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Data over TCP: Flow Control

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti



Administrivia

+ TCP Gearup | TONIGHT (10/26) 5-7pm, CIT368 (#7004, +RiC)

— How the project works, how to think about sockets

— Stuff you need for milestone 1

« TCP milestone 1: Schedule on/before Thursday, November 2

— Email later today for signups

e« HW2: Due Mon, Oct 30

— Last problem helpful for milestone 1



Topics for today

« Flow control: Sliding window
« Computing RTO

e Connection termination



The story so far

Stop and Wait: Simplest TCP sender/receiver {

Key features
- SEQ/ACK numbers denote where sender/receiver are in data stream

- Only one segment is “in flight” at a time




Warmup: Stop and Wait

<€ —> (TCP Handshake)
. —>)

What are the values for the SEQ and ACK fields?

SEQ: 1, ACK: 1, LEN: 5

conn.Write(“hello world”) 1halln”
— —>
SEQ: 1, ACK: jQ WIN:
e_
SEQ: where segment is in data
stream SEQ: é , ACK: 1, LEN: 5
ACK: next byte the sender ‘_worl” 4
expects to get [ )
SEQ: , ACK: , WIN:
eg. ACK x - L
“I have up to (x - 1), send me x <— IL
next” SEQ: ' “ACK: 1, LEN: 1
e
—>

SEQ: z ,ACK:Q,WIN:_




Warmup: Stop and Wait

_ <€ —> (TCP Handshake)
What are the values for the SEQ and ACK fields? : —> 100
SEQ: 1, ACK: 1, LEN: 5 EW
conn.Write(“hello world”) 1o alln” )
SEQ: 1, ACK: _|, WIN: 95 {

Key features < &
- SEQ: Position of this segment in the data
stream SEQ:__, AC|<|; 1,LEN: 5
- ACK: Next sequence number the receiver =l S
expects to receive (ACK N == "| have up to SEQ: ACK: WIN: 90
(N — ’|)”) R

Advertised window: how much space the
—

receiver has left in |ts receive buffer

=> Window (WIN) field in TCP header

S
N IV e SEQ: ___, ACK:___, WiN 89 t{UL)
Pﬂéﬂtr‘ < ’\QL ﬁ

SEQ: , ACK: 1, LEN: 1
lldll
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TCP and buffering

Recall: TCP stack responsibilities
« Sender: breaking application data into segments

« Receiver: receiving segments, reassembling them in order

TCP stack needs to buffer data for both parts
« Sender: data waiting to be sent, not yet ACK'd

« Receiver: data not yet read by app, out-of-order segments

Remember: in reality, both sides can send and receive!
=> All sockets have both a send and receive buffer
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Sender example from class (cleaner version on next page)

NE ©&

77/1,&0%// /

za?ﬂ»“%

/

~1

ACK number: last segment the receiver has in order

-

7

!
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Some Visualizations

« Normal conditions: https://www.youtube.com/watch?
v=2Y3Sxvj8kZA

« With packet loss: https://www.youtube.com/watch?
v=Ik27yilTOvVU



https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU
https://www.youtube.com/watch?v=lk27yiITOvU

Initial
sequence

Sequence numbers
(Circumference = 0 to 2”32 slots)

Data received, acknowledged,
but not yet delivered to application

Window
shifts

Receiver's window
(Allocation buffer)
Up to 2*16-1 slots




What happens it the receiving app never reads from its buffer?

TCP
Receive buffer

Transmit segments

- Receive buffer fills up

- Advertised window goes to zerg

- When WIN=0, sender must stop sending

- Send buffer will fill up (if app keeps sending)

- If send buffer is full, sender’s Write() will block



What happens it the receiving app never reads from its buffer?

Problem: need a way for sender to know when space is available

again!
A:)ﬂ

Resolution: zero window probing ‘\Ll

— Sender periodically sends 1-byte segments

— Receiver sends back ACK with advertised window (eyen if it has no rogm

for segment }

we C




What happens it the receiving app never reads from its buffer?

Problem: need a way for sender to know when space is available

again!
Resolution: zero window probing 4@— '/‘}/”afaz'/
— Sender periodically sends 1-byte segrrﬁllts OVl OF Wyrood.

— Receiver sends back ACK with advertised window (even if it has no room
for segment

— Sender can resume sending when win =0 preferably when win >= MSS)

( LY Wivoow Cypopes
AVBIY ey




Complete send/recv example with zero-window probing (ZWP part on next page)
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TCP State Diagram

CONNECT/SYN ‘Step 1 of the 3-way-handshake)

seeseeeeeeeoe e UNUSUAl event

—y  gerver/sender path LISTEW‘l

CLOSE/-

Step 2 of the 3-way-handshake) SYN/SYN+ACK @

A

RST/- : SEND/SYN
RECEIVED [« ... ... SYNSYNSACK (simultsncous open)

Data exchange occurs
- PYpp— SYN+ACK/ACK
. |  ‘Step 3 of the 3-way-handshake)

| CLOSE/FIN
: CLOSE/FIN FINJACK

| Active CLOSEE |Passive CLOSE]
Y
7 ®! CLOSING CLOSE WAIT

CLOSE/FIN

FINFACK
FIN*ACK/ACK

ACK/-

back to start)




How do ACKs work?

« ACK contains next expected sequence number

« Sender: if one segment is missed but new ones received, send
duplicate ACK



How do ACKs work?

ACK contains next expected sequence number

Sender: if one segment is missed but new ones received, send
duplicate ACK

Receiver retransmits when:
— Receive timeout (RTO) expires

— Possibly other conditions, for certain TCP variants (eg. 3 dup ACKs)

How to set RTO?



What's a good timeout value? A & Z B

- 0.5s? 15?7 0.01s?

Thoughts?
- If timeout is too small, packet might have not arrived (latency)
- If timeout is too long, will affect throughput

T, Serg !

. . )
=> Can’t just pick a fixed timeout value \—\;

| ¢ Ack
Strategy: measure RTT based on ACKs
received, use this to set a timeout value T

=> Timeout time is called RTO




Computing RTO

Strategy: measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWM NEW

kST
« RFC793 version (“smoothed RTT"): 1/ Fﬂbl) / LA

SRTT = (& * SRTT, ) + (1 - @)* RTT,, StoMeny
RTO = max(RTO,,. ., min(B * SRTT, RTO,,_)))

a = “Smoothing factor”: .8-.9 U;/n ¥y Lowstie ﬂDV//ﬂ

B = “Delay variance factor”: 1.3—2.0
RTO,,,, = 1 second

RFC793, Sec 3.7
RFC6298 (slightly more complicated,
also measures variance)




Using the RTO timer

Recommended by RFC6298
« Maintain ONE timer per connection

« When segment is sent => set timer to expire after t,.4

« When ACK is received with new data, reset the timer

When the timer expires:

e Retransmit earliest unacknowledged segment

« RTO =2*RTO (up to some max)

* If no data after N retransmissions => give up, terminate connection



This is only the beginning...

« Problem 1: what if ACK is for a retransmitted segment?

— Solution: don't update RTT if segment was retransmitted

« Problem 2: RTT can have high variance
— Initial implementation doesn’t account for this (modern version, RFC6298)

— Congestion control: modeling network load



