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Warmup
• Sender wants to send “abcdef”
• Max segment size (MSS) = 1
• Receiver’s window = 4
How many packets are sent 
before the first ACK?



Warmup:  Sliding Window

conn.Write(“abcdef”)

…

(TCP Handshake)

Max segment size (MSS) = 1
Receiver’s window = 4
Sender sends ”abcdef”

How many packets are sent before the first ACK?
(and what’s in them?)



Administrivia

• Sign up for TCP milestone I:  this meeting should be this week
• HW4 (short!):  out today, one problem, practice for TCP

• TCP Gearup I:  new video + notes—take a look if you haven’t
• TCP Gearup II:  Thursday (11/2) 5-7pm, CIT368
– Sliding window, how to test/debug

Grading is in progress… we are prioritizing your milestone meetings so you get 
real-time feedback



Topics for today

• Connection termination
• Some sending mechanics
• Motivation for congestion control



Connection termination
A 4-step process
• When you have no more data to send, send a FIN
• Both sides close connection separately!
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Connection termination
A 4-step process
• When you have no more data to send, send a FIN
• Both sides close connection separately!

• How to know when last ACK received?  
• Initiating side must wait for 2*MSL before deleting TCB

=> MSL = Longest time a segment might be delayed 
(configurable, ~1min)

Why do we need to wait this long?  



Other mechanics for sending packets
(used in modern TCPs, not required for project)



Example:  telnet/SSH
Terminal input <=> TCP connection



Example:  telnet/SSH
Terminal input <=> TCP connection

Problems
 => Tiny packets means high overhead!
 => But also don’t want to add latency

=> How to decide when to send?  Multiple strategies.



Nagle’s algorithm
Goal: reduce the overhead of small packets

if (there is data to send) and (window >= MSS)
 Send a MSS segment
else
 if there is unAcked data in flight
   buffer the new data until ACK arrives
 else
   send all the new data now

One way:  add some more logic to the sender



Nagle’s algorithm
Goal: reduce the overhead of small packets

if (there is data to send) and (window >= MSS)
 Send a MSS segment
else
 if there is unAcked data in flight
   buffer the new data until ACK arrives
 else
   send all the new data now

One way:  add some more logic to the sender

Recommended in some cases, but waiting to send not 
always a great idea
=> Configurable on socket creation



Another way:  change how the receiver advertises the window

What if receiving app only reads 1 byte at a time?



Another way:  change how the receiver advertises the window

What if receiving app only reads 1 byte at a time?

Silly Window Syndrome (SWS) Avoidance:  when window is zero, 
wait until 1MSS of receive buffer space is available before 
advertising nonzero window



Another way:  change the receiver

What if receiving app only reads 1 byte at a time?

Silly Window Syndrome (SWS) Avoidance:  when window is zero, 
wait until 1MSS of receive buffer space is available before 
advertising nonzero window

Yet another way: receiver could delay sending ACK for short time (400ms), 
in case it has data to send
 => All data segments are ACKs, so why send packet again?



Delayed Acknowledgments

• Goal: Piggy-back ACKs on data
– Delay ACK for 200ms in case application sends data
– If more data received, immediately ACK second segment
– Note: never delay duplicate ACKs (if missing a segment)

• Warning: can interact badly with Nagle for some applications
– Nagle waits for ACK until send => Temporary deadlock
– App can disable Nagle with TCP_NODELAY
– App should also avoid many small writes



Congestion control: the start



The story so far

Flow control provides reliable, in-order delivery
   Goal:  send as much data as receiver can handle
– Receiver’s advertised window:  sent with every ACK
– Sliding window:  increase throughput by having multiple packets in 

flight

Problems?



What would happen with our current sliding window implementation?



What else do we need?

• Flow control provides correctness:  reliable, in order delivery
• Need more for performance
– What if the network is the bottleneck?  



How do we know when the network is overloaded?  



What can go wrong?



Congestion control

We must not send more data than the network can handle

What happens if we do?



