CSCI-1680
HTTP

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

* You should have done your milestone Il meeting

* You have one week from today to finish TCP.
Do not wait until the end.

» Final project info: Thursday

HTTP: Hypertext Transfer Protocol

HTTP

"Application protocol for distributed, collaborative
hypermedia information systems”

HTTP

"Application protocol for distributed, collaborative
hypermedia information systems”

« Fundamental protocol behind “the web”

* Now part of most things we do on the Internet—so much more than web
pages

HTTP

"Application protocol for distributed, collaborative
hypermedia information systems”

« Fundamental protocol behind “the web”

* Now part of most things we do on the Internet—so much more than web
pages

[But what is hypertext? 1

HyperteXt XA 70 languages v

Article Talk Read Edit View history Tools v
From Wikipedia, the free encyclopedia

For the concept in semiotics, see Hypertext (semiotics).

Hypertext is text displayed on a computer display or other electronic devices with references (hyperlinks) to
other text that the reader can immediately access.!!! Hypertext documents are interconnected by hyperlinks,
which are typically activated by a mouse click, keypress set, or screen touch. Apart from text, the term
"hypertext" is also sometimes used to describe tables, images, and other presentational content formats with
integrated hyperlinks. Hypertext is one of the key underlying concepts of the World Wide Web,[?] where Web
pages are often written in the Hypertext Markup Language (HTML). As implemented on the Web, hypertext
enables the easy-to-use publication of information over the Internet.

Documents that are connected by &7
hyperlinks

Etymology |edit]
"(...)'Hypertext' is a recent coinage. 'Hyper-' is used in the mathematical sense of extension
and generality (as in 'hyperspace,' 'hypercube') rather than the medical sense of 'excessive'
(‘hyperactivity'). There is no implication about size— a hypertext could contain only 500 words
or so. 'Hyper-' refers to structure and not size."

— Theodor H. Nelson, Brief Words on the Hypertext(2', 23 January 1967

Information mapping

; : ; Topics and fields
linsar constraints of written text. Business decision mapping - Data visualization

The English prefix "hyper-" comes from the Greek prefix "urnep-" and means "over" or "beyond"; it has a
common origin with the prefix "super-" which comes from Latin. It signifies the overcoming of the previous

"As we may think”, Vannevar Bush (1945)

“The human mind...operates by association. With one item in its
grasp, it snaps instantly to the next ... in accordance with some
intricate web of trails carried by the cells of the brain”

"As we may think”, Vannevar Bush (1945)

“The human mind...operates by association. With one item in its
grasp, it snaps instantly to the next ... in accordance with some
intricate web of trails carried by the cells of the brain”

Defines the “Memex”: "“a device in which an individual stores all his books,
records, and communications, and which is mechanized so that it may be
consulted with exceeding speed and flexibility”

HTTP - Wikipedia X Idempotence - Wikipedia X Hypertext - Wikipedia © Private br

O B8 wikipedia.org

T " IKIPED IA Q_ Search Wikipedia Search Create account Login ese
“.# 5/ TheFreeEncyclopedia

HTTP X 84 languages v

Contents [hide] Article Talk Read Edit View history Tools v

(Top) From Wikipedia, the free encyclopedia a

Technical overview
(Redirected from Http)

> History

> HTTP data exchange The Hypertext Transfer Protocol (HTTP) is an application layer protocol in the Internet protocol suite
model for distributed, collaborative, hypermedia information systems.!'l HTTP is the foundation of data
communication for the World Wide Web, where hypertext documents include hyperlinks to other resources

> HTTP authentication

HTTP application session . .
PP that the user can easily access, for example by a mouse click or by tapping the screen in a web browser.

