
CSCI-1680
HTTP

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

• You should have done your milestone II meeting

• You have one week from today to finish TCP.
Do not wait until the end.

• Final project info: Thursday

HTTP: Hypertext Transfer Protocol

HTTP

“Application protocol for distributed, collaborative
hypermedia information systems”

HTTP

“Application protocol for distributed, collaborative
hypermedia information systems”

• Fundamental protocol behind “the web”

• Now part of most things we do on the Internet—so much more than web
pages

HTTP

“Application protocol for distributed, collaborative
hypermedia information systems”

• Fundamental protocol behind “the web”

• Now part of most things we do on the Internet—so much more than web
pages

But what is hypertext?

“As we may think”, Vannevar Bush (1945)

 “The human mind…operates by association. With one item in its
grasp, it snaps instantly to the next … in accordance with some

intricate web of trails carried by the cells of the brain”

“As we may think”, Vannevar Bush (1945)

 “The human mind…operates by association. With one item in its
grasp, it snaps instantly to the next … in accordance with some

intricate web of trails carried by the cells of the brain”

Defines the “Memex”: “a device in which an individual stores all his books,
records, and communications, and which is mechanized so that it may be
consulted with exceeding speed and flexibility”

HTTP: a protocol for distributing hypertext media
(*and now so much more)

HTTP: a protocol for distributing hypertext media
(*and now so much more)

Enables the World Wide Web (WWW): a distributed
database of pages linked through HTTP

HTTP: a protocol for distributing hypertext media
(*and now so much more)

Enables the World Wide Web (WWW): a distributed
database of pages linked through HTTP

… now synonymous with with “The Internet” itself!

Tim Berners-Lee

• 1990: First HTTP implementation
– Tim Berners-Lee, CERN

• 1991: HTTP/0.9: Fetching pages

• 1992: HTTP/1.0:
 Client/server information, simple caching

• 1996: HTTP/1.1
– Extensive caching support
– Host identification
– Pipelined, persistent connections, …

The first webserver

• 2015: HTTP/2
– Main goal: reduce latency

• 2022: HTTP/3
– Still: reduce latency
– Integrates security via TLS
– Replace transport layer with QUIC
– Already supported in >94% of browsers

http://httpwg.org/specs/rfc7540.html

How does “the web” work?

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser

URL: request what you want to visit

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser DNS

example.com?

First step: look up where server is on Internet
=> Usually, via DNS

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser DNS

example.com?

GET /page.html

Connect to server’s IP, Initiate a request for page
=> Via TCP (usually)

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser DNS

example.com?

GET /page.html

200 OK + (Content of page.html)

Server returns response (in this case, with HTML)

Welcome!

Why so successful?

Anyone can host a website!
 … just need a domain and a server

Why so successful?

Anyone can host a website!
 … just need a domain and a server

Clients can easily find arbitrary pages, pages can easily link to others =>
content can grow very quickly

HTTP components

Content: objects (HTML, images, JSON, …)

Clients: send requests, receive response

Servers: store content, or generate it

HTTP components

Content: objects (HTML, images, JSON, …)

Clients: send requests, receive response

Servers: store content, or generate it

Proxies/Middleboxes
– Placed between clients and servers
– Do extra stuff: caching, anonymization, logging, transcoding, filtering access

=> Important for scaling, modern browsing…
 more on this later

How to find stuff?

• So far: DNS: names for one or more hosts
– eg. cs.brown.edu

How do we ask for a specific resource from this host?

URL: Uniform Resource Locator

How to find stuff?

• So far: DNS: names for one or more hosts
– eg. cs.brown.edu

How do we ask for a specific resource from this host?