A Short History of TCP

• 1974: 3-way handshake
• 1978: IP and TCP split
• 1983: January 1st, ARPAnet switches to TCP/IP
• 1984: Nagle predicts congestion collapses
• 1986: Internet begins to suffer congestion collapses

– LBL to Berkeley drops from 32Kbps to 40bps

• 1987/8: Van Jacobson fixes TCP, publishes seminal     
 paper*: (TCP Tahoe)

• 1990: Fast transmit and fast recovery added 
 (TCP Reno)

* Van Jacobson and Michael Karels. Congestion avoidance and control. SIGCOMM ’88



Congestion Collapse
Nagle, rfc896, 1984

• Mid 1980’s: Problem with the protocol implementations, not the 
protocol!

• What was happening?
• If close to capacity, and, e.g., a large flow arrives suddenly…
– RTT estimates become too short
– Lots of retransmissions à increase in queue size
– Eventually many drops happen (full queues)
– Fraction of useful packets (not copies) decreases



The problem

• https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-
aimd.ogv

https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv
https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv


TCP Congestion Control

• 3 Key Challenges
– Determining the available capacity in the first place
– Adjusting to changes in the available capacity
– Sharing capacity between flows

• Idea
– Each source determines network capacity for itself
– Rate is determined by window size
– Uses implicit feedback (drops, delay)
– ACKs pace transmission (self-clocking)



Congestion control has a long history

• Active research area for ~40 years

• I am nowhere close to being an expert

• My hope is to get you to understand the problems involved



Timeline of (some!) congestion control implementations

“The great Internet congestion control census” (2019)

https://dl.acm.org/doi/abs/10.1145/3366693


Just a few TCP implementations

What’s the difference? General usage
• Reno (1980s)
• Tahoe
• Vegas
• New Vegas
• Westwood
• Cubic
• BBR (2016)
• …



The main idea

Goals
• Determine initial network capacity
• Adjust sending rate as capacity changes

• How?  Maintain two windows:
– Advertised Window (from receiver)
– Congestion window (cwnd)

    Sending rate = min(Advertised Window, cwnd) 

• Ideally, want to have sending rate:  ~= Window/RTT



Dealing with Congestion

To start:
• Assume losses are due to congestion
• After a loss, reduce congestion window
– How much to reduce? 

• Idea: conservation of packets at equilibrium
– Want to keep roughly the same number of packets in network
– Analogy with water in fixed-size pipe
– Put new packet into network when one exits



Classical Congestion Control

• Loss-based:  assume packet loss => congestion

• TCP Tahoe (1988)
– Slow start, congestion avoidance, fast retransmit

• TCP Reno (1990)
– TCP Tahoe + Fast recovery

• Many variations developed from this… (see optional readings)



Modes of operation

• Slow start (SS)
– Determine initial window, recover after loss

• Congestion avoidance (CA)
– Steady state, slowly probe for changes in capacity



Congestion Avoidance

After finishing a window, recompute cwnd:
• If no losses, cwnd = cwnd + MSS
– (Often written as cwnd += 1)

• If packets were lost:  cwnd = cwnd/2

This is known as additive increase, multiplicative decrease (AIMD)
• Slowly increase capacity
• Dramatically scale back on loss



AIMD ExampleAn Introduction to Computer Networks, Release 2.0.6

TCP sawtooth is specific to TCP Reno and related TCP implementations that share Reno’s additive-
increase/multiplicative-decrease mechanism.

time

cwnd

TCP Sawtooth, red curve represents the network capacity

During periods of no loss, TCP’s cwnd increases linearly; when a loss occurs, TCP sets cwnd = cwnd/2.
This diagram is an idealization as when a loss occurs it takes the sender some time to discover it, perhaps as
much as the TimeOut interval.

The fluctuation shown here in the red ceiling curve is somewhat arbitrary. If there are only one or two
other competing senders, the ceiling variation may be quite dramatic, but with many concurrent senders the
variations may be smoothed out.

For some TCP sawtooth graphs created through actual simulation, see 31.2.1 Graph of cwnd v time and
31.4.1 Some TCP Reno cwnd graphs.

19.1.1.1 A first look at fairness

The transit capacity of the path is more-or-less unvarying, as is the physical capacity of the queue at the
bottleneck router. However, these capacities are also shared with other connections, which may come and
go with time. This is why the ceiling does vary in real terms. If two other connections share a path with
total capacity 60 packets, the “fairest” allocation might be for each connection to get about 20 packets as its
share. If one of those other connections terminates, the two remaining ones might each rise to 30 packets.
And if instead a fourth connection joins the mix, then after equilibrium is reached each connection might
hope for a fair share of 15 packets.

