CSCI-1680
Transport Layer |V

Data over TCP

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

Warmup

e Sender wants to send "“abcdet”
« Max segment size (MSS) = 1
* Receiver's window = 4

How many packets are sent
before the first ACK?

Warmup: Sliding Window

Max segment size (MSS) = 1
Receiver's window = 4
Sender sends “abcdef”

How many packets are sent before the first ACK? €

— (TCP Handshake)
(and what's in them?) :]

conn.Write(“abcdef”)

Administrivia

* Sign up for TCP milestone I: this meeting should be this week
* HW4 (shortl): out today, one problem, practice for TCP

» TCP Gearup I: new video + notes—take a look it you haven't

* TCP Gearup Il: Thursday (11/2) 5-7pm, CIT368
— Sliding window, how to test/debug

Grading is in progress... we are prioritizing your milestone meetings so you get
real-time feedback

Topics for today

» Connection termination
* Some sending mechanics
» Motivation for congestion control

Connection termination

A 4-step process
* When you have no more data to send, send a FIN
+ Both sides close connection separately!

TCP State Diagram

CONNECT/SYN (Step 1 of the 3-way-handshake)

ceeveeneen. e UNusual event
————> client/receiver path (Start) _ P ORI

———> server/sender path LISTEN/-¢

T TR
i CLOSE/-

(St 2 of the 3- -handshake) SYN/SYN+ACK
ep o e way-handshake | LISTEN |

.

RST- SEND/SYN

SYN :
RECEIVED | <o SYNSYNFACK (simultancous open)

Data exchange occurs
SYN+ACK/ACK

- (Step 3 of the 3-way-handshake)

.
v

{ CLOSE/FIN
‘ CLOSE/FIN FINJACK

| Active CLOSE| |Passive CLOSE|-
\
| CLOSEWAIT |

FIN/ACK

| FIN WAIT 1

CLOSING |
FIN+ACK/ACK :

£ ACK- CLOSE/FIN

| Y
FIN/ACK

Timeout

Connection termination

A 4-step process
* When you have no more data to send, send a FIN
+ Both sides close connection separately!

e How to know when last ACK received?

e Initiating side must wait for 2*MSL before deleting TCB

=> MSL = Longest time a segment might be delayed
(configurable, ~1min)

[Why do we need to wait this long?

Other mechanics for sending packets
(used in modern TCPs, not required for project)

Example: telnet/SSH

Terminal input <=> TCP connection

Example: telnet/SSH

Terminal input <=> TCP connection

Problems

=> Tiny packets means high overhead!
=> But also don’t want to add latency

\=> How to decide when to send? Multiple strategies.

One way: add some more logic to the sender

Nagle’s algorithm

Goal: reduce the overhead of small packets
if (there is data to send) and (window >= MSS)
Send a MSS segment
else
if there is unAcked data in flight
buffer the new data until ACK arrives
else
send all the new data now

One way: add some more logic to the sender

Nagle’s algorithm

Goal: reduce the overhead of small packets
if (there is data to send) and (window >= MSS)
Send a MSS segment
else
if there is unAcked data in flight
buffer the new data until ACK arrives
else
send all the new data now

Recommended in some cases, but waiting to send not

always a great idea
=> Configurable on socket creation

Another way: change how the receiver advertises the window

What if receiving app only reads 1 byte at a time?

Another way: change how the receiver advertises the window

What if receiving app only reads 1 byte at a time?

Another way: change the receiver

What if receiving app only reads 1 byte at a time?

Yet another way: receiver could delay sending ACK for short time (400ms),
in case it has data to send
=> All data segments are ACKs, so why send packet again?

Delayed Acknowledgments

* Goal: Piggy-back ACKs on data

— Delay ACK for 200ms in case application sends data
— |f more data received, immediately ACK second segment
— Note: never delay duplicate ACKs (if missing a segment)

» Warning: can interact badly with Nagle for some applications

— Nagle waits for ACK until send => Temporary deadlock
— App can disable Nagle with TCP_NODELAY
— App should also avoid many small writes

Congestion control: the start

The story so far

Flow control provides reliable, in-order delivery

Goal: send as much data as receiver can handle
— Receiver’s advertised window: sent with every ACK

— Sliding window: increase throughput by having multiple packets in
flight

E Problems?

What would happen with our current sliding window implementation?

What else do we need?

* Flow control provides correctness: reliable, in order delivery

* Need more for performance
— What if the network is the bottleneck?

