CSCI-1680
Transport Layer ||

Data over TCP: Flow Control

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

"Hi, I'd like to hear a TCP joke."

"Hello, would you like to hear a TCP joke?"

"Yes, I'd like to hear a TCP joke."

"OK, I'll tell you a TCP joke."

"Ok, | will hear a TCP joke."

"Are you ready to hear a TCP joke?"

"Yes, | am ready to hear a TCP joke."

"Ok, | am about to send the TCP joke. It will last
10 seconds, it has two characters, it does not
have a setting, it ends with a punchline."

"Ok, | am ready to get your TCP joke that will last
10 seconds, has two characters, does not have
an explicit setting, and ends with a punchline."

"I'm sorry, your connection has timed out. ...
Hello, would you like to hear a TCP joke?"

Administrivia

* |P project grading: happening now! Sign up for a
meeting if you haven't already

« TCP assignment: out now—start early!
— Gearup |: Thursday 10/26 5-7pm

— Milestone 1: schedule meeting on/before Thursday,
November 2

TCP: The story so far

Last lecture
* Sockets
« TCP: connection setup

Today
e Basic flow control: How to send data

e Connection teardown

TCP = Transmission Control Protocol

Application process Application process
‘ []

]

TCP TCP
Send buffer Receive buffer

Transmit segments

TCP provides a “reliable, connection oriented, full duplex ordered
byte stream”

TCP Header

0 31

Sequence Number

Acknowledgement Number

Data RIS
Otinay | Reserved |BEEEYT windowsize

Important Header Fields

Ports: multiplexing

Sequence number
— Where segment is in the stream (in bytes)

Acknowledgment Number
— Next expected sequence number

Window

— How much data you're willing to receive

Flags...

Important Header Fields: Flags

SYN: establishes connection (“synchronize”)
ACK: this segment ACKs some data (all packets except first)
FIN: close connection (gracefully)

RST: reset connection (used for errors)
PSH: push data to the application immediately
URG: whether there is urgent data

Less important header fields

e Checksum: Very weak, like IP

— Has weird semantics ("pseudo header”), more on this later...

 Data Offset: used to indicate TCP options (mostly unused)
* Urgent Pointer

Establishing a Connection

Active participant Passive participant
(client) (server)

listen(),

accept()
returns

Three-way handshake

— Two sides agree on respective initial sequence nums
f no one is listening on port: OS may send RST
f server is overloaded: ignore SYN

f no SYN-ACK: retry, timeout

Summary ot TCP States

Passive open Close

Active open/SY

SYN/SYN + ACK Send/SYN

SYN/SYN + ACK

ACK SYN + ACK/ACK

Connection Establishment

Close/FIN

Active close:
Can still receive

_ Passive close:
Can still send!
ACK Close/FIN

FIN_WAIT_2 LAST_ACK
ACK

ACK Timeout aftef two
FIN/ACK

segment lifetimes

TIME_WAIT |~ : CLOSED

TCP State Diagram

CONNECT/SYN (Step 1 of the 3-way-handshake)

ceeveeneen. e UNusual event
————> client/receiver path (Start) _ P ORI

———> server/sender path LISTEN/-¢

T TR
i CLOSE/-

(St 2 of the 3- -handshake) SYN/SYN+ACK
ep o e way-handshake | LISTEN |

.

RST- SEND/SYN

SYN :
RECEIVED | <o SYNSYNFACK (simultancous open)

Data exchange occurs
SYN+ACK/ACK

- (Step 3 of the 3-way-handshake)

.
v

{ CLOSE/FIN
‘ CLOSE/FIN FINJACK

| Active CLOSE| |Passive CLOSE|-
\
| CLOSEWAIT |

FIN/ACK

| FIN WAIT 1

CLOSING |
FIN+ACK/ACK :

£ ACK- CLOSE/FIN

| Y
FIN/ACK

Timeout

We are now here

CONNECT/SYN (Step 1 of the 3-way-handshake)

ce L unusual event
————> client/receiver path (Start) _

———> server/sender pat LISTEN/-J OSE/

(Step 2 of the 3-way-handshake) SYN/SYN+ACK
LISTEN

A

SYN
RECEIVED | SYNISYNFACK | (simultaneous open) .

State for a TCP connection kept in Transmission Control Buffer (TCB)

» Keeps initial sequence numbers, connection state, send/recv
buffers, status of unACK'd segments, ...