Will this kind of “fair” allocation actually happen? Or might we end up with one connection getting 90% of
the bandwidth while two others each get 5%?

Chiu and Jain [CJ89] showed that the additive-increase/multiplicative-decrease algorithm does indeed con-
verge to roughly equal bandwidth sharing when two connections have a common bottleneck link, provided
also that

19.1 Basics of TCP Congestion Management 435



Slow Start

After finishing a window
• cwnd = cwnd * 2
• Continue doing this until you experience a loss

• After first loss, keep slow-start threshold (ssthresh):
– If window < ssthresh:  slow-start
– If window > ssthresh:  congestion avoidance

• After first loss:  ssthresh = cwnd / 2



An Introduction to Computer Networks, Release 2.0.6

time

cwnd

TCP Tahoe Sawtooth, red curve represents the network capacity
Slow Start is used after each packet loss until ssthresh is reached

timeout

RFC 2581 allows slow start to begin with cwnd=2.

19.2.3 Slow-Start Multiple Drop Example

Slow start has the potential to cause multiple dropped packets at the bottleneck link; packet losses continue
for quite some time because the TCP sender is slow to discover them. The network topology is as follows,
where the A–R link is infinitely fast and the R–B link has a bandwidth in the R›ÑB direction of 1 packet/ms.

A R Binfinitely fast 1 pkt/ms

Assume that R has a queue capacity of 100, not including the packet it is currently forwarding to B,
and that ACKs travel instantly from B back to A. In this and later examples we will continue to use the
Data[N]/ACK[N] terminology of 8.2 Sliding Windows, beginning with N=1; TCP numbering is not done
quite this way but the distinction is inconsequential.

When A uses slow-start here, the successive windowfuls will almost immediately begin to overlap. A will
send one packet at T=0; it will be delivered at T=1. The ACK will travel instantly to A, at which point A
will send two packets. From this point on, ACKs will arrive regularly at A at a rate of one per second. Here
is a brief chart:

19.2 Slow Start 439



How to Detect Loss

• Timeout
• Any other way?
– Gap in sequence numbers at receiver
– Receiver uses cumulative ACKs: drops => duplicate ACKs

• “Fast recovery”:  3 Duplicate ACKs considered loss

• Which one is worse?





Slow start every time?!

• Losses have large effect on throughput
• Fast Recovery (TCP Reno)
– Same as TCP Tahoe on Timeout: w = 1, slow start
– On triple duplicate ACKs: w = w/2
– Retransmit missing segment (fast retransmit)
– Stay in Congestion Avoidance mode

• Why 3 dup-acks instead of just 1?



This is just the beginning…

Lots of congestion control schemes, with different strategies/goals:
• Tahoe (1988)
• Reno (1990)
• Vegas (1994): Detect based on RTT
• New Reno:  Better recovery multiple losses
• Cubic (2006):  Linux default, window size scales by cubic function
• BBR (2016):  Used by Google, measures bandwidth/RTT
• …



BBR

• Problem: can’t measure both RTTprop and Bottleneck BW at the 
same time

• BBR: 
– Slow start
– Measure throughput when RTT starts to increase
– Measure RTT when throughput is still increasing
– Pace packets at the BDP
– Probe by sending faster for 1RTT, then slower to compensate



BBR

From: https://labs.ripe.net/Members/gih/bbr-tcp

https://labs.ripe.net/Members/gih/bbr-tcp


Help from the network

• What if routers could tell TCP that congestion is happening?
– Congestion causes queues to grow: rate mismatch

• TCP responds to drops
• Idea: Random Early Drop (RED)
– Rather than wait for queue to become full, drop packet with some 

probability that increases with queue length
– TCP will react by reducing cwnd
– Could also mark instead of dropping: ECN



Help from the network

• What if routers could tell TCP that congestion is happening?
– Congestion causes queues to grow: rate mismatch

 Know: TCP responds to drops

• Idea: Random Early Drop (RED)
– Rather than wait for queue to become full, drop packet with some 

probability that increases with queue length
– TCP will react by reducing cwn



RED Advantages

• Probability of dropping a packet of a particular flow is roughly 
proportional to the share of the bandwidth that flow is currently 
getting

• Higher network utilization with low delays
• Average queue length small, but can absorb bursts

But can we do better?  



