
CSCI-1680

Congestion Control Mechanics

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• TCP Milestone I: Sign up for a meeting this week, if you haven’t
already!

• TCP gearup II TONIGHT (11/2) 5-7pm in CIT68 (+Zoom, +Recorded)
– Any questions you have
– Stuff for milestone II
– How to test

• HW3: Out now, due next Wed => practice for milestone II

Warmup

Which of the following contribute to congestion:

a. Packets queueing up at switches

b. High CPU usage on the receiver

c. Many TCP connections on the same link

d. Many UDP connections on the same link

e. Poor wifi connection on the sender

I I
BUTNOT NETWORK

Flow control: making sure we don’t
overwhelm the receiver

Congestion control: making sure we don’t
 overwhelm the network

RECEIVING

ADVENTSob winnow FREIGHT
In

0 0

Thinking about congestion

“BBR congestion control”

i É IT
to

IDEA

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit
on a network link at any given time

 (Link capacity (bits/sec)) * (RTT (sec))
 = (bytes)

“BBR congestion control”

It

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit
on a network link at any given time

 (Link capacity (bits/sec)) * (RTT (sec))
 = (bytes)
Eg. 1Gbps link * 1ms RTT = 125KiB BDP

“BBR congestion control”

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit
on a network link at any given time

 (Link capacity (bits/sec)) * (RTT (sec))
 = (bytes)
Eg. 1Gbps link * 1ms RTT = 125KiB BDP

“BBR congestion control”

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit
on a network link at any given time

 (Link capacity (bits/sec)) * (RTT (sec))
 = (bytes)
Eg. 1Gbps link * 1ms RTT = 125KiB BDP

“BBR congestion control”

=> After exceeding BDP, network is queueing packets. After queues are full, packets
getting dropped due to congestion.

x

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit
on a network link at any given time

 (Link capacity (bits/sec)) * (RTT (sec))
 = (bytes)
Eg. 1Gbps link * 1ms RTT = 125KiB BDP

“BBR congestion control”

=> After exceeding BDP, network is queueing packets. After queues are full, packets
getting dropped due to congestion.

Congestion control algorithms operate
somewhere in this region

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Why is this hard?

Sender doesn’t know the network capacity
– The network can’t (generally) tell us this

… and the network may change

• New connections start up

• Connections end

• Link characteristics may change...

NEED TO DO A START
CONTINUALLY WHILE
SENDING

Why is this hard?

Sender doesn’t know the network capacity
– The network can’t (generally) tell us this

… and the network may change

• New connections start up

• Connections end

• Link characteristics may change...

=> Need to measure or model what is going on in the network as
we are sending, adapt accordingly

Congestion Control (CC)
algorithm

Signals from the network
(ACKs, other TCP packet info, more...)

Congestion window: cwnd

The basic principle

Lots of CC variants designed with different strategies and goals

Network Signals
• Packet loss (“loss-based”)
• Delay/RTT (“delay-based”)
• ”Marks” added on packets by routers

Goals
• Maximize throughput
• Recover from packet loss or high RTT
• Short-long “flows”
• Datacenter-specific (low-latency)

CLASSIC MODELS

I

Lots of CC variants designed with different strategies and goals

Network Signals
• Packet loss (“loss-based”)
• Delay/RTT (“delay-based”)
• ”Marks” added on packets by routers

Goals
• Maximize throughput
• Recover from packet loss or high RTT
• Short-long “flows”
• Datacenter-specific (low-latency)

⇒ This is a big research area!

Wikipedia’s list

Sion

1

É

https://en.wikipedia.org/wiki/TCP_congestion_control

Congestion control has a long history

• Active research area for ~40 years

• I am nowhere close to being an expert

• My hope is to get you to understand the problems involved

Classical Congestion Control

Loss-based: assume packet loss => congestion

• TCP Tahoe (1988)
– Slow start, congestion avoidance, fast retransmit

• TCP Reno (1990)
– TCP Tahoe + Fast recovery

• Many variations developed from this… (see optional readings)

if

WND

UI u É
fI

AIMD

Loss-based congestion control

 - Slow start (SS): figure out initial capacity, determine capacity again
after a packet oss

 => After finishing a window, cwnd = cwnd * 2

 => Do this until we observe a packet loss

After first loss, save ssthresh <= cwnd

If cwnd < ssthresh => slow start mode (window is so low you should be
in startup phase

if cwnd > ssthresh: congestion-avoidance mode

 - Congestion avoidance (CA): steady state process

 => continually look for capacity to change, if so, increase how much
you send. If you see a packet loss, scale back

Start with some initial window cwnd

After sending whole window

 - If no packet loss observed cwnd += MSS

 Also written as. Cwnd += 1. => increase by one segment

 ==> If nothing went wrong, try to increase capacity

 - If packets were lost (timeout occurred):

 cwnd = cwnd / 2

=> Reduce amount we can send in next window dramatically, gives
network some time to recover