URL: Uniform Resource Locator

URLs: how we find stuff

https://cs.brown.edu/courses/csci1680/f23/policies/#late-policy

How to find stuff: URLs

protocol://[name@]hostname[:port]/directory/resource?k1=v1&k2=v2#tag

• Name: can identify a client
• Hostname: FQDN or IP address
• Port number: defaults to common protocol port (eg. 80, 22)
• Directory: path to the resource
• Resource: name of the object
• After that, various delimiters to specify further, common examples:

– ?parameters are passed to the server for execution
– #tag allows jumps to named tags within document

HTTP: the protocol

• Client-server protocol
• Protocol (but not data) in ASCII (before HTTP/2)
• Stateless
• Server typically listens on port 80 (or 443, with TLS)

• Server sends response, may close connection (client may ask it to say open)

Steps in HTTP(1.0) Request

• Open TCP connection to server
• Send request
• Receive response
• TCP connection terminates

– How many RTTs for a single request?

• You may also need to do a DNS lookup first!

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"
Accept-Ranges: bytes
Content-Length: 9068
Vary: Accept-Encoding
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en”>

HTTP Request
Method:

– GET: current value of resource, run program
– POST: update a resource, provide input for a program. . .

Headers: useful info about request
– E.g., desired language, text encoding

HTTP Request Format

method URL version ��

header field name value ��

header field name value ��

��

request

headers

body

blank line

• Request types: GET, POST, HEAD, PUT, DELETE

• A URL given to browser: http://localhost:8000/

• Resulting request: GET / HTTP/1.1

- Someday, requests will contain the full URL not just path

Sample Browser Request

GET / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
(empty line)

In your browser: right click => Inspect element => Network

HTTP Responses
Status codes to indicate something about the result
• 1xx: Information e.g, 100 Continue
• 2xx: Success e.g., 200 OK
• 3xx: Redirection e.g., 302 Found (elsewhere),
• 4xx: Client Error e.g., 403 Forbidden, 404 Not Found
• 5xx: Server Error e.g, 503 Service Unavailable

HTTP Response Format
version status code phrase ��

header field name value ��

header field name value ��

��

status

headers

body

blank line

• 1xx codes: Informational

• 2xx codes: Successes

• 3xx codes: Redirection

• 4xx codes: Client Error

• 5xx codes: Server Error

HTTP is Stateless

• Each request/response treated independently
• Servers not required to maintain state

HTTP is Stateless

• Each request/response treated independently
• Servers not required to maintain state

But…
– Most applications need persistent state
– E.g., shopping cart, web-mail, usage tracking, (most sites today!)

HTTP Cookies

• Client-side state maintenance
– Client stores small state on behalf of server
– Sends request in future requests to the server
– Cookie value is meaningful to the server (e.g., session id)

• Can provide authentication
1. Request

2. Response
Set-Cookie: XYZ

3. Request
Cookie: XYZ

ServerClient

Anatomy of a Web Page

• HTML content
• A number of additional resources

– Images
– Scripts
– Frames

• Browser makes one HTTP request for each object
– Course web page: 14 objects
– Modern web pages: hundreds of objects

Modern web pages and HTTP

• Web APIs: HTTP response/requests are a standard way to ask for anything
• Modern web pages: use Javascript to make lots of requests without

reloading page
– And can use APIs for all kinds of other stuff

Example: Github public API
$ curl https://api.github.com/users/ndemarinis
{
 "login": "ndemarinis",
 "id": 1191319,
 "node_id": "MDQ6VXNlcjExOTEzMTk=",
 "avatar_url": "https://avatars.githubusercontent.com/u/1191319?v=4",
 "gravatar_id": "",
 "url": "https://api.github.com/users/ndemarinis",
 "type": "User",
 "site_admin": false,
 "name": "Nick DeMarinis",
 "blog": "https://vty.sh",
 "twitter_username": null,
 "public_repos": 10,
 . . .
}

HTTP

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"
Accept-Ranges: bytes
Content-Length: 9068
Vary: Accept-Encoding
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en”>

HTTP: What matters for performance?

Depends on type of request
– Lots of small requests (objects in a page)
– Some big requests (large download or video)

Small Requests

• Latency matters
• RTT dominates
• Major steps:

– DNS lookup (if not cached)
– Opening a TCP connection
– Setting up TLS (optional, but now common)
– Actually sending the request and receiving response

How can we reduce the number of connection setups?