ECN

What if we didn’t have to drop packets?
• Routers/switches set bits in packet to indicate congestion



ECN

What if we didn’t have to drop packets?
• Routers/switches set bits in packet to indicate congestion

• When sender sees congestion bit, scales back cwnd
• Must be supported by both sender and receiver

=>Avoids retransmissions optionally dropped packets



Special purpose example:  DCTCP





BBR

From: https://labs.ripe.net/Members/gih/bbr-tcp
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TCP Header
0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|          Source Port          |       Destination Port        |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Sequence Number                        |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Acknowledgment Number                      |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Data |           |U|A|P|R|S|F|                               |  
| Offset| Reserved  |R|C|S|S|Y|I|            Window             |  

|       |           |G|K|H|T|N|N|                               |  
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|           Checksum            |         Urgent Pointer        |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Options                    |    Padding    |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             data                              |  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Extra congestion control content



Putting it all together
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Fast Recovery and Fast Retransmit

Time

cwnd

Slow Start

AI/MD

Fast retransmit



TCP Friendliness

• Can other protocols co-exist with TCP?
– E.g., if you want to write a video streaming app 

using UDP, how to do congestion control?

RED
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TCP Friendliness

• Can other protocols co-exist with TCP?
– E.g., if you want to write a video streaming app using UDP, how to do 

congestion control?

• Equation-based Congestion Control
– Instead of implementing TCP’s CC, estimate the rate at which TCP would 

send. Function of what?
– RTT, MSS, Loss

• Measure RTT, Loss, send at that rate!



TCP Throughput

• Assume a TCP congestion of window W (segments), round-trip 
time of RTT, segment size MSS
– Sending Rate S = W x MSS / RTT (1)

• Drop: W = W/2
– grows by MSS for W/2 RTTs, until another drop at W ≈ W

• Average window then 0.75xS
–  From (1), S = 0.75 W MSS / RTT (2)

• Loss rate is 1 in number of packets between losses:
– Loss = 1 / ( 1 + (W/2 + W/2+1 + W/2 + 2  + … + W)
 = 1 / (3/8 W2) (3)



TCP Throughput (cont)

– Loss = 8/(3W2)                               (4)

–  Substituting (4) in (2), S = 0.75 W MSS / RTT , 

Throughput ≈   € 

⇒W =
8

3⋅ Loss

€ 

€ 

1.22 × MSS
RTT⋅ Loss

• Equation-based rate control can be TCP friendly and have better 
properties, e.g., small jitter, fast ramp-up…



What Happens When Link is Lossy?

• Throughput ≈ 1 / sqrt(Loss)
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What can we do about it?

• Two types of losses: congestion and corruption
• One option: mask corruption losses from TCP
– Retransmissions at the link layer
– E.g. Snoop TCP: intercept duplicate acknowledgments, retransmit locally, 

filter them from the sender

• Another option:
– Tell the sender about the cause for the drop
– Requires modification to the TCP endpoints



Congestion Avoidance

• TCP creates congestion to then back off
– Queues at bottleneck link are often full: increased delay
– Sawtooth pattern: jitter

• Alternative strategy
– Predict when congestion is about to happen
– Reduce rate early

• Other approaches
– Delay Based: TCP Vegas (not covered)
– Better model of congestion: BBR
– Router-centric: RED, ECN, DECBit, DCTCP



Another view of Congestion Control
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Diagrams based on Cardwell et al., BBR: Congestion Based Congestion Control,” 
Communications of the ACM, Vol. 60 No. 2, Pages 58-66.

https://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/fulltext


Another view of Congestion Control
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Another view of Congestion Control
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Another view of Congestion Control
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BBR

• Problem: can’t measure both RTTprop and Bottleneck BW at the 
same time

• BBR: 
– Slow start
– Measure throughput when RTT starts to increase
– Measure RTT when throughput is still increasing
– Pace packets at the BDP
– Probe by sending faster for 1RTT, then slower to compensate



