CSCI-1680
Jransport.Layer ||

Data over TCP: Flow Control

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

Administrivia

+ TCP Gearup | TONIGHT (10/26) 5-7pm, CIT368 (#7004, +RiC)

— How the project works, how to think about sockets

— Stuff you need for milestone 1

« TCP milestone 1: Schedule on/before Thursday, November 2

— Email later today for signups

e« HW2: Due Mon, Oct 30

— Last problem helpful for milestone 1

Topics for today

« Flow control: Sliding window
« Computing RTO

e Connection termination

The story so far

Stop and Wait: Simplest TCP sender/receiver {

Key features
- SEQ/ACK numbers denote where sender/receiver are in data stream

- Only one segment is “in flight” at a time

Warmup: Stop and Wait

<€ —> (TCP Handshake)
. —>)

What are the values for the SEQ and ACK fields?

SEQ: 1, ACK: 1, LEN: 5

conn.Write(“hello world”) 1halln”
— —>
SEQ: 1, ACK: jQ WIN:
e_
SEQ: where segment is in data
stream SEQ: é , ACK: 1, LEN: 5
ACK: next byte the sender ‘_worl” 4
expects to get [)
SEQ: , ACK: , WIN:
eg. ACK x - L
“I have up to (x - 1), send me x <— IL
next” SEQ: ' “ACK: 1, LEN: 1
e
—>

SEQ: z ,ACK:Q,WIN:_

Warmup: Stop and Wait

_ <€ —> (TCP Handshake)
What are the values for the SEQ and ACK fields? : —> 100
SEQ: 1, ACK: 1, LEN: 5 EW
conn.Write(“hello world”) 1o alln”)
SEQ: 1, ACK: _|, WIN: 95 {

Key features < &
- SEQ: Position of this segment in the data
stream SEQ:__, AC|<|; 1,LEN: 5
- ACK: Next sequence number the receiver =l S
expects to receive (ACK N == "| have up to SEQ: ACK: WIN: 90
(N — ’|)”) R

Advertised window: how much space the
—

receiver has left in |ts receive buffer

=> Window (WIN) field in TCP header

S
N IV e SEQ: ___, ACK:___, WiN 89 t{UL)
Pﬂéﬂtr‘ < ’\QL ﬁ

SEQ: , ACK: 1, LEN: 1
lldll

ofs OF i Bud

1 R
5 T Q
] RS
NS
nU/. = N /0
S
A R S
/ ~d
[/X/] 3 G
[N 2y 4
W
3

TCP and buffering

Recall: TCP stack responsibilities
« Sender: breaking application data into segments

« Receiver: receiving segments, reassembling them in order

TCP stack needs to buffer data for both parts
« Sender: data waiting to be sent, not yet ACK'd

« Receiver: data not yet read by app, out-of-order segments

Remember: in reality, both sides can send and receive!
=> All sockets have both a send and receive buffer

r-.nx// 596 2 (-" - o o Y i ‘\
[REC 7270 e 5ly 2350
Soiowe_Libdow . Svwpiws CwE
($m2)
//76,7/}7, 2 Lodp< ,/2/4'77 VY o NEY 7 (oMY Ui,y
~ JCP LiAck (manr e .
(D w8 APP Losnt
DMt g 7 0 *
(WY P)
\ \‘\\Y“\‘\l .\‘!] (N
WS\ ENEN
S\ AN > .
IR
/ oy UxT L5
b/LV !
< : > S2e dy XBY
\< —= CHBOLD — mATZ Y Burrer—
/ (\—-\ LIrHov SioE
N0 UNA — oLl LUpACKED Stk

SMD. \INT™ = NEAT SEQUEMCE pUMBEEL. 10 BE Gl

“NEXT ByE o BE Siwr
/ /?lvl) - L//A/T' S TE UL T U
-4 5/ ol 7 LV BN~
I\ Vi
W a2) P P), 7] R A Y B PR
~ 534 [V PLLG4T IATA T~ K
DEEI) SN our, Bor Loq ACK D JET:
TED [DIFF Beeaned pol, LRITE | fHon