> HTTP/1.1 request messages
Development of HTTP was initiated by Tim Berners-Lee at CERN in 1989 and summarized in a simple

> HTTP/1.1 response messages document describing the behavior of a client and a server using the first HTTP version, named 0.9.12] That

> HTTP/1.1 example of request /

; version was subsequently developed, eventually becoming the public 1.0.[!
response transaction

) . International RFC 19452 HTTP/1.0
Development of early HTTP Requests for Comments (RFCs) started a few years later in a coordinated standard RFC 9110 HTTP
effort by the Internet Engineering Task Force (IETF) and the World Wide Web Consortium (W3C), with Semantics

work later moving to the IETF. RFC 9111 2 HTTP Caching

See also ' . RFC 911212 HTTP/1.1
HTTP/1 was finalized and fully documented (as version 1.0) in 1996.1] It evolved (as version 1.1) in 1997 RFC 9113 2 HTTP/2

Encrypted connections

Similar protocols

Notes
and then its specifications were updated in 1999, 2014, and 2022.[°] RFC 75412 HTTP/2:

References
Its secure variant named HTTPS is used by more than 85% of websites.[8! HTTP/2, published in 2015, HPACK Header

External links . ffici . f HTTP' ics "on the wire". As of Aoril 2023. it i d by 39% Compression
provides a more efficient expression o s semantics "on the wire". As of April 2023, it is used by o RFC 8164 2 HTTP/2:

of websites!”] and supported by almost all web browsers (over 97% of users).[! It is also supported by Opportunistic Security for

HTTP: a protocol for distributing hypertext media
(*and now so much more)

HTTP: a protocol for distributing hypertext media
(*and now so much more)

Enables the World Wide Web (WWW): a distributed
database of pages linked through HTTP

HTTP: a protocol for distributing hypertext media
(*and now so much more)

Enables the World Wide Web (WWW): a distributed
database of pages linked through HTTP

[... now synonymous with with “The Internet” itself! }

Tim Berners-Lee

* 1990: First HTTP implementation
— Tim Berners-Lee, CERN

« 1991: HTTP/0.9: Fetching pages

¢ 1992: HTTP/1.0:
Client/server information, simple caching

e 1996: HTTP/1.1

— Extensive caching support The first webserver
— Host identification
— Pipelined, persistent connections, ...

« 2015: HTTP/2

— Main goal: reduce latency

« 2022: HTTP/3

— Still: reduce latency

— Integrates security via TLS

— Replace transport layer with QUIC

— Already supported in >94% of browsers

HTTP Semantics

HTTP/3

HTTP 1.1 HTTP/2

(JE%S%D TLS 1.2+ Ts13

QUIC
TCP

IPv4 / IPv6

http://httpwg.org/specs/rfc7540.html

How does “the web” work?

page.html
<html>

<title>hi</title>
<hl>Welcome!</h1>
</html>

page.html
+ <html>

Q http://example.com/page.html <title>hi</title>
/ /pac <hl>Welcomel</h1>
</html>

URL: request what you want to visit

W o

example.com?

>

New Tab X --

Q_ http://example.com/page.html

page.html
<html>

<title>hi</title>
<hl>Welcome!</h1>
</html>

First step: look up where server is on Internet

=> Usually, via DNS

W o

example.com?

>

GET /page.html

New Tab

page.html
<html>

<title>hi</title>
<hl>Welcome!</h1>
</html>

=> Via TCP (usually)

Connect to server’s IP, Initiate a request for page

W o

New Tab

C

Welcome!

example.com?

>

GET /page.html

200 OK + (Content of page.html)

X+

Q_ http://example.com/page.html

page.html
<html>

<title>hi</title>
<hl>Welcome!</h1>
</html>

Server returns response (in this case, with HTML)

Why so successful?

Anyone can host a website!

... just need a domain and a server

Why so successful?

Anyone can host a website!
... just need a domain and a server

Clients can easily find arbitrary pages, pages can easily link to others =>
content can grow very quickly

HITP components

Content: objects (HTML, images, JSON, ...)

Clients: send requests, receive response

Servers: store content, or generate it

HITP components

Content: objects (HTML, images, JSON, ...)