BBR

From: https://labs.ripe.net/Members/gih/bbr-tcp



Help from the network

• What if routers could tell TCP that congestion is happening?
– Congestion causes queues to grow: rate mismatch

• TCP responds to drops
• Idea: Random Early Drop (RED)
– Rather than wait for queue to become full, drop packet with some 

probability that increases with queue length
– TCP will react by reducing cwnd
– Could also mark instead of dropping: ECN



RED Details

• Compute average queue length (EWMA)
– Don’t want to react to very quick fluctuationsAvgLen

Queue length

Instantaneous

Average

Time

• Smooths out AvgLen over time
- Don’t want to react to instantaneous fluctuations



RED Drop Probability

• Define two thresholds: MinThresh, MaxThresh
• Drop probability:

RED Details (cont)

• Computing probability P
- TempP = MaxP · (AvgLen�MinThreshold)/(MaxThreshold�

MinThreshold)

- P = TempP/(1� count · TempP)

• Drop Probability Curve:
P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen

• Improvements to spread drops (see book)



RED Advantages

• Probability of dropping a packet of a particular flow is roughly 
proportional to the share of the bandwidth that flow is currently 
getting

• Higher network utilization with low delays
• Average queue length small, but can absorb bursts
• ECN
– Similar to RED, but router sets bit in the packet
– Must be supported by both ends
– Avoids retransmissions optionally dropped packets



What happens if not everyone cooperates?

• TCP works extremely well when its assumptions are valid
– All flows correctly implement congestion control
– Losses are due to congestion



Cheating TCP

• Possible ways to cheat
– Increasing cwnd faster
– Large initial cwnd
– Opening many connections
– Ack Division Attack



Larger Initial Window 

A B
x

D E
y

x starts SS with cwnd = 4
y starts SS with cwnd = 1

Figure from Walrand, Berkeley EECS 122, 2003



Open Many Connections

Assume:
– A opens 10 connections to B
– B opens 1 connection to E

• TCP is fair among connections
– A gets 10 times more bandwidth than B

• Web Browser: has to download k objects for a page
– Open many connections or download sequentially?

Figure from Walrand, Berkeley EECS 122, 2003

A B
x

D E
y



Exploiting Implicit Assumptions

• Savage, et al., CCR 1999: 
– “TCP Congestion Control with a Misbehaving Receiver”

• Exploits ambiguity in meaning of ACK
– ACKs can specify any byte range for error control
– Congestion control assumes ACKs cover entire sent segments

• What if you send multiple ACKs per segment?

http://www.cs.washington.edu/homes/tom/pubs/CCR99.pdf


ACK Division Attack

• Receiver: “upon receiving a segment with N bytes, divide the 
bytes in M groups and acknowledge each group separately”

• Sender will grow window M times faster
• Could cause growth to 4GB in 4 RTTs!
– M = N = 1460

2.1 TCP review

While a detailed description of TCP's error and congestion con-
trol mechanisms is beyond the scope of this paper, we describe the
rudiments of their behavior below to allow those unfamiliar with
TCP to understand the vulnerabilities explained later. For simplic-
ity, we consider TCP without the Selective Acknowledgment op-
tion (SACK) [MMFR96], although the vulnerabilities we describe
also exist when SACK is used.

TCP is a connection-oriented, reliable, ordered, byte-stream
protocol with explicit flow control. A sending host divides the data
stream into individual segments, each of which is no longer than the
Sender Maximum Segment Size (SMSS) determined during con-
nection establishment. Each segment is labeled with explicit se-
quence numbers to guarantee ordering and reliability. When a host
receives an in-sequence segment it sends a cumulative acknowl-
edgment (ACK) in return, notifying the sender that all of the data
preceding that segment's sequence number has been received and
can be retired from the sender's retransmission buffers. If an out-
of-sequence segment is received, then the receiver acknowledges
the next contiguous sequence number that was expected. If out-
standing data is not acknowledged for a period of time, the sender
will timeout and retransmit the unacknowledged segments.