How do we know when the network is overloaded?

What can go wrong?

Congestion control

We must not send more data than the network can handle

What happens it we do?

A Short History of TCP

1974: 3-way handshake

1978: IP and TCP split

1983: January 15t, ARPAnet switches to TCP/IP
1984: Nagle predicts congestion collapses

1986: Internet begins to suffer congestion collapses
— LBL to Berkeley drops from 32Kbps to 40bps

1987/8: Van Jacobson fixes TCP, publishes seminal
paper*: (TCP Tahoe)

1990: Fast transmit and fast recovery added
(TCP Reno)

* Van Jacobson and Michael Karels. Congestion avoidance and control. SIGCOMM ’88

Congestion Collapse
Nagle, rfc896, 1984

* Mid 1980’s: Problem with the protocol implementations, not the
protocol!

* What was happening?

* If close to capacity, and, e.g., a large flow arrives suddenly...
— RTT estimates become too short
— Lots of retransmissions = increase in queue size
— Eventually many drops happen (full queues)
— Fraction of useful packets (not copies) decreases

The problem

» https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-
aimd.ogv

https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv
https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv

TCP Congestion Control

« 3 Key Challenges
— Determining the available capacity in the first place
— Adjusting to changes in the available capacity
— Sharing capacity between flows

* |dea
— Each source determines network capacity for itself
— Rate is determined by window size
— Uses implicit feedback (drops, delay)
— ACKSs pace transmission (self-clocking)

Congestion control has a long history

 Active research area for ~40 years

* | am nowhere close to being an expert

* My hope is to get you to understand the problems involved

Timeline of (somel) congestion control implementations

CUBIC ey

[llinois Sprout
HTCP PRR

HSTCP PEC Vivace
Veno CTCP Ledbat TIMELY Copa
New Reno

2003| 2006

Binomial BIC YeAH DCTCP Proprate
Westwood FAST
Jersey
Hybla

https://dl.acm.org/doi/abs/10.1145/3366693

Just a few TCP implementations

What's the difference?

General usage
* Reno (1980s)
* Tahoe

* Vegas

* New Vegas

* Westwood

» Cubic

BBR (2016)

The main idea

Goals
* Determine initial network capacity
» Adjust sending rate as capacity changes

¢ How? Maintain two windows:
— Advertised Window (from receiver)
— Congestion window (cwnd)

Sending rate = min(Advertised Window, cwnd)

* |deally, want to have sending rate: ~= Window/RTT

Dealing with Congestion

To start:

« Assume losses are due to congestion
 After a loss, reduce congestion window

— How much to reduce?
* |dea: conservation of packets at equilibrium

— Want to keep roughly the same number of packets in network
— Analogy with water in fixed-size pipe

— Put new packet into network when one exits

Classical Congestion Control

Loss-based: assume packet loss => congestion

TCP Tahoe (1988)

— Slow start, congestion avoidance, fast retransmit

TCP Reno (1990)

— TCP Tahoe + Fast recovery

Many variations developed from this... (see optional readings)

Modes of operation

e Slow start (SS)

— Determine initial window, recover after loss

« Congestion avoidance (CA)

— Steady state, slowly probe for changes in capacity

Congestion Avoidance

After finishing a window, recompute cwnd:

e |f no losses, cwnd = cwnd + MSS
— (Often written as cwnd += 1)

* If packets were lost: cwnd = cwnd/2

This is known as additive increase, multiplicative decrease (AIMD)
* Slowly increase capacity
» Dramatically scale back on loss

AIMD Example

time

TCP Sawtooth, red curve represents the network capacity

Slow Start

After finishing a window
e cwnd = cwnd * 2
 Continue doing this until you experience a loss

» After first loss, keep slow-start threshold (ssthresh):
— If window < ssthresh: slow-start
— If window > ssthresh: congestion avoidance

e After first loss: ssthresh = cwnd / 2

timeout

time

TCP Tahoe Sawtooth, red curve represents the network capacity
Slow Start is used after each packet loss until ssthresh is reached

How to Detect Loss

Timeout

Any other way?
— Gap in sequence numbers at receiver
— Receiver uses cumulative ACKs: drops => duplicate ACKs

“Fast recovery”: 3 Duplicate ACKs considered loss

Which one is worse?

cwnd [MSS]

all ACKs received T

+ cwnd(new) = 4 x MSS
» ssthresh(new) = cwnd /2

10 1 © some ACKs received

- O timeout (RTO expired)

