeout if nothing is received. Either side can also
implement retransmit-on-duplicate; this was done by the receiver in the second example above but not by
the sender in the third example (the sender received a second ACK[N] but did not retransmit Data[N+1]).

8.1 Building Reliable Transport: Stop-and-Wait 175



Sequence number example

An Introduction to Computer Networks, Release 2.0.6

A sends B sends
1 SYN, seq=0
2 SYN+ACK, seq=0, ack=1 (expecting)
3 ACK, seq=1, ack=1 (ACK of SYN)
4 “abc”, seq=1, ack=1
5 ACK, seq=1, ack=4
6 “defg”, seq=4, ack=1
7 seq=1, ack=8
8 “foobar”, seq=8, ack=1
9 seq=1, ack=14, “hello”
10 seq=14, ack=6, “goodbye”
11,12 seq=21, ack=6, FIN seq=6, ack=21 ;; ACK of “goodbye”, crossing packets
13 seq=6, ack=22 ;; ACK of FIN
14 seq=6, ack=22, FIN
15 seq=22, ack=7 ;; ACK of FIN

(We will see below that this table is slightly idealized, in that real sequence numbers do not start at 0.)

Here is the ladder diagram corresponding to this connection:

A B

SYN

SYN+ACK

ACK
“abc”

ACK
“defg”

ACK
“foobar”

“hello”
“goodbye”

FIN

ACK
FIN

ACK

ACK Crossing packets

In terms of the sequence and acknowledgment numbers, SYNs count as 1 byte, as do FINs. Thus, the SYN
counts as sequence number 0, and the first byte of data (the “a” of “abc”) counts as sequence number 1.
Similarly, the ack=21 sent by the B side is the acknowledgment of “goodbye”, while the ack=22 is the
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388 17 TCP Transport Basics



Problems?



Can we do better?



Better Flow Control:  Sliding window

• Part of TCP specification (even before 1988)
• Send multiple packets at once, based on a window
• Receiver uses window header field to tell sender how much space 

it has



TCP and buffering

Recall:  TCP stack responsibilities
• Sender:  breaking application data into segments 
• Receiver:  receiving segments, reassembling them in order

• Need to buffer data



Sliding window:  in abstract terms

• Window of size w
• Can send at most w packets before 

waiting for an ACK
• Goal
– Network “pipe” always filled with data
– ACKs come back at rate data is delivered 

=> “self-clocking”



Sender example



Receiver example



Flow Control:   Sender

Invariants
• LastByteSent – LastByteAcked <= AdvertisedWindow
• EffectiveWindow = AdvertisedWindow – (BytesInFlight)
• LastByteWritten – LastByteAcked <= MaxSendBuffer

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)

Useful Sliding Window 
Terminology:  

RFC 9293, Sec 3.3.1



Flow control:  receiver

• Can accept data if space in window
• Available window = 

     BufferSize– ((NextByteExpected-1) - LastByteRead

• On receiving segment for byte S
– if s is outside window, ignore packet
– if s == NextByteExpected:

• Deliver to application (Update LastByteReceived)
• If next segment was early arrival, deliver it too

– If s > NextByteExpected, but within window
• Queue as early arrival

• Send ACK for highest contiguous byte received, available window

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)

Useful Sliding Window 
Terminology:  

RFC 9293, Sec 3.3.1



Flow Control

• Advertised window can fall to 0
– How?
– Sender eventually stops sending, blocks application

• Resolution:  zero window probing:  sender sends 1-byte 
segments until window comes back > 0
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Some Visualizations

• Normal conditions:  
https://www.youtube.com/watch?v=zY3Sxvj8kZA

• With packet loss:  
https://www.youtube.com/watch?v=lk27yiITOvU 

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU


How do ACKs work?

• ACK contains next expected sequence number
• If one segment is missed but new ones received, send duplicate 

ACK
• Retransmit when:
– Receive timeout (RTO) expires
– Possibly other conditions, for certain TCP variants (eg. 3 dup ACKs)

• How to set RTO?



When to time out?

Should expect an ACK within one Round Trip Time (RTT)
• Problem:  RTT can be highly variable

• Strategy:  expected RTT based on ACKs received
– Use exponentially weighted moving average (EWMA)
– RFC793 version (“smoothed RTT”):

SRTT = (⍺ * SRTT) + (1 - ⍺)* RTTMeasured 
RTO = max(RTOMin, min(β * SRTT, RTOMax))

⍺ = “Smoothing factor”: .8-.9
β = “Delay variance factor”:   1.3—2.0

RFC793, Sec 3.7



This is only the beginning…

• Problem 1:  what if segment is a retransmission?
– Solution:  don’t update RTT if segment was retransmitted

• Problem 2: RTT can have high variance
– Initial implementation doesn’t account for this
– Congestion control:  modeling network load