Clients: send requests, receive response

Servers: store content, or generate it

Proxies/Middleboxes

— Placed between clients and servers

— Do extra stuff: caching, anonymization, logging, transcoding, filtering access

=> |mportant for scaling, modern browsing...
more on this later

How to find stuff?

e So far: DNS: names for one or more hosts
— eg. cs.brown.edu

How do we ask for a specific resource from this host?

URL: Uniform Resource Locator

How to find stuff?

e So far: DNS: names for one or more hosts
— eg. cs.brown.edu

How do we ask for a specific resource from this host?

URL: Uniform Resource Locator

URLs: how we find stuff

https://cs.brown.edu/courses/csci1680/f23/policies/#late-policy

How to find stuff: URLs

protocol://[name@]hostname[:port]/directory/resource?k1=v1&k2=v2#tag

« Name: can identify a client

* Hostname: FQDN or |IP address

* Port number: defaults to common protocol port (eg. 80, 22)
 Directory: path to the resource

e Resource: name of the object

* After that, various delimiters to specify further, common examples:

— ?parameters are passed to the server for execution
— #tag allows jumps to named tags within document

HTTP: the protocol

Client-server protocol
Protocol (but not data) in ASCII (before HTTP/2)

Stateless
Server typically listens on port 80 (or 443, with TLS)

Server sends response, may close connection (client may ask it to say open)

Steps in HTTPU-9 Request

Open TCP connection to server
Send request
Receive response

TCP connection terminates
— How many RTTs for a single request?

You may also need to do a DNS lookup first!

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character 1is ']'.

GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 24 Mar 2011 12:58:46 GMT

Server: Apache/2.2.9 (Debian) mod ssl1/2.2.9 OpenSSL/0.9.8¢g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT

ETag: "840a88b-236c-49f3992853bcO"

Accept-Ranges: bytes

Content-Length: 9068

Vary: Accept-Encoding

Connection: close

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-strict.dtd">

HITP Request

Method:

— GET: current value of resource, run program
— POST: update a resource, provide input for a program. . .

Headers: useful info about request
— E.g., desired language, text encoding

cauest[melhoa] [URL] | verson
heacer fefd rame] | vaive]

headers

header field name I=
|

blank line ||

body

Sample Browser Request

GET / HTTP/1.1

Host: localhost:8000

User-Agent: Mozilla/5.0 (Macinto

Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9=0.7,%*;q9=0.7
(empty [i1ne)

[In your browser: right click => Inspect element => Network

HITP Responses

Status codes to indicate something about the result

* Ixx: Information e.g, 100 Continue

* 2xx: Success e.g., 200 OK

e 3xx: Redirection e.g., 302 Found (elsewhere),

e 4xx: Client Error e.g., 403 Forbidden, 404 Not Found
« 5xx: Server Error e.g, 503 Service Unavailable

version | |_satuscode || _pmvase [,
header field name I=

header field name I=

blank line !

HTTP is Stateless

» Each request/response treated independently
» Servers not required to maintain state

HTTP is Stateless

» Each request/response treated independently
» Servers not required to maintain state

But...

— Most applications need persistent state
— E.g., shopping cart, web-mail, usage tracking, (most sites today!)

HTTP Cookies

e Client-side state maintenance
— Client stores small state on behalf of server

— Sends request in future requests to the server
— Cookie value is meaningful to the server (e.g., session id)

 Can provide authentication
1. Request

2. Response
Set-Cookie: XYZ

3. Request
Cookie: XYZ

Anatomy of a Web Page

e HTML content
« A number of additional resources

— Images
— Scripts
— Frames
« Browser makes one HTTP request for each object

— Course web page: 14 objects
— Modern web pages: hundreds of objects

BROWN Department
| of
Computer Science

IN DEQO SFERAMUS

Arifriasoda =91

‘Welcome to the Brown University Computer Science Department Web. Information here is organized into broad categories, which are summarized in the icon bar, above. If you are visiting for tl
or exploring, the rest of this page offers some details about what you'll find.

If you are visiting us in person, you'll need directions to the CIT building. If not, perhaps you just need our address, phone, fax or other vital statistics.