TCP uses several algorithms for congestion control, most no-
tably slow start and congestion avoidance [Jac88, Ste94, APS99].
Each of these algorithms controls the sending rate by manipulating
a congestion window (cwnd) that limits the number of outstanding
unacknowledged bytes that are allowed at any time. When a con-
nection starts, the slow start algorithm is used to quickly increase
cwnd to reach the bottleneck capacity. When the sender infers that
a segment has been lost it interprets this has an implicit signal of
network overload and decreases cwnd quickly. After roughly ap-
proximating the bottleneck capacity, TCP switches to the conges-
tion avoidance algorithm which increases the value of cwnd more
slowly to probe for additional bandwidth that may become avail-
able.

We now describe three attacks on this congestion control pro-
cedure that exploit a sender's vulnerability to non-conforming re-
ceiver behavior.

2.2 ACK division

TCP uses a byte granularity error control protocol and consequently
each TCP segment is described by sequence number and acknowl-
edgment fields that refer to byte offsets within a TCP data stream.
However, TCP's congestion control algorithm is implicitly defined
in terms of segments rather than bytes. For example, the most re-
cent specification of TCP's congestion control behavior, RFC 2581,
states:

During slow start, TCP increments cwnd by at most
SMSS bytes for each ACK received that acknowledges
new data.
...
During congestion avoidance, cwnd is incremented by 1
full-sized segment per round-trip time (RTT).
The incongruence between the byte granularity of error control

and the segment granularity (or more precisely, SMSS granularity)
of congestion control leads to the following vulnerability:

Attack 1:
Upon receiving a data segment containing N bytes, the
receiver divides the resulting acknowledgment into M,
where M N, separate acknowledgments – each cov-
ering one of M distinct pieces of the received data seg-
ment.

RTT

Sender Receiver

ACK 487

Data 4381:5841

Data 1461:2921Data 2921:4381

Data 5841:7301

ACK 973

ACK 1461

Data 1:1461

Figure 1: Sample time line for a ACK division attack. The sender be-
gins with cwnd=1, which is incremented for each of the three valid ACKs
received. After one round-trip time, cwnd=4, instead of the expected value
of cwnd=2.

This attack is demonstrated in Figure 1 with a time line. Here,
each message exchanged between sender and receiver is shown as
a labeled arrow, with time proceeding down the page. The labels
indicate the type of message, data or acknowledgment, and the se-
quence space consumed. In this example we can see that each ac-
knowledgment is valid, in that it covers data that was sent and pre-
viously unacknowledged. This leads the TCP sender to grow the
congestion window at a rate that is M times faster than usual. The
receiver can control this rate of growth by dividing the segment
at arbitrary points – up to one acknowledgment per byte received
(when M = N). At this limit, a sender with a 1460 byte SMSS could
theoretically be coerced into reaching a congestion window in ex-
cess of the normal TCP sequence space (4GB) in only four round-
trip times! 1 Moreover, while high rates of additional acknowledg-
ment traffic may increase congestion on the path to the sender, the
penalty to the receiver is negligible since the cumulative nature of
acknowledgments inherently tolerates any losses that may occur.

2.3 DupACK spoofing

TCP uses two algorithms, fast retransmit and fast recovery, to miti-
gate the effects of packet loss. The fast retransmit algorithm detects
loss by observing three duplicate acknowledgments and it immedi-
ately retransmits what appears to be the missing segment. How-
ever, the receipt of a duplicate ACK also suggests that segments
are leaving the network. The fast recovery algorithm employs this
information as follows (again quoted from RFC 2581):

Set cwnd to ssthresh plus 3*SMSS. This artificially “in-
flates” the congestion window by the number of seg-
ments (three) that have left the network and which the
receiver has buffered.
..
For each additional duplicate ACK received, increment
cwnd by SMSS. This artificially inflates the congestion
window in order to reflect the additional segment that
has left the network.

1Of course the practical transmission rate is ultimately limited by other factors such
as sender buffering, receiver buffering and network bandwidth.



TCP Daytona!
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Figure 4: The TCP Daytona ACK division attack convinces the TCP
sender to send all but the first few segments of a document in a single burst.

