
CSCI-1680
HTTP

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

• You should have done your milestone II meeting

• You have one week from today to finish TCP.
Do not wait until the end.

• Final project info: Thursday

HTTP: Hypertext Transfer Protocol

HTTP

“Application protocol for distributed, collaborative
hypermedia information systems”

• Fundamental protocol behind “the web”

• Now part of most things we do on the Internet—so much more than web
pages

But what is hypertext?

I

HTTP: a protocol for distributing hypertext media
(*and now so much more)

Enables the World Wide Web (WWW): a distributed
database of pages linked through HTTP

OF PAG'dHYPth mais

HTTP: a protocol for distributing hypertext media
(*and now so much more)

Enables the World Wide Web (WWW): a distributed
database of pages linked through HTTP

… now synonymous with with “The Internet” itself!

Tim Berners-Lee

• 1990: First HTTP implementation
– Tim Berners-Lee, CERN

• 1991: HTTP/0.9: Fetching pages

• 1992: HTTP/1.0:
 Client/server information, simple caching

• 1996: HTTP/1.1
– Extensive caching support
– Host identification
– Pipelined, persistent connections, …

The first webserver

History

I
METWIDELY
SUPPORTED

• 2015: HTTP/2
– Main goal: reduce latency

• 2022: HTTP/3
– Still: reduce latency
– Integrates security via TLS
– Replace transport layer with QUIC
– Already supported in >94% of browsers

http://httpwg.org/specs/rfc7540.html

I
MORE ON THIS LATER

How does “the web” work?

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

I HAVE SEVEL

2 GET DOMAIN

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser

URL: request what you want to visit

UNIFORMRESOURCE LOCATOR

REFERSTO SPECIFIC
RESOURCES ON A SERVICE TE

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser DNS

example.com?

First step: look up where server is on Internet
=> Usually, via DNS

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser DNS

example.com?

GET /page.html

Connect to server’s IP, Initiate a request for page
=> Via TCP (usually)

I

HTIREWEST

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser DNS

example.com?

GET /page.html

200 OK + (Content of page.html)

Server returns response (in this case, with HTML)

Welcome!

I

Why so successful?

Anyone can host a website!
 … just need a domain and a server

Clients can easily find arbitrary pages, pages can easily link to others =>
content can grow very quickly

Hosting

0

HTTP components

Content: objects (HTML, images, JSON, …)

Clients: send requests, receive response

Servers: store content, or generate it

CLIENT

mittens
DYNAMIC CONTENTGONELATED PERREQOOST

ON THE FLY

HTTP components

Content: objects (HTML, images, JSON, …)

Clients: send requests, receive response

Servers: store content, or generate it

Proxies/Middleboxes
– Placed between clients and servers
– Do extra stuff: caching, anonymization, logging, transcoding, filtering access

=> Important for scaling, modern browsing…
 more on this later

EngY t

I 3

How to find stuff?

• So far: DNS: names for one or more hosts
– eg. cs.brown.edu

How do we ask for a specific resource from this host?

URL: Uniform Resource Locator

I
ABSTRACTION NAME HOST

NAME RESOURCE

URLs: how we find stuff

https://cs.brown.edu/courses/csci1680/f23/policies/#late-policy

i

DOMAIN.COYSFInosenuj REOPENPAGE

of ERYAI6HT BE A
FILE PATH MIGHTNOTPROTOCOL HTTPSSHZoom J SERVER Uses toCLIENT USA TO FIND PAGE

FIND APPTORUN

How to find stuff: URLs

protocol://[name@]hostname[:port]/directory/resource?k1=v1&k2=v2#tag

• Name: can identify a client
• Hostname: FQDN or IP address
• Port number: defaults to common protocol port (eg. 80, 22)
• Directory: path to the resource
• Resource: name of the object
• After that, various delimiters to specify further, common examples:

– ?parameters are passed to the server for execution
– #tag allows jumps to named tags within document

Pmmm

tonsyfiattiing

HTTP: the protocol

• Client-server protocol
• Protocol (but not data) in ASCII (before HTTP/2)
• Stateless
• Server typically listens on port 80 (or 443, with TLS)

• Server sends response, may close connection (client may ask it to say open)

Steps in HTTP(1.0) Request

• Open TCP connection to server
• Send request
• Receive response
• TCP connection terminates

– How many RTTs for a single request?

• You may also need to do a DNS lookup first!

Stems to A Revolt
client patsy

y
soso.int

ÉÉÉÉÉÉu
TLP Pont 80

NHS M F IFanosast

t.is

I.i

Papa
Ef

Pieces of a request

 - Method: GET, POST, PUT, …

 => What operation you are trying to do

 - GET tries to fetch, POST/POST write to server state somehow

 - Headers: metadata about request or client

 - User-Agent: info about browser, app doing the request

 - Language, content-type, cookies (user info)

 - (Sometimes) Body: PUT, POST (+others) have content client sends to
server (eg. Uploaded files, form responses, etc.)

URL may have extra parameters, which are interpreted by the server

What goes in an HTTP response?

 - Status code (200 OK, 404 not found, 403 forbidden, 500 server
error)

 - HTTP Headers information (metadata about what the response
looks like)

 - Content-Type: text/html

 - Response body (HTML, image, JSON, …)

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"
Accept-Ranges: bytes
Content-Length: 9068
Vary: Accept-Encoding
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en”>

REQUOST PAGE NO HEADED

STATUS CODE

REEDUS

BODY

HTTP Request
Method:

– GET: current value of resource, run program
– POST: update a resource, provide input for a program. . .

Headers: useful info about request
– E.g., desired language, text encoding

HTTP Request Format

method URL version ��

header field name value ��

header field name value ��

��

request

headers

body

blank line

• Request types: GET, POST, HEAD, PUT, DELETE

• A URL given to browser: http://localhost:8000/

• Resulting request: GET / HTTP/1.1

- Someday, requests will contain the full URL not just path

Sample Browser Request

GET / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
(empty line)

In your browser: right click => Inspect element => Network

HTTP is Stateless

• Each request/response treated independently
• Servers not required to maintain state

But…
– Most applications need persistent state
– E.g., shopping cart, web-mail, usage tracking, (most sites today!)

0

CLIENT SERUM

IFooth.ES aoomaoyIDEWTFID

Uson

I at
e

GEEFEED

LPMEI Drop

HTTP is a STATELESS protocol

 - Don’t want server to need to remember information about the client

 => When server receives a response, not guaranteed that the server
knows about the client ahead of time (not required to have any server
side state)

 - Applications may give state to client based on header info—
specifically data called cookies

 => Cookie: some piece of information (usually an ID number) that tells
the server how to look up state for the client

 => One single server doesn’t need to remember the client’s state,

Modern web pages

 - Dynamically served (server is an application that produces content
specifically for client)

 - Rely on state from client with cookies

 - Contain lots of resources from many locations

Browser needs to …

 - store client state

 - Fetch all of the content on the page (recursive process to look
everything up)

 - Make asynchronous requests as you load the page

HTTP Cookies

• Client-side state maintenance
– Client stores small state on behalf of server
– Sends request in future requests to the server
– Cookie value is meaningful to the server (e.g., session id)

• Can provide authentication
1. Request

2. Response
Set-Cookie: XYZ

3. Request
Cookie: XYZ

ServerClient

Anatomy of a Web Page

• HTML content
• A number of additional resources

– Images
– Scripts
– Frames

• Browser makes one HTTP request for each object
– Course web page: 14 objects
– Modern web pages: hundreds of objects