Calendar of Events
Talks, conferences and soirees both at Brown and elsewhere are described.

Programs of Study

Undergraduate concentration requirements and the masters and phd programs are described, accompanied by the relevant forms, brochures and pointers to related information elsewhere.

J
i _Research Groups

Active research areas in computer science at Brown include graphics, geometric computing, object-oriented databases, artificial intelligence and robotics. Each group maintains a home pag
describing their research and activities and links to relevant publications.

_Publications
The Department publishes brochures, technical reports, a newsletter, conduit!, and, for locals, house rules.

]
B

_Courses
Many courses taught using the Department's facilities have home pages, which provide information useful to students taking them.

Hello, sign in Returns 0

Delivering to Providence 02912 - —
ama;on © All Search Amazon Q ==EN- Account&Lists~ &Orders v Cart

Update location

= All Holiday Deals Medical Care + Groceries ~ Best Sellers Amazon Basics Prime v Registry New Releases Today's Deals Customer S Sign in

New customer? Start here

Early Black Friday deals
Save up to 50 on Amazon

< smart home devices

Limited-time offer

Gear up for game day Try on Coach styles for Top Deal Sign in for the best
experience

Sign in securely

Up to 50% off LIl

Ring Doorbells, Cameras and Bundles

Shop all teams Shop Coach with Prime Try Before You Buy See all deals

Modern web pages and HTTP

« Web APIs: HTTP response/requests are a standard way to ask for anything
* Modern web pages: use Javascript to make lots of requests without
reloading page
— And can use APIs for all kinds of other stuff

Example: Github public API

curl https://api.github.com/users/ndemarinis

"login": "ndemarinis",

"id": 1191319,

"node_id": "MDQ6VXN1cjEXOTEzMTk=",

"avatar_url": "https://avatars.githubusercontent.com/u/1191319°?v=4",

"gravatar_id": s

"url"”: "https://api.github.com/users/ndemarinis”,
"type": "User",

"site _admin": false,

"name": "Nick DeMarinis",

"blog": "https://vty.sh",

"twitter_username": null,

"public_repos": 10,

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character 1is ']'.

GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 24 Mar 2011 12:58:46 GMT

Server: Apache/2.2.9 (Debian) mod ssl1/2.2.9 OpenSSL/0.9.8¢g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT

ETag: "840a88b-236c-49f3992853bcO"

Accept-Ranges: bytes

Content-Length: 9068

Vary: Accept-Encoding

Connection: close

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-strict.dtd">

HTTP: What matters for performance?

Depends on type of request
— Lots of small requests (objects in a page)
— Some big requests (large download or video)

Small Requests

* Latency matters
« RTT dominates
* Major steps:
— DNS lookup (if not cached)

— Opening a TCP connection
— Setting up TLS (optional, but now common)
— Actually sending the request and receiving response

How can we reduce the number ot connection setups?

+ Keep the connection open and request all objects serially
— Works for all objects coming from the same server
— Which also means you don’t have to “open” the window each time

Persistent connections (HTTP/1.1)

Browser Request

GET / HTTP/1.1

Host: localhost:8000

User-Agent: Mozilla/5.0 (Macinto

Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9=0.7,%*;q9=0.7
Keep-Alive: 300

Connection: keep-alive

Small Requests (cont)

» Second problem is that requests are serialized
— Similar to stop-and-wait protocols!

 Two solutions
— Pipelined requests (similar to sliding windows)

— Parallel Connections
* Browsers implement this differently—see “Inspect element”

— How are these two approaches different?

HTTP/2

« Adds more options to trade off:

* Multiplexed streams on same connection
— Plus stream weights, dependencies

* No head of line blocking!

