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Administrivia

• TCP Gearup I TONIGHT (10/26) 5-7pm, CIT368 
– How the project works, how to think about sockets 

– Stuff you need for milestone 1 

• TCP milestone 1:  Schedule on/before Thursday, November 2 
– Email later today for signups 

• HW2:  Due Mon, Oct 30 
– Last problem helpful for milestone 1
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Topics for today

• Flow control:  Sliding window 

• Computing RTO 

• Connection termination










































The story so far
Stop and Wait:  Simplest TCP sender/receiver

Key features 
 - SEQ/ACK numbers denote where sender/receiver are in data stream 
 - Only one segment is ”in flight” at a time
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Warmup:  Stop and Wait

SEQ: 1, ACK: 1, LEN: 5 
“hello”conn.Write(“hello_world”)

…

SEQ: 1, ACK: ___, WIN: ___ 

SEQ: ____, ACK: 1, LEN: 5 
“_worl”

SEQ: _____, ACK: ____, WIN: ____ 

SEQ: ____, ACK: 1, LEN: 1 
“d”

SEQ: _____, ACK: ____, WIN: ____

(TCP Handshake)
What are the values for the SEQ and ACK fields?
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SEQ:  where segment is in data 
stream

ACK:  next byte the sender 
expects to get 

eg. ACK x

“I have up to (x - 1), send me x 
next”



Warmup:  Stop and Wait

SEQ: 1, ACK: 1, LEN: 5 
“hello”conn.Write(“hello_world”)

…

SEQ: 1, ACK: ___, WIN: 95 

SEQ: ____, ACK: 1, LEN: 5 
“_worl”

SEQ: _____, ACK: ____, WIN: 90 

SEQ: ____, ACK: 1, LEN: 1 
“d”

SEQ: _____, ACK: ____, WIN: 89

(TCP Handshake)
What are the values for the SEQ and ACK fields?

Advertised window:  how much space the 
receiver has left in its receive buffer 
=> Window (WIN) field in TCP header

Key features 
 - SEQ:  Position of this segment in the data 
stream 
 - ACK:  Next sequence number the receiver 
expects to receive (ACK N == “I have up to 
(N – 1)”)
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TCP and buffering

Recall:  TCP stack responsibilities 

• Sender:  breaking application data into segments  

• Receiver:  receiving segments, reassembling them in order 

TCP stack needs to buffer data for both parts 

• Sender:  data waiting to be sent, not yet ACK’d 

• Receiver:  data not yet read by app, out-of-order segments

Remember:  in reality, both sides can send and receive!   
=> All sockets have both a send and receive buffer
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SENDER OPERATION

SEND UP TO WINDOW
ADVANCE NYT

BYTES IN FLIGHT ADVERTISED
WINDOW
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WHEN REENA GETS A SEGMENT S
MUST CHECK IF FITS IN WINDOW

S SEA CRCVNATAND S SEG CRV NXT TRCUTWND

OR
SIMILAR CHECK FOR END OF WINDOW

RFC9293Sec3.4

ADD AT POSITION 5 SEG
NXT SEGMENT SIZE
CHECK EARLY ARRIVAL
QUEUE MOVE UP TO

NEXT CONTUOUS PART
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ACK number:  last segment the receiver has in order

Sender example from class (cleaner version on next page)
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Some Visualizations

• Normal conditions:  https://www.youtube.com/watch?
v=zY3Sxvj8kZA 

• With packet loss:  https://www.youtube.com/watch?
v=lk27yiITOvU 
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What happens if the receiving app never reads from its buffer?  
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Flow control

 - Receive buffer fills up

 - Advertised window goes to zero

 - When WIN=0, sender must stop sending

 - Send buffer will fill up (if app keeps sending)

  - If send buffer is full, sender’s Write() will block 



Problem:  need a way for sender to know when space is available 
again! 

Resolution:  zero window probing 
– Sender periodically sends 1-byte segments 

– Receiver sends back ACK with advertised window (even if it has no room 
for segment

What happens if the receiving app never reads from its buffer?  
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Problem:  need a way for sender to know when space is available 
again! 

Resolution:  zero window probing 
– Sender periodically sends 1-byte segments 

– Receiver sends back ACK with advertised window (even if it has no room 
for segment 

– Sender can resume sending when win != 0 (preferably when win >= MSS)

What happens if the receiving app never reads from its buffer?  
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Complete send/recv example with zero-window probing (ZWP part on next page)
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TCP State Diagram









































How do ACKs work?

• ACK contains next expected sequence number

• Sender:  if one segment is missed but new ones received, send 
duplicate ACK










































How do ACKs work?

• ACK contains next expected sequence number

• Sender:  if one segment is missed but new ones received, send 
duplicate ACK

• Receiver retransmits when:
– Receive timeout (RTO) expires

– Possibly other conditions, for certain TCP variants (eg. 3 dup ACKs)

• How to set RTO?










































What’s a good timeout value?   
 - 0.5s?  1s? 0.01s?   
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Thoughts?  

 - If timeout is too small, packet might have not arrived (latency)

 - If timeout is too long, will affect throughput



 => Can’t just pick a fixed timeout value

Strategy:  measure RTT based on ACKs 
received, use this to set a timeout value

 => Timeout time is called RTO



Computing RTO

Strategy:  measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWMA) 

• RFC793 version (“smoothed RTT”): 
SRTT = (⍺ * SRTTLast) + (1 - ⍺)* RTTMeasured  

RTO = max(RTOMin, min(β * SRTT, RTOMax)) 

⍺ = “Smoothing factor”: .8-.9 

β = “Delay variance factor”:   1.3—2.0 

RTOMin = 1 second 
RFC793, Sec 3.7 

RFC6298 (slightly more complicated, 
also measures variance)
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Using the RTO timer

Recommended by RFC6298 
• Maintain ONE timer per connection 

• When segment is sent => set timer to expire after tRTO 

• When ACK is received with new data, reset the timer 

When the timer expires: 
• Retransmit earliest unacknowledged segment 
• RTO = 2 * RTO (up to some max) 
• If no data after N retransmissions => give up, terminate connection










































This is only the beginning…

• Problem 1:  what if ACK is for a retransmitted segment?
– Solution:  don’t update RTT if segment was retransmitted

• Problem 2: RTT can have high variance
– Initial implementation doesn’t account for this (modern version, RFC6298)

– Congestion control:  modeling network load









