3 Implementation experience

To exploit the vulnerabilities described above, we made three mod-
ifications to the TCP subsystem of Linux 2.2.10. This resulting
TCP implementation, which we refer to facetiously as “TCP Day-
tona”, provides extremely high performance at the expense of its
competitors. We demonstrate these abilities with time sequence
plots of packet traces for both normal and modified receiver TCP's.
Needless to say, our implementation is intentionally not “stable”,
and would likely lead to congestion collapse if it were widely de-
ployed.

3.1 ACK division

The TCP Daytona ACK division algorithm adds 24 lines of code
that divide each new outgoing ACK into many ACKs for smaller
extents of the sequence space. Half of the new code is dedicated
to ensuring that the number of outgoing ACKs is no more than
should be needed to coerce a sender in slow start to saturate our
test machine's 100Mbps Ethernet interface.

Figure 4 shows client-side TCP sequence number plots of our
test machine making an HTTP request for the index.html ob-
ject from cnn.com, with and without our ACK division attack en-
abled. This figure spans the entire transaction, beginning with the
TCP handshake that starts at 0ms and ends at around 70ms, when
the HTTP request is sent. The first HTTP data from the server ar-
rives at around 140ms.

This figure shows that, when this attack is enabled, the many
small ACKs sent around 140ms convince the Web server to un-
leash the entire remainder of the document in a single burst; this
data arrives exactly one round-trip time later. By contrast, with the
normal TCP implementation, the server spreads out the data over
the next four round-trip times. In general, as this figure suggests,
this attack can convince a TCP sender to send all of its data in a
single burst.

3.2 DupACK spoofing

The TCP Daytona DupACK spoofing attack is implemented by 11
lines of code that cause the receiver to send sufficient duplicate
ACKs such that the sender (re-)enters fast recovery and fills the
receiver's advertised flow control window each round-trip time.

Figure 5 shows another client-side plot of the same HTTP re-
quest, this time with the DupACK spoofing attack superimposed
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Figure 5: The TCP Daytona DupACK spoofing attack, like the ACK divi-
sion attack, convinces the TCP sender to send all but the first few segments
of a document in a single burst.

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Se
qu

en
ce

 n
um

be
r (

By
te

s)

Time (sec)

Data Segments
ACKs

Data Segments (normal)
ACKs (normal)

Figure 6: The TCP Daytona optimistic ACK attack, by sending a stream
of early ACKs, convinces the TCP sender to send data much earlier than it
normally would.

on a normal transfer. The many duplicate ACKs that the receiver
sends at around 140ms cause the sender to enter fast recovery and
transmit the rest of the data, which arrives at around 210ms. Were
there more data, the flurry of duplicate ACKs sent at 210ms-230ms
would elicit another burst from the sender. Since there is no more
new data, the sender simply fills in the hole it perceives; this seg-
ment arrives at around 290ms. This figure illustrates how the Du-
pACK spoofing attack can achieve performance essentially equiva-
lent to the ACK division attack – namely, both attacks can convince
the sender to empty its entire send buffer in a single burst.

3.3 Optimistic ACKing

The TCP Daytona implementation of optimistic ACKing consists
of 45 lines of code. Because acknowledging data that has not ar-
rived is a fundamentally tricky business, we chose a very simple
implementation as a proof of concept. When a TCP connection
for an HTTP or FTP client receives its first data, we set a timer
to expire every 10ms. Any interval would do, but we chose 10ms
because it is the smallest interval that Linux 2.2.10 supports on the
Intel PC platform. Whenever this periodic timer expires, or a new
data segment arrives, our receiver sends a new optimistic ACK for
one MSS beyond the previous optimistic ACK.



Defense

• Appropriate Byte Counting 
– [RFC3465 (2003), RFC 5681 (2009)]
– In slow start, cwnd += min (N, MSS)
where N is the number of newly acknowledged bytes in the received ACK



More help from the network

• Problem: still vulnerable to malicious flows!
– RED will drop packets from large flows preferentially, but they don’t have 

to respond appropriately

• Idea: Multiple Queues (one per flow)
– Serve queues in Round-Robin
– Nagle (1987)
– Good: protects against misbehaving flows
– Disadvantage?
– Flows with larger packets get higher bandwidth



Solution

• Bit-by-bit round robing
• Can we do this?
– No, packets cannot be preempted!