60 Duplicate ACKs:

O duplicate ACKs received « ssthresh(new) = cwnd /2
50

Timeout:

20 + . « cwnd(new) = 4 x MSS
ACKs for the first » ssthresh(new) = cwnd /2

16 TCP segments

30 <—— ssthresh(new)

20

10
cwnd(new) cwnd(new)

; : : - t [RTT]

10 1" 12

[-

=0 Slow-Start Congestion Slow-Start Congestion

« cwnd(init) = 4 x MSS

« ssthresh(init) = oo AVOidance AVOidanCE

Slow start every time?!

* Losses have large effect on throughput
* Fast Recovery (TCP Reno)

— Same as TCP Tahoe on Timeout: w = 1, slow start
— On triple duplicate ACKs: w = w/2

— Retransmit missing segment (fast retransmit)

— Stay in Congestion Avoidance mode

» Why 3 dup-acks instead of just 17

This is just the beginning...

Lots of congestion control schemes, with different strategies/goals:

Tahoe (1988)
Reno (1990)
Vegas (1994): Detect based on RTT

New Reno: Better recovery multiple losses

Cubic (2006): Linux default, window size scales by cubic function
BBR (2016): Used by Google, measures bandwidth/RTT

BBR

* Problem: can't measure both RTT orop and Bottleneck BW at the
same time

* BBR:

— Slow start

— Measure throughput when RTT starts to increase

— Measure RTT when throughput is still increasing

— Pace packets at the BDP

— Probe by sending faster for 1RTT, then slower to compensate

BBR

Link Capacity

2
©
14
=)
=
S
|
o]
1)
3
©
o

ReN0 s
CUBIC s
BBR wsm

From:

https://labs.ripe.net/Members/gih/bbr-tcp

Help from the network

* What it routers could tell TCP that congestion is happening?

— Congestion causes queues to grow: rate mismatch
» TCP responds to drops
* |dea: Random Early Drop (RED)

— Rather than wait for queue to become full, drop packet with some
probability that increases with queue length

— TCP will react by reducing cwnd
— Could also mark instead of dropping: ECN

Help from the network

* What it routers could tell TCP that congestion is happening?

— Congestion causes queues to grow: rate mismatch

Know: TCP responds to drops

* |dea: Random Early Drop (RED)

— Rather than wait for queue to become full, drop packet with some
probability that increases with queue length

— TCP will react by reducing cwn

RED Advantages

* Probability of dropping a packet of a particular flow is roughly
proportional to the share of the bandwidth that flow is currently

getting
* Higher network utilization with low delays
* Average queue length small, but can absorb bursts

But can we do better?

ECN

What if we didn’t have to drop packets?
* Routers/switches set bits in packet to indicate congestion

ECN

What if we didn’t have to drop packets?

* Routers/switches set bits in packet to indicate congestion

* When sender sees congestion bit, scales back cwnd
* Must be supported by both sender and receiver

=>Avoids retransmissions optionally dropped packets

Special purpose example: DCTCP

BBR

Link Capacity

2
©
14
=)
=
S
|
o]
1)
3
©
o

ReN0 s
CUBIC s
BBR wsm

From: https://labs.ripe.net/Members/gih/bbr-tcp

TCP State Diagram

CONNECT/SYN (Step 1 of the 3-way-handshake)

ceeveeneen. e UNusual event
————> client/receiver path (Start) _ P ORI

———> server/sender path LISTEN/-¢

T TR
i CLOSE/-

(St 2 of the 3- -handshake) SYN/SYN+ACK
ep o e way-handshake | LISTEN |

.

RST- SEND/SYN

SYN :
RECEIVED | <o SYNSYNFACK (simultancous open)

Data exchange occurs
SYN+ACK/ACK

- (Step 3 of the 3-way-handshake)

.
v

{ CLOSE/FIN
‘ CLOSE/FIN FINJACK

| Active CLOSE| |Passive CLOSE|-
\
| CLOSEWAIT |

FIN/ACK

| FIN WAIT 1

CLOSING |
FIN+ACK/ACK :

£ ACK- CLOSE/FIN

| Y
FIN/ACK

Timeout

0

0123456789 012345067890123456789O01

TCP Header

1

2

3

s R e s st e e A e At ¥

Source Port

Destination Port

s R e s st e e A e At ¥

Sequence Number

s R e s st e e A e At ¥

Acknowledgment Number

s R e s st e e A e At ¥
|[UIA|P|R|S|F|
IRICISISIY|T]
|GIKIH|T|N|N|
s R e s st e e A e At ¥