— But what happens if there is packet loss?

https://www.twilio.com/blog/2017/10/http2-issues.html

HTTP/3

« Mapping of HTTP semantics onto QUIC
— E.g., QUIC already implements multiple streams, and HTTP doesn’t need to do it

« QUIC: Another transport-layer protocol, intended to replace TCP
— RFC9000
— Same goals as TCP, but...
— Integrates security by default (TLS, next class)
— Supports multiple streams at once
— Various tricks to reduce message size and latency

* By moving multiplexing into the transport layer, can do so in a way that
benefits HTTP (no head of line blocking!)

Comparison: QUIC's handshake

Larger Objects

* Problem is throughput in bottleneck link
 Solution: HTTP Proxy Caching

— Also improves latency, and reduces server load

clients

Proxy
cache

O)

server

How to Control Caching?

* Server sets options
— Expires header
— No-Cache header
 Client can do a conditional request:

— Header option: if-modified-since
— Server can reply with 304 NOT MODIFIED

Caching

« Where to cache content?
— Client (browser): avoid extra network transfers

— Server: reduce load on the server
— Service Provider: reduce external traffic

Server %

Clients ¢

Caching

* Why caching works?

— Locality of reference:
* Users tend to request the same object in succession
« Some objects are popular: requested by many users

Server %

Clients ¢

How well does caching work?

* Very well, up to a point
— Large overlap in requested objects

— Objects with one access place upper bound on hit ratio
— Dynamic objects not cacheable*

« Example: Wikipedia
— About 400 servers, 100 are HTTP Caches (Squid)
— 85% Hit ratio for text, 98% for media

* But can cache portions and run special code on edges to reconstruct

Reverse Proxies

Close to the server
— Also called Accelerators
— Only work for static content

Forward Proxies

Typically done by ISPs or Enterprises
— Reduce network traffic and decrease latency
— May be transparent or configured

Reverse proxies

Content Distribution Networks

 Integrate forward and reverse caching

— One network generally administered by one entity

— E.g. Akamai
* Provide document caching

— Pull: result from client requests

— Push: expectation of high access rates to some objects
* Can also do some processing

— Deploy code to handle some dynamic requests
— Can do other things, such as transcoding

Example CDN

Server

How Akamai works

Akamai has cache servers deployed close to clients
— Co-located with many ISPs

* Challenge: make same domain name resolve to a proxy close to the client

« Lots of DNS tricks. BestBuy is a customer
— Delegate name resolution to Akamai (via a CNAME)

DNS Resolution

dig www.bestbuy.com
;» ANSWER SECTION:

www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME all05.b.akamai.net.
all05.b.akamai.net. 20 IN A 198.7.236.235
all05.b.akamai.net. 20 IN A 198.7.236.240

;; AUTHORITY SECTION:

b.akamai.net. 1101 IN NS nlb.akamai.net.
b.akamai.net. 1101 IN NS n0b.akamai.net.

;; ADDITIONAL SECTION:

n0b.akamai.net. 1267 IN A 24.143.194.45
nlb.akamai.net. 2196 IN A 198.7.236.236

* n1b.akamai.net finds an edge server close to the client’s local
resolver

« Uses knowledge of network: BGP feeds, traceroutes. Their secret sauce...

Example

From Brown

dig www.bestbuy.com
;; ANSWER SECTION:

www.bestbuy.com. 3600 1IN CNAME www.bestbuy.com.edgesulite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME allOb.b.akamail.net.
allO0b.b.akamail.net. 20 IN A 198.7.236.235
allO0b.b.akamail.net. 20 IN A 198.7.236.240

— Ping time: 2.53ms
From Berkeley, CA
all05.b.akamai.net. 20 IN A 198.189.255.200

allO5.b.akamai.net. 20 IN A 198.189.255.207
— Ping time: 3.20ms

dig www.bestbuy.com
;; QUESTION SECTION:
;www. bestbuy.com. IN A

1)

ANSWER SECTION:

www.bestbuy.com. 2530 IN CNAME www.bestbuy.com.edgekey.net.

www . bestbuy.com.edgekey.net. 85 IN CNAME e1382.x.akamaiedge.net.
e1382.x.akamaiedge.net. 16 IN A 104.88.86.223

;3 Query time: 6 msec
;3 SERVER: 192.168.1.1#53(192.168.1.1)

1)

1)

WHEN: Thu Nov 16 09:43:11 2017
MSG SIZE rcvd: 123

traceroute to 104.88.86.223 (104.88.86.223), 64 hops max, 52 byte packets

1

- ® VW 0 N O Ul A W N

—_ .