AP Sflop Bloce . A _AV e

U k]
D R W 5
~ 3 w
Qq K] N M - !
S LIERE R 5 s
|~ R N \} - X \ / \ll//]
~ flw. & ‘JI.- r /0 __ - N y
3 L X \ 3 D 5
™)J i f) N .VM ¢ JVZ J. mU ‘..J
N85S 3 b RS Q N 3
W N Aﬂ /W «W ,7 R o~ /_N Q)ﬂu mw ,.M.
w 1.WAL /w /m N |.an \ Iw / Iw”) N MK/-
i, \/ NN N \JI N 3 3 ﬁ
Iy 0§ 5 WREEEY
3Ry BEAZNE RS SE
N G AN W X \ w f. /
N ~ wo© - o S 3N 3
~) U S ’ A 2 I 3
QAU \ N S / J 3
/ Jz ™N - F) /’- ! ; //nl\\ fr ﬂ
L) W A % M. ~N ,M d K
£ 3 ”U - " // < I AN
N A ~ N | > : I / |
= U N m =) ~ .) Y L\
I S & S = Sy 4§
N Xy N\ Q P \ 1./ull 2 M 4| < 0§
ﬁVL: L | E U = U m r/ M
ANV AN LN ,..w Ny N) I _l%
Dag A < ~ XY M X T.# L , : /
100V ¥ iR R
,; | N / N
MJ \
m \
V\

N A~
O = P
[N N m
=L > 9 8 9 \
P < = Wﬂa v,w W
M =0 /ﬂMW s~ M Wu A .
N - 2R X L
n N _ QY a\s hn) \
/.\U/ n /_H‘ W ﬁyﬂw ~ AW« W
v /.N, m‘mw NG @ // mv... ;w> r/_
WW, M/l ww v%. J\/_ / \ T,r .mW
) Q
S 2 2 , M, 9/ \ X \
.w ¥ 3 o) 3 33
N [\ p- R
Y% S | N X
D m@ ,\M (™ f@,(3 Vo)
~~ 1 é N - \I Ny %/. ,.0 N
< S S v INE
9 N NG s N WS
S N - AN &N 3
3 QA ,_.M o~ ~~ «~ N mw N
ﬂ 'Y W . \ \.u/u ™ TS Ly .\M
X I . .W ') ,A Mrz& N = N
* N J
) O3 3 < Emv 4 ,
Dt Q) 3 b
] V)

\

'Q
\\\

I

N
I< /
~—_

~
N
J

=
1~
=

<
R
Q
hou)
"

//%

VKT

S A A

VA

V] p

AP

ReAnd puzy T co

L5 [ttt

/M XT

- V&

P~

=/

('\.

B

(7

N
>

\(

ten

s L/

V)79

aNT OF

Lind

JVIW 6

Bvp — // Ny

L)

AN

Lol

OF @GAD

oy

UT) on

nry

N
NS
(\

BAC F

SLe by A

sl %

Ar i

w/in

)

W

7o/

\

-

MLy

C\r\\\\>

//(oVE

4

M
X

=

A

(L C0T

\

Sender example from class (cleaner version on next page)

NE ©&

77/1,&0%// /

za?ﬂ»“%

/

~1

ACK number: last segment the receiver has in order

-

7

!

AE) .

I

UAA
LBecen/trz

"Z‘) 7|

! vl

7

e——

[o \ ;
I PEFPLEXT [AST™ Byre

f.

M
e

L—/
1\
X7 Ldre

Aew ol
ACks 4 worps

Fec<vED /v epeRr

UPDATE } constpen
Laely ARRIVALS

Becadtr
7,‘43,‘7 1‘(‘
D

Some Visualizations

« Normal conditions: https://www.youtube.com/watch?
v=2Y3Sxvj8kZA

« With packet loss: https://www.youtube.com/watch?
v=Ik27yilTOvVU

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU
https://www.youtube.com/watch?v=lk27yiITOvU

Initial
sequence

Sequence numbers
(Circumference = 0 to 2”32 slots)

Data received, acknowledged,
but not yet delivered to application

Window
shifts

Receiver's window
(Allocation buffer)
Up to 2*16-1 slots

What happens it the receiving app never reads from its buffer?

TCP
Receive buffer

Transmit segments

- Receive buffer fills up

- Advertised window goes to zerg

- When WIN=0, sender must stop sending

- Send buffer will fill up (if app keeps sending)

- If send buffer is full, sender’s Write() will block

What happens it the receiving app never reads from its buffer?

Problem: need a way for sender to know when space is available

again!
A:)ﬂ

Resolution: zero window probing ‘\Ll

— Sender periodically sends 1-byte segments

— Receiver sends back ACK with advertised window (eyen if it has no rogm

for segment }

we C

What happens it the receiving app never reads from its buffer?