When to allocate?

State for a TCP connection kept in Transmission Control Buffer (TCB)

» Keeps initial sequence numbers, connection state, send/recv
buffers, status of unACK'd segments, ...

When to allocate?

— Server: listening on a connection*
— Client: Initiating a connection (sending a SYN)
— Server: accepting a new connection (receiving SYN)

[:When to deallocate? }

State for a TCP connection kept in Transmission Control Buffer (TCB)

» Keeps initial sequence numbers, connection state, send/recv
buffers, status of unACK'd segments, ...

When to allocate?

— Server: listening on a connection*
— Client: Initiating a connection (sending a SYN)
— Server: accepting a new connection (receiving SYN)

e I
When to deallocate?

Only after connection termination is fully completed (CLOSED state)

k=> If no state, cant meaningfully respond to packet!

%

NOTA BENE: This diagram is only a summary and must not be taken as
the total specification. Many details are not included.

passive OPEN

active OPEN

\ create TCB
\

create TCB

rcv RST (note 1)

rcv SYN

snd SYN,ACK /

rcv SYN

CLOSE

delete TCB

snd SYN,ACK

rcv ACK of SYN \ /

snd FIN

rcv SYN,ACK

RFC 9293,
Sec 3.3.2

Recall: the socket table

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address
tcpd (%] 0 172.17.48.121.56915 192.168.1.58.7000
tcpd (%] 0 172.17.48.121.56908 142.250.80.35.443
tcpd (%] 0 172.17.48.121.56887 13.225.231.50.80
tcpd %) 0 *.22 * K

(state)
SYN_SENT
ESTABLISHED
ESTABLISHED

LISTEN

« Each connection has an associated TCB in the kernel

* Depending on socket type, socket contains TCB

Recall: the socket table

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address
tcpd (%] 0 172.17.48.121.56915 192.168.1.58.7000
tcpd (%] 0 172.17.48.121.56908 142.250.80.35.443
tcpd (%] 0 172.17.48.121.56887 13.225.231.50.80
tcp4d 0 0 *.22 K

» Each connection has an associated TCB in the kernel
» Depending on socket type, socket contains TCB

(state)
SYN_SENT
ESTABLISHED
ESTABLISHED

LISTEN

= For each packet, kernel maps the 5-tuple

(tcp/udp, local IP, local port, remote IP, remote port) => socket

5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn
— Kernel maintains socket table: maps (5-tuple) => Socket

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcpd %) 0 *.22 K LISTEN

* |t a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn
— Kernel maintains socket table: maps (5-tuple) => Socket

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcpd (%] 0 172.17.48.121:22 192.168.1.58:34452 SYN_SENT
tcpd (%] 0 *.22 * K LISTEN

* |t a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

5-tuple (proto., source IP, source port, dest IP, dest port) => 1 Conn
— Kernel maintains socket table: maps (5-tuple) => Socket

deemer@vesta ~ % netstat -anl
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcpd (%] 0 172.17.48.121:22 192.168.1.58:34452 SYN_SENT
tcpd (%] 0 172.17.48.121:22 142.250.80.35:11435 ESTABLISHED
tcpd (%] 0 172.17.48.121:22 13.225.231.50:12345 ESTABLISHED
tcpd (%] 0 *.22 * K LISTEN

* |t a 5-tuple is reused => new ISN, so sequence numbers likely out
of range from past connection

deemer@vesta ~ % netstat -anl

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address
tcpd (%] 0 172.17.48.121.56915

tcpd %] 0 172.17.48.121.56908
tcpd %] 0 172.17.48.121.56887
tcpld 0 0 *.22

Two “types” of sockets:
* “Normal” sockets

e Listen sockets

Foreign Address

192.168.1.58.7000
142.250.80.35.443
13.225.231.50.80

(state)
SYN_SENT
ESTABLISHED
ESTABLISHED

LISTEN

Proto Recv-Q Send-Q Local Address Foreign Address
tcpd (%] 0 172.17.48.121.56887 13.225.231.50.80
tcpd 0 0 *.22 * K

“Normal” sockets

— Connection between two specific endpoints
— Can send/recv data

lListen sockets

— Created by receiver to accept new connections

— When a client connects, client info gets queued by kernel

(state)
ESTABLISHED

LISTEN

— When server process calls accept(), a new (“normal”) socket is created

between the server and that client

How to pick the initial sequence number?
* Protocols based on relative seq. numbers based on starting value
* Why not start at 07

How to pick the initial sequence number?
* Protocols based on relative seq. numbers based on starting value
* Why not start at 07?