• Keep the connection open and request all objects serially
– Works for all objects coming from the same server
– Which also means you don’t have to “open” the window each time

Persistent connections (HTTP/1.1)

Browser Request

GET / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

Small Requests (cont)

• Second problem is that requests are serialized
– Similar to stop-and-wait protocols!

• Two solutions
– Pipelined requests (similar to sliding windows)
– Parallel Connections

• Browsers implement this differently—see “Inspect element”

– How are these two approaches different?

HTTP/2

• Adds more options to trade off:
• Multiplexed streams on same connection

– Plus stream weights, dependencies

• No head of line blocking!
– But what happens if there is packet loss?

https://www.twilio.com/blog/2017/10/http2-issues.html

HTTP/3

• Mapping of HTTP semantics onto QUIC
– E.g., QUIC already implements multiple streams, and HTTP doesn’t need to do it

• QUIC: Another transport-layer protocol, intended to replace TCP
– RFC9000
– Same goals as TCP, but…
– Integrates security by default (TLS, next class)
– Supports multiple streams at once
– Various tricks to reduce message size and latency

• By moving multiplexing into the transport layer, can do so in a way that
benefits HTTP (no head of line blocking!)

Comparison: QUIC’s handshake

Larger Objects

• Problem is throughput in bottleneck link
• Solution: HTTP Proxy Caching

– Also improves latency, and reduces server load

Big Requests

• Problem is throughput on edge link

• Use an HTTP proxy cache
- Can also improve latency!

clients

server

Internet

proxy

cache

How to Control Caching?

• Server sets options
– Expires header
– No-Cache header

• Client can do a conditional request:
– Header option: if-modified-since
– Server can reply with 304 NOT MODIFIED

Caching

• Where to cache content?
– Client (browser): avoid extra network transfers
– Server: reduce load on the server
– Service Provider: reduce external traffic

Server

Clients

Backbone ISP

ISP-1 ISP-2

Caching

• Why caching works?
– Locality of reference:

• Users tend to request the same object in succession
• Some objects are popular: requested by many users

Server

Clients

Backbone ISP

ISP-1 ISP-2

How well does caching work?

• Very well, up to a point
– Large overlap in requested objects
– Objects with one access place upper bound on hit ratio
– Dynamic objects not cacheable*

• Example: Wikipedia
– About 400 servers, 100 are HTTP Caches (Squid)
– 85% Hit ratio for text, 98% for media

* But can cache portions and run special code on edges to reconstruct

Reverse Proxies

Close to the server
– Also called Accelerators
– Only work for static content

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward Proxies

Typically done by ISPs or Enterprises
– Reduce network traffic and decrease latency
– May be transparent or configured

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

Content Distribution Networks

• Integrate forward and reverse caching
– One network generally administered by one entity
– E.g. Akamai

• Provide document caching
– Pull: result from client requests
– Push: expectation of high access rates to some objects

• Can also do some processing
– Deploy code to handle some dynamic requests
– Can do other things, such as transcoding

Example CDN

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN

How Akamai works

Akamai has cache servers deployed close to clients
– Co-located with many ISPs

• Challenge: make same domain name resolve to a proxy close to the client
• Lots of DNS tricks. BestBuy is a customer

– Delegate name resolution to Akamai (via a CNAME)

DNS Resolution

dig www.bestbuy.com

;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.

a1105.b.akamai.net. 20 IN A 198.7.236.235

a1105.b.akamai.net. 20 IN A 198.7.236.240
;; AUTHORITY SECTION:

b.akamai.net. 1101 IN NS n1b.akamai.net.
b.akamai.net. 1101 IN NS n0b.akamai.net.
;; ADDITIONAL SECTION:

n0b.akamai.net. 1267 IN A 24.143.194.45
n1b.akamai.net. 2196 IN A 198.7.236.236

• n1b.akamai.net finds an edge server close to the client’s local
resolver
• Uses knowledge of network: BGP feeds, traceroutes. Their secret sauce…

Example

From Brown
dig www.bestbuy.com
;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.
a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240

– Ping time: 2.53ms

From Berkeley, CA
a1105.b.akamai.net. 20 IN A 198.189.255.200
a1105.b.akamai.net. 20 IN A 198.189.255.207

