
CSCI-1680
Transport Layer II

Data over TCP: Flow Control

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

i

Administrivia

• TCP Gearup I TONIGHT (10/26) 5-7pm, CIT368
– How the project works, how to think about sockets

– Stuff you need for milestone 1

• TCP milestone 1: Schedule on/before Thursday, November 2
– Email later today for signups

• HW2: Due Mon, Oct 30
– Last problem helpful for milestone 1

Zoom TREE

Topics for today

• Flow control: Sliding window

• Computing RTO

• Connection termination

The story so far
Stop and Wait: Simplest TCP sender/receiver

Key features
 - SEQ/ACK numbers denote where sender/receiver are in data stream
 - Only one segment is ”in flight” at a time

I

Warmup: Stop and Wait

SEQ: 1, ACK: 1, LEN: 5
“hello”conn.Write(“hello_world”)

…

SEQ: 1, ACK: ___, WIN: ___

SEQ: ____, ACK: 1, LEN: 5
“_worl”

SEQ: _____, ACK: ____, WIN: ____

SEQ: ____, ACK: 1, LEN: 1
“d”

SEQ: _____, ACK: ____, WIN: ____

(TCP Handshake)
What are the values for the SEQ and ACK fields?

1 11

12

I 13

SEQ: where segment is in data
stream

ACK: next byte the sender
expects to get

eg. ACK x

“I have up to (x - 1), send me x
next”

Warmup: Stop and Wait

SEQ: 1, ACK: 1, LEN: 5
“hello”conn.Write(“hello_world”)

…

SEQ: 1, ACK: ___, WIN: 95

SEQ: ____, ACK: 1, LEN: 5
“_worl”

SEQ: _____, ACK: ____, WIN: 90

SEQ: ____, ACK: 1, LEN: 1
“d”

SEQ: _____, ACK: ____, WIN: 89

(TCP Handshake)
What are the values for the SEQ and ACK fields?

Advertised window: how much space the
receiver has left in its receive buffer
=> Window (WIN) field in TCP header

Key features
 - SEQ: Position of this segment in the data
stream
 - ACK: Next sequence number the receiver
expects to receive (ACK N == “I have up to
(N – 1)”)

y

Eytes

t

T IN Event I READ
PACKET

LOTS OF UNUSED BW

9

WANT MORE DATA IN FLIGHT

AT A TIME

SLIDING WINDOW

TCP and buffering

Recall: TCP stack responsibilities

• Sender: breaking application data into segments

• Receiver: receiving segments, reassembling them in order

TCP stack needs to buffer data for both parts

• Sender: data waiting to be sent, not yet ACK’d

• Receiver: data not yet read by app, out-of-order segments

Remember: in reality, both sides can send and receive!
=> All sockets have both a send and receive buffer

RFC9293iSEc31,3.3.1,3.4J
SLIDING WINDOW SENDING SIDE

W APP LOADSDATA INTO BUFFER CONN WRITO

R TCP STICK SENDS

K Kunti

É

1

yywyyny.gg
SND UNA OLDOST UNACKED SEGMENT

SND NXT NEXT SEQUENCE NUMBER TO BESENT
NEXT BYTE TO BE SENT

In

BYTES IN FLIGHT DATA THAT HAS
BEEN SENT OUT BUTNOTACK'D YET

NOTE IF BUFFER BECOMES FULL WRITE FROM

APP SHOULD BLOCK UNTIL DATAAVAILABLE

SENDER OPERATION

SEND UP TO WINDOW
ADVANCE NYT

BYTES IN FLIGHT ADVERTISED
WINDOW

KEEP TRACK OF IN FLIGHT SEGMENTS

RETRANSMIT ON TIMEOUT RETRANSMIT QUEUED

ONACK FOR SOME SEGMENTS

ACK MUST FALL WITHIN WINDOW

UNA L S ACK G NXT
WITHIN BYTES IN

FLIGHT
IF NOT ACK is INVALID OLD I DROP

OTHERWISE
Unst HOW MUCH DATA

WAS ACK'D
IF ACK FULLY COOLED A

SEGMENT REMOVE FROM RETRANSMITQUEUE

EXAMPLE 10 I BYTE SEGMENT

UNA b W Y W will 14,13
A
IN FLIGHT

IF YOU GET ACE 12 w 12
13,141,5

CAYEND

Ex 10 BYTE SEGMENTS

START S RAI HAVERECEIVED
UNA 9 UP to 30

FLIGHT 10,43040 ggct.gg
CEXPcetSEG30NEtt

UNA 31

INFLIGHT yo so

FOR EACH SEGMENT
KEEP TIMESTAMP OF LAST SENT

TIME
RETRANSMIT IF IT EXPIRES

RECEIVING SIDE RIV
DATA WAITINGTOBE
REsb tPP h

y

i fifty
LBR NINEARY ARRIVALS

APPREADS DATAT CONNREAD LO PACKETS THAT

ARRIVE OUTOFORDU
RCUNXT NEXT BYTE EXPECTTO RECEIVE

NEXT SEQNVM EXPECTTORCU

BR LAST BYTE READ BY APD

AMOUNT OF SPACETFE.MNIBUFFER CAN BE o

MAXBUF KNIT D LBR

THIS IS WHAT IS SENT
IN WINDOW FIELD

PROBLEM OUT OF ORDEN PACKETS
SOLUTION YEARLY ARRIVAL QUEUE
TRACKS SEGMENTS ARRIVING
AFTER NXT BUT WIN BOUND

WHEN REENA GETS A SEGMENT S
MUST CHECK IF FITS IN WINDOW

S SEA CRCVNATAND S SEG CRV NXT TRCUTWND

OR
SIMILAR CHECK FOR END OF WINDOW

RFC9293Sec3.4

ADD AT POSITION 5 SEG
NXT SEGMENT SIZE
CHECK EARLY ARRIVAL
QUEUE MOVE UP TO

NEXT CONTUOUS PART

Is He

timeor

Rein
144A

I M

ACK number: last segment the receiver has in order

Sender example from class (cleaner version on next page)