=> Someone might guess the value!

How to pick the initial sequence number?
* Protocols based on relative seq. numbers based on starting value
* Why not start at 07?

=> Someone might guess the value!

/=> RFC9293, Sec 3.4.1: Procedure for picking ISN, based on timer and

cryptographic hash

=> For project, just pick a random integer :)

-

Relative Sequence Numbering

Ethernet II, Src: Apple_cd:6a:23 (c8:89:f3:cd:6a:23), Dst: IntelCor_63:c4:45 (0
Internet Protocol Version 4, Src: 172.17.48.156, Dst: 172.17.48.22
Transmission Control Protocol, Src Port: 49719, Dst Port: 22, Seq: @, Len: 0

Source Port: 49719

Destination Port: 22

[Stream index: 8]

[Conversation completeness: Complete, WITH_DATA (31)]

[TCP Segment Len: @]

Sequence Number: 0 (relative sequence number)

Sequence Number (raw): 2000828645

[Next Sequence Number: (relative sequence number)]

Acknowledgment Number: 0

Acknowledgment number (raw): @

1011 = Header Length: 44 bytes (11)

002@

00 1b 21 63 c4 45 c8 89
00 40 00 00 40 00 40 06
30 16 c2 37 00 16 77 42
ff ff b7 2a 00 00 02 04
08 0a 0d c7 46 c0 00 00

23 08 00 45 00
11 30 9c ac 11
00 00 00 bo 02
03 03 06 01 01
02 00 00

Observation: new connections use memory!

SYN

malloc()

Observation: new connections use memory!

SYN

malloc()

What happens if you send a someone lots of SYN packets?

Observation: new connections use memory!

SYN

malloc()

What happens if you send a someone lots of SYN packets?

[SYN flood => type of Denial of Service (DOS) attack }

10/24/23

-
SYN flood => type of Denial of Service (DOS) attack
=> Especially bad when attack traffic comes from multiple sources

(more on this later)

v

DoS, DNS, TLS

33

A hacky solution: SYN cookies

Active participant Passive participant
(client) (server)

Don't allocate TCB on first SYN

Encode some state inside the initial
sequence number that goes back to

the client (in the SYN+ACK)
What gets encoded?

— Coarse timestamp
— Hash of connection IP/port
— Other stuff (implementation dependent)

Better ideas?

A hacky solution: SYN cookies

Active participant Passive participant
(client) (server)

Don't allocate TCB on first SYN

Encode some state inside the initial
sequence number that goes back to

the client (in the SYN+ACK)
What gets encoded?

— Coarse timestamp
— Hash of connection IP/port
— Other stuff (implementation dependent)

4 o ¢ :
Nowadays: filtering in kernel (or in network) on number of new h
connections per time (esp. on servers)

=> More on this later! y

Sending data

SYN+ACK/ACK

(Step 3 of the 3-way-handshake)

Sending data

Flow control: don't send more data than the receiver can handle
» TCP stack divides data into packets called segments

Questions
e When to send data?

e How much data to send?

— Data is sent in MSS-sized segments
« MSS = Maximum Segment Size (TCP packet that can fit in an IP packet)
« Chosen to avoid fragmentation

Sending data: the basic idea
» Start: app calls Send(), loads send butter

Sending data: the basic idea
» Start: app calls Send(), loads send butter

» TCP stack divides data into packets called segments

Sending data: the basic idea

» Start: app calls Send(), loads send butter
» TCP stack divides data into packets called segments

Key challenges
e When to send data?
e How much data to send?

Sending data: the basic idea

» Start: app calls Send(), loads send butter
» TCP stack divides data into packets called segments

Key challenges
e When to send data?
e How much data to send?

" — Flow control (hnow): don’t send more data than the receiver can handle
— Congestion control (much later) don’t send more data than the network
can handle

.