– Ping time: 3.20ms

Example
dig www.bestbuy.com
;; QUESTION SECTION:
;www.bestbuy.com. IN A

;; ANSWER SECTION:
www.bestbuy.com. 2530 IN CNAME www.bestbuy.com.edgekey.net.
www.bestbuy.com.edgekey.net. 85 IN CNAME e1382.x.akamaiedge.net.
e1382.x.akamaiedge.net. 16 IN A 104.88.86.223

;; Query time: 6 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Thu Nov 16 09:43:11 2017
;; MSG SIZE rcvd: 123

traceroute to 104.88.86.223 (104.88.86.223), 64 hops max, 52 byte packets
1 router (192.168.1.1) 2.461 ms 1.647 ms 1.178 ms
2 138.16.160.253 (138.16.160.253) 1.854 ms 1.509 ms 1.462 ms
3 10.1.18.5 (10.1.18.5) 1.886 ms 1.705 ms 1.707 ms
4 10.1.80.5 (10.1.80.5) 4.276 ms 6.444 ms 2.307 ms
5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.804 ms 1.870 ms 1.727 ms
6 131.109.200.1 (131.109.200.1) 2.841 ms 2.587 ms 2.530 ms
7 host-198-7-224-105.oshean.org (198.7.224.105) 4.421 ms 4.523 ms 4.496 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.099 ms 3.974 ms 4.290 ms
9 * ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 4.689 ms 4.109 ms

10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 8.863 ms 10.205 ms 10.477 ms
11 ae-1.r08.nycmny01.us.bb.gin.ntt.net (129.250.5.62) 9.298 ms

ae-1.r07.nycmny01.us.bb.gin.ntt.net (129.250.3.181) 10.008 ms 8.677 ms
12 ae-0.a00.nycmny01.us.bb.gin.ntt.net (129.250.3.94) 8.543 ms 7.935 ms

ae-1.a00.nycmny01.us.bb.gin.ntt.net (129.250.6.55) 9.836 ms
13 a104-88-86-223.deploy.static.akamaitechnologies.com (104.88.86.223) 9.470 ms 8.483
ms 8.738 ms

dig www.bestbuy.com @109.69.8.51

e1382.x.akamaiedge.net. 12 IN A 23.60.221.144

traceroute to 23.60.221.144 (23.60.221.144), 64 hops max, 52 byte packets
1 router (192.168.1.1) 44.072 ms 1.572 ms 1.154 ms
2 138.16.160.253 (138.16.160.253) 2.460 ms 1.736 ms 2.722 ms
3 10.1.18.5 (10.1.18.5) 1.841 ms 1.649 ms 3.348 ms
4 10.1.80.5 (10.1.80.5) 2.304 ms 15.208 ms 2.895 ms
5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.784 ms 4.744 ms 1.566 ms
6 131.109.200.1 (131.109.200.1) 3.581 ms 5.866 ms 3.238 ms
7 host-198-7-224-105.oshean.org (198.7.224.105) 4.288 ms 6.218 ms 8.332 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.209 ms 6.103 ms 5.031 ms
9 ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 3.982 ms 5.824 ms 4.514 ms
10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 9.735 ms 12.442 ms 8.689 ms
11 ae-9.r24.londen12.uk.bb.gin.ntt.net (129.250.2.19) 81.098 ms 81.343 ms 81.120 ms
12 ae-6.r01.mdrdsp03.es.bb.gin.ntt.net (129.250.4.138) 102.009 ms 110.595 ms 103.010
ms
13 81.19.109.166 (81.19.109.166) 99.426 ms 93.236 ms 101.168 ms
14 a23-60-221-144.deploy.static.akamaitechnologies.com (23.60.221.144) 94.884 ms 92.779
ms 93.281 ms

http://www.bestbuy.com/

Other CDNs

• Akamai, Limelight, Cloudflare
• Amazon, Facebook, Google, Microsoft
• Netflix
• Where to place content?
• Which content to place? Pre-fetch or cache?