s R

FIFA
q
Nxt

i

Allah
ARRIVA IS

REFLECT LAST BYTE
i

UPDATEI CONSIDER

t.EE ii.n
Iet

Some Visualizations

• Normal conditions: https://www.youtube.com/watch?
v=zY3Sxvj8kZA

• With packet loss: https://www.youtube.com/watch?
v=lk27yiITOvU

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU
https://www.youtube.com/watch?v=lk27yiITOvU

Unfilled buffer

Data received,but not acknowledged

Data receive
d, acknowledged

and delive
red to applica

tion

Sequence numbers
(Circumference = 0 to 2^32 slots)

Data received, acknowledged,
but not yet delivered to application

Initial
sequence
number

Receiver's window
(Allocation buffer)
Up to 2^16-1 slots

Window
shifts

rw
nd advertisem

ent

ISN

I LBR

t

What happens if the receiving app never reads from its buffer?

X FUN
X WIPADVELTISED

WINDOW

TO DECREASES

Flow control

 - Receive buffer fills up

 - Advertised window goes to zero

 - When WIN=0, sender must stop sending

 - Send buffer will fill up (if app keeps sending)

 - If send buffer is full, sender’s Write() will block

Problem: need a way for sender to know when space is available
again!

Resolution: zero window probing
– Sender periodically sends 1-byte segments

– Receiver sends back ACK with advertised window (even if it has no room
for segment

What happens if the receiving app never reads from its buffer?

fig

ox

Problem: need a way for sender to know when space is available
again!

Resolution: zero window probing
– Sender periodically sends 1-byte segments

– Receiver sends back ACK with advertised window (even if it has no room
for segment

– Sender can resume sending when win != 0 (preferably when win >= MSS)

What happens if the receiving app never reads from its buffer?

OUT OF WINDOW

Iii

AVOIDANCE

S Ry I 2 3 45

A B C D E

i 23

Effigy

Hippy
WAITINGFORACK
BOUNDEDBY

teeny

ÉW SENDENMUST
STOPSENDING

ENTER ZOO
WINDOW PROBE
MODE

Complete send/recv example with zero-window probing (ZWP part on next page)

S R

Nj ÉYE
NEXT ONI BYTE

I ÉE No space
AVAILABLE

Sta I 2 3 4 5

2W
ÉPÉE APDjeg

I

READS ZBYTH

E SPACE NOW
AVAILABLE
SENDINGCAN
RESUME

WHATTO DO WHEN WINDOW IS
Fun

ZERO WINDOW PROBING

SENDER SENDS I BYTE
SEGMENT PERIODICALLY
RECEIVER WILL ACK WHICH
WILL INDICATE IF ITS WINDOW
HAS CHANGED

TCP State Diagram

How do ACKs work?

• ACK contains next expected sequence number

• Sender: if one segment is missed but new ones received, send
duplicate ACK

How do ACKs work?

• ACK contains next expected sequence number

• Sender: if one segment is missed but new ones received, send
duplicate ACK

• Receiver retransmits when:
– Receive timeout (RTO) expires

– Possibly other conditions, for certain TCP variants (eg. 3 dup ACKs)

• How to set RTO?

What’s a good timeout value?
 - 0.5s? 1s? 0.01s?

A B

II

RTEST I T

Thoughts?

 - If timeout is too small, packet might have not arrived (latency)

 - If timeout is too long, will affect throughput

 => Can’t just pick a fixed timeout value

Strategy: measure RTT based on ACKs
received, use this to set a timeout value

 => Timeout time is called RTO

Computing RTO

Strategy: measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWMA)

• RFC793 version (“smoothed RTT”):
SRTT = (⍺ * SRTTLast) + (1 - ⍺)* RTTMeasured

RTO = max(RTOMin, min(β * SRTT, RTOMax))

⍺ = “Smoothing factor”: .8-.9

β = “Delay variance factor”: 1.3—2.0

RTOMin = 1 second
RFC793, Sec 3.7

RFC6298 (slightly more complicated,
also measures variance)

PREVEST NEY
SEGMENT

M T
Upper t Lowth BOUND

Using the RTO timer

Recommended by RFC6298
• Maintain ONE timer per connection

• When segment is sent => set timer to expire after tRTO

• When ACK is received with new data, reset the timer

When the timer expires:
• Retransmit earliest unacknowledged segment
• RTO = 2 * RTO (up to some max)
• If no data after N retransmissions => give up, terminate connection

This is only the beginning…

• Problem 1: what if ACK is for a retransmitted segment?
– Solution: don’t update RTT if segment was retransmitted

• Problem 2: RTT can have high variance
– Initial implementation doesn’t account for this (modern version, RFC6298)

– Congestion control: modeling network load

