
CSCI-1680
Transport Layer II

Data over TCP: Flow Control

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• TCP Gearup I TONIGHT (10/26) 5-7pm, CIT368
– How the project works, how to think about sockets
– Stuff you need for milestone 1

• TCP milestone 1: Schedule on/before Thursday, November 2
– Email later today for signups

• HW2: Due Mon, Oct 30
– Last problem helpful for milestone 1

The story so far
Stop and Wait: Simplest TCP sender/receiver

The story so far
Stop and Wait: Simplest TCP sender/receiver

Key features
 - SEQ/ACK numbers denote where sender/receiver are in data stream
 - Only one segment is ”in flight” at a time

Warmup: Stop and Wait

SEQ: 1, ACK: 1, LEN: 5
“hello”conn.Write(“hello_world”)

…

SEQ: 1, ACK: ___, WIN: ___

SEQ: ____, ACK: 1, LEN: 5
“_worl”

SEQ: _____, ACK: ____, WIN: ____

SEQ: ____, ACK: 1, LEN: 1
“d”

SEQ: _____, ACK: ____, WIN: ____

(TCP Handshake)
What are the values for the SEQ and ACK fields?

Warmup: Stop and Wait

SEQ: 1, ACK: 1, LEN: 5
“hello”conn.Write(“hello_world”)

…

SEQ: 1, ACK: ___, WIN: ___

SEQ: ____, ACK: 1, LEN: 5
“_worl”

SEQ: _____, ACK: ____, WIN: ____

SEQ: ____, ACK: 1, LEN: 1
“d”

SEQ: _____, ACK: ____, WIN: ____

(TCP Handshake)
What are the values for the SEQ and ACK fields?

Key features
 - SEQ: Position of this segment in the data
stream
 - ACK: Next sequence number the receiver
expects to receive (ACK N == “I have up to
(N – 1)”)

Warmup: Stop and Wait

SEQ: 1, ACK: 1, LEN: 5
“hello”conn.Write(“hello_world”)

…

SEQ: 1, ACK: ___, WIN: 95

SEQ: ____, ACK: 1, LEN: 5
“_worl”

SEQ: _____, ACK: ____, WIN: 90

SEQ: ____, ACK: 1, LEN: 1
“d”

SEQ: _____, ACK: ____, WIN: 89

(TCP Handshake)
What are the values for the SEQ and ACK fields?

Advertised window: how much space the
receiver has left in its receive buffer
=> Window (WIN) field in TCP header

Key features
 - SEQ: Position of this segment in the data
stream
 - ACK: Next sequence number the receiver
expects to receive (ACK N == “I have up to
(N – 1)”)

Topics for today

• Flow control: Sliding window
• Computing RTO
• Connection termination

TCP and buffering

Recall: TCP stack responsibilities
• Sender: breaking application data into segments
• Receiver: receiving segments, reassembling them in order

TCP and buffering

Recall: TCP stack responsibilities
• Sender: breaking application data into segments
• Receiver: receiving segments, reassembling them in order

TCP stack needs to buffer data for both parts
• Sender: data waiting to be sent, not yet ACK’d
• Receiver: data not yet read by app, out-of-order segments

TCP and buffering

Recall: TCP stack responsibilities
• Sender: breaking application data into segments
• Receiver: receiving segments, reassembling them in order

TCP stack needs to buffer data for both parts
• Sender: data waiting to be sent, not yet ACK’d
• Receiver: data not yet read by app, out-of-order segments

Remember: in reality, both sides can send and receive!
=> All sockets have both a send and receive buffer

Sliding window: in abstract terms

• Window of size w
• Can send at most w packets before waiting for an ACK

Goals
– Network “pipe” always filled with data
– ACKs come back at rate data is delivered => “self-clocking”

Sender example

Receiver example

Flow Control: Sender

Invariants
• LastByteSent – LastByteAcked <= AdvertisedWindow
• EffectiveWindow = AdvertisedWindow – (BytesInFlight)
• LastByteWritten – LastByteAcked <= MaxSendBuffer

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)

Useful Sliding Window
Terminology:

RFC 9293, Sec 3.3.1

Flow control: receiver

• Can accept data if space in window
• Available window =

 BufferSize– ((NextByteExpected-1) - LastByteRead

• On receiving segment for byte S
– if s is outside window, ignore packet
– if s == NextByteExpected:

• Deliver to application (Update LastByteReceived)
• If next segment was early arrival, deliver it too

