CSCI-1680
Transport LayertV

Data over TCP

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

Warmup

« Sender wants to send “abcdef”
« Max segment size (MSS) = 1
e Receiver's window = 4

How many packets are sent
before the first ACK?

Warmup: Sliding Window

Max segment size (MSS) = 1 y
Receiver's window = 4 Low: -
Sender sends "abcdef” \ /

U —S
(TCP Handshake)
—>]

How many packets are sent before the first ACK? [€
(and what's in them?)

conn.Write(“abcdef”)

(2 2 ¢ < \ﬁk%
Apgp cPE W Tg F
C——M &c&‘l Acil'
PR /»Fwﬂ) E67] Ak o

(WAITING Foe ack) [=* y
=2 Boyos) 3¥ £ :

— (Do MUST
[T0P Simd)n6,

L,k, ENTBY ZohD
Wirgo,o Thopy-

Moo

What happens when you have a timeout on the sending side?
=> If you have multiple packets in flight, what do you retransmit?

- At minimum retransmit the oldest segment (“b”)
- Could also resend the whole window

=> There also exist TCP options to tell the sender specifically what segments you
received (but not in minimal spec)

Administrivia

Sign up for TCP milestone I: this meeting should be this week
REER (shortl): out today, one problem, practice for TCP
X3

TCP Gearup I: new video + notes—take a look if you haven't

TCP Gearup Il: Thursday (11/2) 5-7pm, CIT368
— Sliding window, how to test/debug

Grading is in progress... we are prioritizing your milestone meetings so you get
real-time feedback

Topics for today

« Connection termination
« Some sending mechanics

« Motivation for congestion control

Connection termination

A 4-step process

« When you have no more data to send, send a FIN
—

« Both sides close connection separately! \ Iy
AN /M

pove
CErMoING 7

Ceols A ComrenwYf-wrl “iun" O EC
Oe Sipe ¢ => ACTIE eLPsE !
anIe SipE st~ S IVE ¢ LofE!
&
Lok -~ o YRIE
Eir-wpr] N _ LA Al
o Gl WM T

At this point, we
know other side is

~7 done sending
/,//U - WAle o s VU => But we could still
Can’t send anymore from send data

app
TCP stack could still have
data to send/ack

Might still receive data
S R i——

(AST_A LR

TIME i 17

ﬁ

Even after all of this, thelinitiating side doesn’t know the final ACK
was received

If the ACK was lost, we might need to retransmit, so we can’t delete
the TCB yet

Solution: need to wait-a while before- we can delete the TCB (purges
TCP state for this connection)

=>How long to wait? 2*MSL (longest time a segment might be
delayed) ~2 minutes, configurable

lf-practice, when we close a connection, it means we’re done reading-and writing
=> BUT, TCP allows you to close one side at a time (and this process is what lets
us-do-it)

[F Yov ME A F1s Serikt Ao

TCP State Diagram

CONNECT/SYN ‘Step 1 of the 3-way-handshake)

seeseeeeeeeoe e UNUSUAl event

—y gerver/sender path LISTEW‘l

CLOSE/-

Step 2 of the 3-way-handshake) SYN/SYN+ACK @

A

RST/- : SEND/SYN
RECEIVED [« SYNSYNSACK (simultsncous open)

Data exchange occurs
- PYpp— SYN+ACK/ACK
. | ‘Step 3 of the 3-way-handshake)

| CLOSE/FIN
: CLOSE/FIN FINJACK

| Active CLOSEE |Passive CLOSE]
Y
7 ®! CLOSING CLOSE WAIT

CLOSE/FIN

FINFACK
FIN*ACK/ACK

ACK/-

back to start)

Connection termination

A 4-step process

« When you have no more data to send, send a FIN

 Both sides close connection separately!

e How to know when last ACK received?

* Initiating side must wait for 2*MSL before deleting TCB

=> MSL = Longest time a segment might be delayed
(configurable, ~1min)

Connection termination

A 4-step process

« When you have no more data to send, send a FIN

 Both sides close connection separately!

e How to know when last ACK received?

* Initiating side must wait for 2*MSL before deleting TCB

=> MSL = Longest time a segment might be delayed
(configurable, ~1min)

[Why do we need to wait this long?

Other mechanics for sending packets
(used in modern TCPs, not required for project)

Example: telnet/SSH

Terminal input <=> TCP connection

Pt e (D 2)

n ()
1Y, Ly U

s
ALt /9 (22778 [oTT
% OF Nithwer
OVELNELY) zem
@m/ SHALL f@éﬂvrﬁ/
)

Example: telnet/SSH

Terminal input <=> TCP connection

Problems
=> Tiny packets means high overhead!
=> But also don’t want to add latency

\=> How to decide when to send? |\/||1|1'i|n|p qfrafpgipq

One way: add some more logic to the sender

Nagle’s algorithm

TCR L0puAy

Goal: reduce the overhead of small packets

if (there is data to send) and (window >= MSS)

—Send a MSS segment

else

s S—

if there is unAcked data in flight

else

buffer the new data until ACK frrﬁ%@

send all the new data now \\551‘39

One way: add some more logic to the sender

Nagle’s algorithm

Goal: reduce the overhead of small packets

if (there is data to send) and (window >= MSS)
Send a MSS segment
else
if there is unAcked data in flight
buffer the new data until ACK arrives
else e D
send all the new data now

—= oot 7ins (LA LTS AT
Lxpcr or LAz

One way: add some more logic to the sender

Nagle’s algorithm

Goal: reduce the overhead of small packets

if (there is data to send) and (window >= MSS)
Send a MSS segment
else
if there is unAcked data in flight
buffer the new data until ACK arrives
else
send all the new data now

Recommended in some cases, but waiting to send not
always a great idea
=> Configurable on socket creation

Another way: change the receiver

What if receiving app only reads 1 byte at a time?