• We can only approximate it…



Fair Queueing 

• Define a fluid flow system as one where flows are served bit-by-
bit

• Simulate ff, and serve packets in the order in which they would 
finish in the ff system

• Each flow will receive exactly its fair share
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Implementing FQ

• Suppose clock ticks with each bit transmitted
– (RR, among all active flows)

• Pi is the length of the packet
• Si is packet i’s start of transmission time
• Fi is packet i’s end of transmission time
• Fi = Si + Pi

• When does router start transmitting packet i?
– If arrived before Fi-1, Si = Fi-1

– If no current packet for this flow, start when packet arrives (call this Ai): Si = Ai 
• Thus, Fi = max(Fi-1,Ai) + Pi



Fair Queueing

• Across all flows
– Calculate Fi for each packet that arrives on each flow
– Next packet to transmit is that with the lowest Fi

– Clock rate depends on the number of flows

• Advantages
– Achieves max-min fairness, independent of sources
– Work conserving

• Disadvantages
– Requires non-trivial support from routers
– Requires reliable identification of flows
– Not perfect: can’t preempt packets



Fair Queueing Example

• 10Mbps link, 1 10Mbps UDP, 31 TCPs
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Big Picture

• Fair Queuing doesn’t eliminate congestion: just manages it
• You need both, ideally:
– End-host congestion control to adapt
– Router congestion control to provide isolation



Congestion control:  motivation



The story so far

• Flow control:  reliable, in-order delivery
• Goal:  send as much data as receiver can 

handle
– Receiver’s advertised window:  sent with 

every ACK

• Sliding window:  increase throughput by 
having multiple packets in flight



Summary:  flow control

• Flow control provides correctness:  reliable, in order delivery
• Need more for performance
– What if the network is the bottleneck?  

• Sending too fast will cause queue overflows, heavy packet loss
• Need more for performance: congestion control



A Short History of TCP

• 1974: 3-way handshake
• 1978: IP and TCP split
• 1983: January 1st, ARPAnet switches to TCP/IP
• 1984: Nagle predicts congestion collapses
• 1986: Internet begins to suffer congestion collapses

– LBL to Berkeley drops from 32Kbps to 40bps

• 1987/8: Van Jacobson fixes TCP, publishes seminal     
 paper*: (TCP Tahoe)

• 1990: Fast transmit and fast recovery added 
 (TCP Reno)

* Van Jacobson and Michael Karels. Congestion avoidance and control. SIGCOMM ’88



Congestion Collapse
Nagle, rfc896, 1984

• Mid 1980’s: Problem with the protocol implementations, not the 
protocol!

• What was happening?
• If close to capacity, and, e.g., a large flow arrives suddenly…
– RTT estimates become too short
– Lots of retransmissions à increase in queue size
– Eventually many drops happen (full queues)
– Fraction of useful packets (not copies) decreases



The problem

• https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-
aimd.ogv

https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv
https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv


TCP Congestion Control

• 3 Key Challenges
– Determining the available capacity in the first place
– Adjusting to changes in the available capacity
– Sharing capacity between flows

• Idea
– Each source determines network capacity for itself
– Rate is determined by window size
– Uses implicit feedback (drops, delay)
– ACKs pace transmission (self-clocking)



Congestion control has a long history

• Active research area for ~40 years

• I am nowhere close to being an expert

• My hope is to get you to understand the problems involved



Just a few TCP implementations

What’s the difference? General usage
• Reno (1980s)
• Tahoe
• Vegas
• New Vegas
• Westwood
• Cubic
• BBR (2016)
• …



Dealing with Congestion

• Maintain two windows:
– Advertised Window (from receiver)
– Congestion window (cwnd)

    Sending rate = min(Advertised Window, cwnd) 

• Ideally, want to have sending rate:  ~= Window/RTT



Dealing with Congestion

• Assume losses are due to congestion
• After a loss, reduce congestion window
– How much to reduce? 

• Idea: conservation of packets at equilibrium
– Want to keep roughly the same number of packets in network
– Analogy with water in fixed-size pipe
– Put new packet into network when one exits



Next time

• TCP Tahoe/Reno
• Overview of other CC schemes