Data |
Offset|

Reserved

Checksum

Window

Urgent Pointer

s R e s st e e A e At ¥

Options

Padding

s R e s st e e A e At ¥

data

s R e s st e e A e At ¥

Extra congestion control content

cwnd |

Putting it all together

Timeout

Timeout

AIMD

ssthresh —»

|

i

AIMD

,//////////////

Slow
Start

Slow
Start

Slow
Start

Time

Y

Fast Recovery and Fast Retransmit

cwnd

Al/MD

Slow Start <I/|/

Fast retransmit

Time

TCP Friendliness

» Can other protocols co-exist with TCP?

— E.g., if you want to write a video streaming app
using UDP, how to do congestion control?

- 1 UDP Flow at 10MBps

31 TCP Flows
Sharing a 10MBps link

—

O =~ NN W & O1 O N 0 © O

_—
7]
Q
2
=
N’
frer]
=
Q
L
()]
=
(o)
-
L
-

1 4 7 10 13 16 19 22 25 28 31
Flow Number

TCP Friendliness

 Can other protocols co-exist with TCP?

— E.g., if you want to write a video streaming app using UDP, how to do
congestion control?

* Equation-based Congestion Control

— Instead of implementing TCP’s CC, estimate the rate at which TCP would
send. Function of what?

— RTT, MSS, Loss
e Measure RTT, Loss, send at that rate!

TCP Throughput

Assume a TCP congestion of window W (segments), round-trip
time of RTT, segment size MSS

— Sending Rate S= W x MSS/ RTT (1)

Drop: W = W/2

— grows by MSS for W/2 RTTs, until another drop at W= W
Average window then 0.75xS

— From (1), S=0.75 WMSS/ RTT (2)

Loss rate is 1 in number of packets between losses:
—Loss=1/(1+W/2+W/2+1 +W/2+2 + ...+ W)
=1/(3/8 W?) (3)

TCP Throughput (cont)

— Loss = 8/(3W-?

— Substituting (

Throughput =
1.22 x M35

RTT- A/ Loss

* Equation-based rate control can be TCP friendly and have better
properties, e.g., small jitter, fast ramp-up...

What Happens When Link is Lossy?

* Throughput = 1/ sqrt(Loss)

" NN
) ’lmmmmm‘m‘m

A/

Wy WVM’}?’"’WM‘M A AVAMA

0

2
1

1 26 51 76 101126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

What can we do about it?

 Two types of losses: congestion and corruption

* One option: mask corruption losses from TCP
— Retransmissions at the link layer

— E.g. Snoop TCP: intercept duplicate acknowledgments, retransmit locally,
filter them from the sender

* Another option:

— Tell the sender about the cause for the drop
— Requires moditication to the TCP endpoints

Congestion Avoidance

» TCP creates congestion to then back oft
— Queues at bottleneck link are often full: increased delay
— Sawtooth pattern: jitter

 Alternative strategy
— Predict when congestion is about to happen
— Reduce rate early

* Other approaches

— Delay Based: TCP Vegas (not covered)

— Better model of congestion: BBR
— Router-centric: RED, ECN, DECBit, DCTCP

Another view of Congestion Control

) A 1 1
£ l l
= I i
o ' '
o 1 1
= : :
N o) [e e e e e e e e e e e e e e e e —————— Fm———————-
c : !
> 1 1
O : :
(a'ed i i .
Bytes in Flight
=
> A 1 1
o 1 1
L 1 1
Yo b e e mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm e A
> 1 1
() I I
[1 1
— I I
I I
I I
I I
I I
I I
]]

L

<

Tput =
InFlight/
RTT5r0p

Bytes in Flight

(h

Diagrams based on Cardwell et al.,
Communications of the ACM, Vol. 60 No. 2, Pages 58-66.

https://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/fulltext

Another view of Congestion Control

) 1 I
= i !
i~ : i
o I :
= RTTprop i i
© T e s Fo--=----
S ! |
O I I
or I I
Bytes in Flight
45 A 1 1
o I 1
< BDP! Bottleneck BW :
[T S T
= \D |
=l i
% i i