– If s > NextByteExpected, but within window
• Queue as early arrival

• Send ACK for highest contiguous byte received, available window

Sending application

LastByteWritten
TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead
TCP

LastByteRcvdNextByteExpected

(a) (b)

Useful Sliding Window
Terminology:

RFC 9293, Sec 3.3.1

Unfilled buffer

Data received,but not acknowledged

Data re
ceive

d, a
ckn

owledged

and delive
red to

 applica
tion

Sequence numbers
(Circumference = 0 to 2^32 slots)

Data received, acknowledged,
but not yet delivered to application

Initial
sequence
number

Receiver's window
(Allocation buffer)
Up to 2^16-1 slots

Window
shifts

rw
nd advertisem

ent

Some Visualizations

• Normal conditions:
https://www.youtube.com/watch?v=zY3Sxvj8kZA

• With packet loss:
https://www.youtube.com/watch?v=lk27yiITOvU

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU

What happens if the receiving app never reads from its buffer?

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

What happens if the receiving app never reads from its buffer?

Application process

Write
bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP

Receive buffer

…

… …

Þ Receive buffer fills up => Advertised window drops to 0
Þ Send buffer fills up
Þ Eventually, sending app can’t send anymore

Problem: need a way for sender to know when space is available
again!

What happens if the receiving app never reads from its buffer?

Problem: need a way for sender to know when space is available
again!

Resolution: zero window probing
– Sender periodically sends 1-byte segments
– Receiver sends back ACK with advertised window (even if it has no room

for segment

What happens if the receiving app never reads from its buffer?

Problem: need a way for sender to know when space is available
again!

Resolution: zero window probing
– Sender periodically sends 1-byte segments
– Receiver sends back ACK with advertised window (even if it has no room

for segment
– Sender can resume sending when win != 0 (preferably when win >= MSS)

What happens if the receiving app never reads from its buffer?

TCP State Diagram
CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK
(Step 3 of the 3-way-handshake)

Data exchange occurs

ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-

How do ACKs work?

• ACK contains next expected sequence number
• Sender: if one segment is missed but new ones received, send

duplicate ACK
• Receiver retransmits when:
– Receive timeout (RTO) expires
– Possibly other conditions, for certain TCP variants (eg. 3 dup ACKs)

• How to set RTO?

What’s a good timeout value?
 - 0.5s? 1s? 0.01s?

What’s a good timeout value?
 - 0.5s? 1s? 0.01s?

=> If timeout too short, packet might still be in flight (network latency, etc.)

=> If timeout too long, affects throughput

What’s a good timeout value?
 - 0.5s? 1s? 0.01s?

=> If timeout too short, packet might still be in flight (network latency, etc.)

=> If timeout too long, affects throughput

=> How long should it take a packet to arrive at other side?

What’s a good timeout value?
 - 0.5s? 1s? 0.01s?

=> If timeout too short, packet might still be in flight (network latency, etc.)

=> If timeout too long, affects throughput

ÞHow long should it take a packet to arrive at other side?

1RTT!
 =>Can measure RTT, use to set RTO

Computing RTO

Strategy: measure expected RTT based on ACKs received
– Use exponentially weighted moving average (EWMA)

Computing RTO

Strategy: measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWMA)
• RFC793 version (“smoothed RTT”):

SRTT = (⍺ * SRTTLast) + (1 - ⍺)* RTTMeasured
RTO = max(RTOMin, min(β * SRTT, RTOMax))

⍺ = “Smoothing factor”: .8-.9
β = “Delay variance factor”: 1.3—2.0
RTOMin = 1 second

RFC793, Sec 3.7
RFC6298 (slightly more complicated,

also measures variance)

Using the RTO timer

Recommended by RFC6298
• Maintain ONE timer per connection
• When segment is sent => set timer to expire after tRTO

• When ACK is received with new data, reset the timer

Using the RTO timer

Recommended by RFC6298
• Maintain ONE timer per connection
• When segment is sent => set timer to expire after tRTO

• When ACK is received with new data, reset the timer

When the timer expires:
• Retransmit earliest unacknowledged segment
• RTO = 2 * RTO (up to some max)
• If no data after N retransmissions => give up, terminate

connection

This is only the beginning…

• Problem 1: what if ACK is for a retransmitted segment?
– Solution: don’t update RTT if segment was retransmitted

• Problem 2: RTT can have high variance
– Initial implementation doesn’t account for this (modern version, RFC6298)
– Congestion control: modeling network load