Yet another way: receiver could delay sending ACK for short time (400ms),

in case it has data to send
=> All data segments are ACKs, so why send packet again?

Delayed Acknowledgments

« Goal: Piggy-back ACKs on data
— Delay ACK for 200ms in case application sends data

— If more data received, immediately ACK second segment

— Note: never delay duplicate ACKs (if missing a segment)

Delayed Acknowledgments

« Goal: Piggy-back ACKs on data
— Delay ACK for 200ms in case application sends data
— If more data received, immediately ACK second segment

— Note: never delay duplicate ACKs (if missing a segment)

« Warning: can interact badly with Nagle for some applications
— Nagle waits for ACK until send => Temporary deadlock
— App can disable Nagle with TCP_NODELAY

— App should also avoid many small writes

Congestion control: the start

The story so far

Flow control provides reliable, in-order delivery

Goal: send as much data as receiver can handle

— Receiver’s advertised window: sent with every ACK

— Sliding window: increase throughput by having multiple packets in flight

The story so far

Flow control provides reliable, in-order delivery

Goal: send as much data as receiver can handle

— Receiver’s advertised window: sent with every ACK

— Sliding window: increase throughput by having multiple packets in flight

[Problems? }

What would happen with our current sliding window implementation?
O—0o—0—0
Pt/

i

What else do we need?

 Flow control provides correctness: reliable, in order delivery

* Need more for performance
— What if the network is the bottleneck?

How do we know when the network is overloaded?

Epseerimm: L

Y WA A gp (2B
— OCRLEASED LATEC

AL

o

tr

|

/}) T
. {) LA Nper Lo 9) 0rpr
3 A BOTTLE7VELC LK
; a— N TR //
[/ &
{ A)

M

‘Y\\'\ /EL,

N
[

Iﬁ)\ \\O 1\4-

de e

very netwa

rk device is a queue of packets wa

ting 1

o be/send out

ally

Buffer ¢

as part of
an fill up if

ne

estination port

forthe pa

cket)

ots 0
Dutpu

f senders
t has a lov

trying
ver b

) to use the san
andwidth than t

ne lin
he input

ou fil

the buffer

- new

est packets ge

t dropped

)

7N 2 e V]

T LINKINE ABBYT (oweATim
Conrro
_—/

%
y @ @,}?@ @9

\

Throughput increases until link capacity

reached

Once the bottleneck starts buffering packets, /t VL ﬁVFfﬁ%

throughput stops increasing, RTT increases =

(more queuing => more time spent in the buffer) >,§4Cﬂb7/
o/l

After queue fills, packets are dropped/retransmitted =>
RTT increases, useful throughput decreases

The problem

* https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-
aimd.ogv

https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv
https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv

Congestion control

We must not send more data than the network can handle

What happens it we do?

A Short History of TCP

1974: 3-way handshake

1978: IP and TCP split

1983: January 1st, ARPAnet switches to TCP/IP
1984: Nagle predicts congestion collapses

1986: Internet begins to suffer congestion collapses
— LBL to Berkeley drops from 32Kbps to 40bps

1987/8: Van Jacobson fixes TCP, publishes seminal
paper*: (TCP Tahoe)

1990: Fast transmit and fast recovery added
(TCP Reno)

* Van Jacobson and Michael Karels. Congestion avoidance and control. SIGCOMM ‘88

Congestion Collapse
Nagle, rfc896, 1984

« Mid 1980's: Problem with the protocol implementations, not the
protocol!

« What was happening?

* If close to capacity, and, e.g., a large flow arrives suddenly...
— RTT estimates become too short
— Lots of retransmissions = increase in queue size
— Eventually many drops happen (full queues)

— Fraction of useful packets (not copies) decreases

Congestion control: the mainidea

- Determine the initial capacity of the network

- Adjust the sending rate as the capacity changes over time
continually monitor something that gives indication about the network

How to do this? A modern TCP has two “windows”

- Advertised window from receiver (WIN in the TCP headerO
- Congestion window/(cwnd)

Amount of data you can send = min(advertised window, cwnd)

Lots of different ways that this control process happens (ways to signal the

network'is congested):
- Loss-based congestion control (TCP Tahoe, ...) => packet loss ===

congestion
Monitor packet delay

(if network cooperates) routers can mark packets (ECN)

DTALA

= E |
LY Aot cumn.
U

)

—J

X
X

=

[C N \"‘ .21/
/_I oLV
—)

TCP Congestion Control

« 3 Key Challenges
— Determining the available capacity in the first place
— Adjusting to changes in the available capacity
— Sharing capacity between flows

* |dea
— Each source determines network capacity for itself
— Rate is determined by window size
— Uses implicit feedback (drops, delay)
— ACKs pace transmission (self-clocking)

Congestion control has a long history

 Active research area for ~40 years

| am nowhere close to being an expert

« My hope is to get you to understand the problems involved

Timeline of (somel) congestion control implementations

CUBIC Remy

lllinois Sprout
HTCP PRR
HSTCP PCC Vivace
Veno CTCP Ledbat TIMELY Copa

New Reno
2001 2004 2011 2016 2019
1999 T2003 2006 2010 BBR

Binomial BIC YeAH DCTCP Proprate
Westwood FAST
Jersey
Hybla

https://dl.acm.org/doi/abs/10.1145/3366693