Bytes in Flight

Another view of Congestion Control

) A 1 1
£ I W !
a qope = H°
= RTTorop !]
o] R e EEE R Fm——————-
= : :
o) i i
o : : g
Bytes in Flight
45 A 1 1
(@ 1 1
< ; Bottleneck BW :
5 o i E
I s
% i i
BDP Bytes in Flight BDP+Bottleneck
Queue

(h

Another view of Congestion Control

o Ideal . .
= Operating Poiht ;
= g & 7ol o= 1[BW !
o ! S\oP :
= RTT,r0p : ! Loss-based CC
© : --------------------------------------- :r ---------
S ! |
@] I I
o l l g
Bytes in Flight
45 A 1 1
o ! 1
< : Bottleneck BW :
[T P < T
= \D |
=l i
% i i
BDP Bytes in Flight BDP+Bottleneck

Queue

BBR

* Problem: can't measure both RTT orop and Bottleneck BW at the
same time

* BBR:

— Slow start

— Measure throughput when RTT starts to increase

— Measure RTT when throughput is still increasing

— Pace packets at the BDP

— Probe by sending faster for 1RTT, then slower to compensate

BBR

Link Capacity

2
©
14
=)
=
S
|
o]
1)
3
©
o

ReN0 s
CUBIC s
BBR wsm

From: https://labs.ripe.net/Members/gih/bbr-tcp

Help from the network

* What it routers could tell TCP that congestion is happening?

— Congestion causes queues to grow: rate mismatch
» TCP responds to drops
* |dea: Random Early Drop (RED)

— Rather than wait for queue to become full, drop packet with some
probability that increases with queue length

— TCP will react by reducing cwnd
— Could also mark instead of dropping: ECN

RED Details

» Compute average queue length (EWMA)

— Don't want to react to very quick fluctuations

Queue length

Instantaneous

\

\ Average

LIZAN

RED Drop Probability

e Define two thresholds: MinThresh, MaxThresh
* Drop probability:

MinThresh MaxThresh

* Improvements to spread drops (see book)

RED Advantages

Probability of dropping a packet ot a particular flow is roughly
proportional to the share of the bandwidth that flow is currently

getting
Higher network utilization with low delays
Average queue length small, but can absorb bursts

ECN
— Similar to RED, but router sets bit in the packet

— Must be supported by both ends
— Avoids retransmissions optionally dropped packets

What happens it not everyone cooperates?

* TCP works extremely well when its assumptions are valid
— All flows correctly implement congestion control
— Losses are due to congestion

Cheating TCP

» Possible ways to cheat
— Increasing cwnd faster
— Large initial cwnd

— Opening many connections
— Ack Division Attack

Larger Initial Window

B
E

x starts SS with cwnd = 4
y starts SS yvith cwnd =1

Figure from Walrand, Berkeley EECS 122, 2003

Open Many Connections

« Web Browser: has to download k objects for a page

— Open many connections or download sequentially?

A B
D E

Assume:
— A opens 10 connections to B
— B opens 1 connection to E
« TCP is fair among connections
— A gets 10 times more bandwidth than B

Figure from Walrand, Berkeley EECS 122, 2003

Exploiting Implicit Assumptions

« Savage, et al., CCR 1999:

11 1

» Exploits ambiguity in meaning of ACK
— ACKs can specify any byte range for error control

— Congestion control assumes ACKs cover entire sent segments

* What it you send multiple ACKs per segment?

http://www.cs.washington.edu/homes/tom/pubs/CCR99.pdf

ACK Division Attack

* Receiver: "upon receiving a segment with N bytes, divide the

Sender Receiver

bytes in M groups and acknowledge eac|
 Sender will grow window M times faster

e Could cause growth to 4GB in 4 RTTs!
— M =N = 1460

TCP Daytona!

(%))
()
—
>
Q
—
(V)
0
£
>S5
c
(o}
o
c
()
-]
(on
)
)}

Data Segments

ACKs

Data Segments (normal)
ACKs (normal)

Defense

* Appropriate Byte Counting
— [RFC3465 (2003), RFC 5681 (2009)]
— |In slow start, cwnd += min (N, MSS)
where N is the number of newly acknowledged bytes in the received ACK

More help from the network

* Problem: still vulnerable to malicious flows!

— RED will drop packets from large flows preterentially, but they don’t have
to respond appropriately

* |dea: Multiple Queues (one per flow)
— Serve queues in Round-Robin
— Nagle (1987)
— Good: protects against misbehaving flows
— Disadvantage?