Modes of operation

• Slow start (SS)
– Determine initial window, recover after loss

• Congestion avoidance (CA)
– Steady state, slowly probe for changes in capacity

Congestion Avoidance

After finishing a window, recompute cwnd:

• If no losses, cwnd = cwnd + MSS
– (Often written as cwnd += 1)

• If packets were lost: cwnd = cwnd/2

This is called additive increase, multiplicative decrease (AIMD)
 - Slowly increase capacity
 - Dramatically scale back on loss

AIMD Example
TAHOE

IDEAL CAPACITY

ALWAYS SOME PACKET
LOSS
ALWAYS CHANGING

BUFFERS NEARLY
ALWAYS FULL

Slow Start

Turns out AIMD is really slow to start up. So do something faster at connection
start…

INITIAL STD CWND I

Slow Start

Turns out AIMD is really slow to start up. So do something faster at connection
start…

After finishing a window

• cwnd = cwnd * 2

• Continue doing this until you experience a loss

• After first loss, keep slow-start threshold (ssthresh):
– If window < ssthresh: slow-start

– If window > ssthresh: congestion avoidance

• After first loss: ssthresh = cwnd / 2

I Attor Loft SSTARESH

CWND 2

g nE

How to Detect Loss

• Timeout

• Any other way?
– Gap in sequence numbers at receiver

– Receiver uses cumulative ACKs: drops => duplicate ACKs

REALY ON6NTT

DIE

How to Detect Loss

• Timeout

• Any other way?
– Gap in sequence numbers at receiver

– Receiver uses cumulative ACKs: drops => duplicate ACKs

• 3 Duplicate ACKs considered loss

How to Detect Loss

• Timeout

• Any other way?
– Gap in sequence numbers at receiver

– Receiver uses cumulative ACKs: drops => duplicate ACKs

• 3 Duplicate ACKs considered loss

• Which one is worse?

Slow start every time?!

• Losses have large effect on throughput

• Fast Recovery (TCP Reno)
– Same as TCP Tahoe on Timeout: w = 1, slow start

– On triple duplicate ACKs: w = w/2

– Retransmit missing segment (fast retransmit)

– Stay in Congestion Avoidance mode

• Why 3 dup-acks instead of just 1?

This is just the beginning…

Lots of congestion control schemes, with different strategies/goals:

• Tahoe (1988)

• Reno (1990)

• Vegas (1994): Detect based on RTT

• New Reno: Better recovery multiple losses

• Cubic (2006): Linux default, window size scales by cubic function

• BBR (2016): Used by Google, measures bandwidth/RTT

Loss Desa cc

I win macos

BBR: what’s different

“BBR congestion control”

xDBN

Yg

Not based just based on packet loss

 - Tries to measure both RTT and link capacity

Normal phase swaps between measuring link capacity (sending more)

vs. measuring RTT (sends less, looks for RTT to go down)

=> Uses both of these things to figure out a sending rate

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

BBR

• Problem: can’t measure both RTTprop and Bottleneck BW at the

same time

BBR:
– Slow start

– Measure throughput when RTT starts to increase

– Measure RTT when throughput is still increasing

– Pace packets at the BDP

– Probe by sending faster for 1RTT, then slower to compensate

BBR

From: https://labs.ripe.net/Members/gih/bbr-tcp

2016

1
PROBE CAPACITY

PIMP
I PROBERTT

https://labs.ripe.net/Members/gih/bbr-tcp
https://labs.ripe.net/Members/gih/bbr-tcp
https://labs.ripe.net/Members/gih/bbr-tcp
https://labs.ripe.net/Members/gih/bbr-tcp
https://labs.ripe.net/Members/gih/bbr-tcp
https://labs.ripe.net/Members/gih/bbr-tcp

Another way: ECN

What if we didn’t have to drop packets?

• Routers/switches set bits in packet to indicate congestion

• When sender sees congestion bit, scales back cwnd

• Must be supported by both sender and receiver

=>Avoids retransmissions optionally dropped packets

Externgwoostion
NOTIFICATION

O O
K

NOTIFY BEFORE BUFFET FILL UP

ONLY WORKS IF ROUTERS COOPERATE NYNFERNET

Special purpose example: DCTCP (2010)

Designed for datacenter usage only

• Want to avoid queuing as much as possible

• Routers/switches mark packets with ECN bit in header

• When this happens, senders scale back dramatically

I
IN DATACENTER 200ps RE

IN DATACENTER PROVIDER CAN
CONTROL WHOLE STACK
SERVERS OS SWITCHESROUTERS

APPS

What happens in practice now?

"The Great Internet TCP congestion control census" (2019)

I REEG
Bit

https://dl.acm.org/doi/abs/10.1145/3366693

"The Great Internet TCP congestion control census" (2019)

https://dl.acm.org/doi/abs/10.1145/3366693

"The Great Internet TCP congestion control census" (2019)

https://dl.acm.org/doi/abs/10.1145/3366693