Problem: need a way for sender to know when space is available

again!
Resolution: zero window probing 4@— '/‘}/”afaz'/
— Sender periodically sends 1-byte segrrﬁllts OVl OF Wyrood.

— Receiver sends back ACK with advertised window (even if it has no room
for segment

— Sender can resume sending when win =0 preferably when win >= MSS)

(LY Wivoow Cypopes
AVBIY ey

Complete send/recv example with zero-window probing (ZWP part on next page)

. Ps

| T Y
N A B p

g

Y
c

(2 2 ¢ < \ﬁk\A
Ap D E W S
e ki1 aced
ﬂﬂ/mﬁuzﬂf/)

(WpITINE Fore Ack) =+
=2 BoysD 3

o
o 1

— (yvDor MUST
[T0P s)1e,

ENTB 74D
DJ)%VJ W&_

VY 00

< DN /N
’ ol MUH/W /M/_ o N A\
S SRR N N BRI w W ! J %
) A
S F. w o fm/ > - .Wl/ nw ~N ‘// \,n7/ N\, /%./ \/.N
) K| X \
© M N —| s M R 3 W, W W /,/ J <
X S SEOUEREETE SRS R S
SHENENE YT E S T S TR A
ﬁ N/ o3 g3
N
[// S ; Q U .%u. v 3
7AW Ot AN SN V9S8
1 \ud \sr & 39, §3%
> ~ Yy > .
g o\ I \% Q3 5N
o\ d0 0 \% Y S Land 3
~NJ 3 3 1
N : S NI i
7'\ ~N
3 < |
‘e - R N _—
3 . Js

TCP State Diagram

CONNECT/SYN ‘Step 1 of the 3-way-handshake)

seeseeeeeeeoe e UNUSUAl event

—y gerver/sender path LISTEW‘l

CLOSE/-

Step 2 of the 3-way-handshake) SYN/SYN+ACK @

A

RST/- : SEND/SYN
RECEIVED [« SYNSYNSACK (simultsncous open)

Data exchange occurs
- PYpp— SYN+ACK/ACK
. | ‘Step 3 of the 3-way-handshake)

| CLOSE/FIN
: CLOSE/FIN FINJACK

| Active CLOSEE |Passive CLOSE]
Y
7 ®! CLOSING CLOSE WAIT

CLOSE/FIN

FINFACK
FIN*ACK/ACK

ACK/-

back to start)

How do ACKs work?

« ACK contains next expected sequence number

« Sender: if one segment is missed but new ones received, send
duplicate ACK

How do ACKs work?

ACK contains next expected sequence number

Sender: if one segment is missed but new ones received, send
duplicate ACK

Receiver retransmits when:
— Receive timeout (RTO) expires

— Possibly other conditions, for certain TCP variants (eg. 3 dup ACKs)

How to set RTO?

What's a good timeout value? A & Z B

- 0.5s? 15?7 0.01s?

Thoughts?
- If timeout is too small, packet might have not arrived (latency)
- If timeout is too long, will affect throughput

T, Serg !

. .)
=> Can’t just pick a fixed timeout value \—\;

| ¢ Ack
Strategy: measure RTT based on ACKs
received, use this to set a timeout value T

=> Timeout time is called RTO

Computing RTO

Strategy: measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWM NEW

kST
« RFC793 version (“smoothed RTT"): 1/ Fﬂbl) / LA

SRTT = (& * SRTT,) + (1 - @)* RTT,, StoMeny
RTO = max(RTO,,. ., min(B * SRTT, RTO,,_)))

a = “Smoothing factor”: .8-.9 U;/n ¥y Lowstie ﬂDV//ﬂ

B = “Delay variance factor”: 1.3—2.0
RTO,,,, = 1 second

RFC793, Sec 3.7
RFC6298 (slightly more complicated,
also measures variance)

Using the RTO timer

Recommended by RFC6298
« Maintain ONE timer per connection

« When segment is sent => set timer to expire after t,.4

« When ACK is received with new data, reset the timer

When the timer expires:

e Retransmit earliest unacknowledged segment

« RTO =2*RTO (up to some max)

* If no data after N retransmissions => give up, terminate connection

This is only the beginning...

« Problem 1: what if ACK is for a retransmitted segment?

— Solution: don't update RTT if segment was retransmitted

« Problem 2: RTT can have high variance
— Initial implementation doesn’t account for this (modern version, RFC6298)

— Congestion control: modeling network load