Solution

* Bit-by-bit round robing
« Can we do this?

— No, packets cannot be preempted!

* We can only approximate it...

Fair Queueing

* Define a fluid flow system as one where flows are served bit-by-
bit

 Simulate ff, and serve packets in the order in which they would
finish in the ff system

» Each flow will receive exactly its fair share

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid flow
system

Packet
system

Example

time

time

time

time

Implementing FQ

Suppose clock ticks with each bit transmitted
— (RR, among all active flows)

P, is the length of the packet

S, is packet i's start of transmission time

F; is packet i's end of transmission time

F.=S + P,

When does router start transmitting packet i?
— If arrived before F. ;, S. = F.

— If no current packet for this flow, start when packet arrives (call this A): S; = A,

ThUS, Fi — maX(Fi_'| ,Ai) + Pi

Fair Queueing

* Across all flows
— Calculate F; for each packet that arrives on each flow
— Next packet to transmit is that with the lowest F,
— Clock rate depends on the number of flows

« Advantages
— Achieves , independent of sources
— Work conserving
« Disadvantages
— Requires non-trivial support from routers
— Requires reliable identification of flows
— Not perfect: can’t preempt packets

Fair Queueing Example

* 10Mbps link, 1 T0Mbps UDP, 31 TCPs

—

O =~ N WO & O OO N 0 © O
| [

—_
7))
Q
o)
=
N
rrt
=
Q
L
O
=
(o]
|
L
=

1 4 7 10 13 16 19 22 25 28 31 T4 7 10 13 16 19 2225 28 31
Flow Number Flow Number

Big Picture

* Fair Queuing doesn’t eliminate congestion: just manages it
* You need both, ideally:

— End-host congestion control to adapt
— Router congestion control to provide isolation

Congestion control: motivation

The story so far

* Flow control: reliable, in-order delivery
e Goal: send as much data as receiver can

handle

— Receiver's advertised window: sent with
every ACK

» Sliding window: increase throughput by
having multiple packets in flight

Summary: flow control

Flow control provides correctness: reliable, in order delivery

Need more for performance
— What if the network is the bottleneck?

Sending too fast will cause queue overflows, heavy packet loss
Need more for performance: congestion control

A Short History of TCP

1974: 3-way handshake

1978: IP and TCP split

1983: January 15t, ARPAnet switches to TCP/IP
1984: Nagle predicts congestion collapses

1986: Internet begins to suffer
— LBL to Berkeley drops from 32Kbps to 40bps

1987/8: Van Jacobson fixes TCP, publishes seminal
paper*: ()

1990: Fast transmit and fast recovery added
()

* Van Jacobson and Michael Karels. Congestion avoidance and control. SIGCOMM ’88

Congestion Collapse
Nagle, rfc896, 1984

* Mid 1980’s: Problem with the protocol implementations, not the
protocol!

* What was happening?

* If close to capacity, and, e.g., a large flow arrives suddenly...
— RTT estimates become too short
— Lots of retransmissions = increase in queue size
— Eventually many drops happen (full queues)
— Fraction of useful packets (not copies) decreases

The problem

» https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-
aimd.ogv

https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv
https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv

TCP Congestion Control

« 3 Key Challenges
— Determining the available capacity in the first place
— Adjusting to changes in the available capacity
— Sharing capacity between flows

* |dea
— Each source determines network capacity for itself
— Rate is determined by window size
— Uses implicit feedback (drops, delay)
— ACKSs pace transmission (self-clocking)

Congestion control has a long history

 Active research area for ~40 years

* | am nowhere close to being an expert

* My hope is to get you to understand the problems involved

Just a few TCP implementations

What's the difference?

General usage
* Reno (1980s)
* Tahoe

* Vegas

* New Vegas

* Westwood

» Cubic

BBR (2016)

Dealing with Congestion

 Maintain two windows:
— Advertised Window (from receiver)
— Congestion window (cwnd)

Sending rate = min(Advertised Window, cwnd)

* |deally, want to have sending rate: ~= Window/RTT

Dealing with Congestion

« Assume losses are due to congestion

 After a loss, reduce congestion window
— How much to reduce?

* |dea: conservation of packets at equilibrium
— Want to keep roughly the same number of packets in network
— Analogy with water in fixed-size pipe
— Put new packet into network when one exits

Next time

e TCP Tahoe/Reno
e QOverview of other CC schemes