—_
N

13
ms

router (192.168.1.1) 2.461 ms 1.647 ms 1.178 ms

138.16.160.253 (138.16.160.253) 1.854 ms 1.509 ms 1.462 ms

10.1.18.5 (10.1.18.5) 1.886 ms 1.705 ms 1.707 ms

10.1.80.5 (10.1.80.5) 4.276 ms 6.444 ms 2.307 ms
lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.804 ms 1.870 ms 1.727 ms
131.109.200.1 (131.109.200.1) 2.841 ms 2.587 ms 2.530 ms
host-198-7-224-105.0shean.org (198.7.224.105) 4.421 ms 4.523 ms 4.496 ms
5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.099 ms 3.974 ms 4.290 ms

* ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 4.689 ms 4.109 ms
ae-6.r24.nycmny@1.us.bb.gin.ntt.net (129.250.4.114) 8.863 ms 10.205 ms 10.477 ms
ae-1.r08.nycmny@1.us.bb.gin.ntt.net (129.250.5.62) 9.298 ms
ae-1.r07.nycmny@1.us.bb.gin.ntt.net (129.250.3.181) 10.008 ms 8.677 ms
ae-0.a00.nycmny@1.us.bb.gin.ntt.net (129.250.3.94) 8.543 ms 7.935 ms
ae-1.a00.nycmny@1.us.bb.gin.ntt.net (129.250.6.55) 9.836 ms

a104-88-86-223.deploy.static.akamaitechnologies.com (104.88.86.223) 9.470 ms 8.483
8.738 ms

dig www.bestbuy.com @109.69.8.51

e1382.x.akamaiedge.net. 12 IN A 23.60.221.144

traceroute to 23.60.221.144 (23.60.221.144), 64 hops max, 52 byte packets

1

00 N O Ul A~ WN

1

12
ms
13

14
ms

router (192.168.1.1) 44.072 ms 1.572 ms 1.154 ms

138.16.160.253 (138.16.160.253) 2.460 ms 1.736 ms 2.722 ms

10.1.18.5 (10.1.18.5) 1.841 ms 1.649 ms 3.348 ms

10.1.80.5 (10.1.80.5) 2.304 ms 15.208 ms 2.895 ms

lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.784 ms 4.744 ms 1.566 ms
131.109.200.1 (131.109.200.1) 3.581 ms 5.866 ms 3.238 ms
host-198-7-224-105.0shean.org (198.7.224.105) 4.288 ms 6.218 ms 8.332 ms
5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.209 ms 6.103 ms 5.031 ms
ae-4.r00.bstnma@7.us.bb.gin.ntt.net (129.250.66.93) 3.982 ms 5.824 ms 4.514 ms
ae-6.r24.nycmny@1.us.bb.gin.ntt.net (129.250.4.114) 9.735 ms 12.442 ms 8.689 ms
ae-9.r24.londen12.uk.bb.gin.ntt.net (129.250.2.19) 81.098 ms 81.343 ms 81.120 ms
ae-6.r01.mdrdsp@3.es.bb.gin.ntt.net (129.250.4.138) 102.009 ms 110.595 ms 103.010

81.19.109.166 (81.19.109.166) 99.426 ms 93.236 ms 101.168 ms

a23-60-221-144.deploy.static.akamaitechnologies.com (23.60.221.144) 94.884 ms 92.77
93.281 ms

http://www.bestbuy.com/

Other CDNs

Akamai, Limelight, Cloudflare

Amazon, Facebook, Google, Microsoft
Netflix

Where to place content?

Which content to place? Pre-fetch or cache?