J

Terminology: MSS

MSS: Maximum segment size
 Largest segment a TCP can send
« Can be configurable

* Nowadays: sender and receiver negotiate using TCP options
(out of scope for this class)

Simplest TCP sender: stop and wait

Simplest method: Stop and Wait

Consider sending one packet at a time
— S: Send packet, wait
— R: Receive packet, send ACK

— S: Receive ACK, send next packet
OR

No ACK within some time (RTO), timeout and retransmit

Lost Data

What can go wrong?

Sender Receiver

Receiver

Timeout Data[N]

‘M

Lost ACK

Timeout

Expecting
ACK[N+1]

Data[N]

Late ACK

Receiver

Sequence number example

~ [Asends [Bsends
T [SYNeseew0 |
_ SYN+ACK, seq=0, ack=1 (expecting)
ACK seq=lack=l ACKorSYN) |
“abe” seq=l, ack=] -
I ACKseqladked
Cefgseqdackel
. |seq=lackss 00|
“Toobar”, seq=8. acke1 -

e e
seq=6, ack=21 ;; ACK of “goodbye”, crossing packets
Iseqh.ack=22: ACKofFIN

T [sebakemAn

o
]
o T eqehackeld hal”
5 [seeRadkeliACKOEN |

Problems?

Can we do better?

Better Flow Control: Sliding window

» Part of TCP specification (even before 1988)
* Send multiple packets at once, based on a window

* Receiver uses window header field to tell sender how much space
it has

TCP and buffering

Recall: TCP stack responsibilities
» Sender: breaking application data into segments
* Receiver: receiving segments, reassembling them in order

 Need to buffer data

Sliding window: in abstract terms

« Window of size w

» Can send at most w packets before
waiting for an ACK

e Goal

— Network “pipe” always filled with data

— ACKs come back at rate data is delivered
=> "self-clocking”

Sender example

Receiver example

Flow Control: Sender

Sending application

Invariants
« LastByteSent — LastByteAcked <= AdvertisedWindow = :
Useful Sliding Wind
« EffectiveWindow = AdvertisedWindow — (BytesInFlight) L'Jl'err;}irl:gog;r-] ow

« LastByteWritten — LastByteAcked <= MaxSendBuffer RFC 9293 Sec 3.3.1

Flow control: receiver Useful Sliding Window

Terminology:
RFC 9293, Sec 3.3.1

Can accept data if space in window
Available window =

BufferSize— ((NextByteExpected-1) - LastByteRead

On receiving segment for byte S LastByteRead
— if s is outside window, ignore packet

— if s == NextByteExpected:
* Deliver to application (Update LastByteReceived) NextByteExpected LastByteRcvd
* If next segment was early arrival, deliver it too (b)

— If s > NextByteExpected, but within window

* Queue as early arrival

Send ACK for highest contiguous byte received, available window

Flow Control

» Advertised window can fall to O
— How?
— Sender eventually stops sending, blocks application

» Resolution: zero window probing: sender sends 1-byte
segments until window comes back > 0

Initial
sequence

Sequence numbers
(Circumference = 0 to 2*32 slots)

Data received, acknowledged,
but not yet delivered to application

Window
shifts

Receiver's window
(Allocation buffer)
Up to 2*16-1 slots

Some Visualizations

* Normal conditions:
https://www.youtube.com/watch?v=zY35xv|8kZA

* With packet loss:
https://www.youtube.com/watch?v=Ik27yil[TOvU

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU

How do ACKs work?

ACK contains next expected sequence number

If one segment is missed but new ones received, send duplicate
ACK

Retransmit when:
— Receive timeout (RTO) expires
— Possibly other conditions, for certain TCP variants (eg. 3 dup ACKs)

How to set RTO?

When to time out?

[RFC793, Sec 3.7 }

Should expect an ACK within one Round Trip Time (RTT)
* Problem: RTT can be highly variable

« Strategy: expected RTT based on ACKs received
— Use exponentially weighted moving average (EWMA)
— RFC793 version (“smoothed RTT"):
SRTT = (a * SRTT) + (1 - a)* RTTpeasured
RTO = max(RTOy;,, min(B * SRTT, RTO,)

a = “Smoothing factor”: .8-.9
B = “Delay variance factor”: 1.3—2.0

This is only the beginning...

* Problem 1: what if segment is a retransmission?

— Solution: don’t update RTT it segment was retransmitted

* Problem 2: RTT can have high variance
— Initial implementation doesn’t account for this
— Congestion control: modeling network load

