CSCI-1680

Congestion Control Mechanics

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

Administrivia

« TCP Milestone I: Sign up for a meeting this week, if you haven't
already!

« TCP gearup Il TONIGHT (11/2) 5-7pm in CITé68 (+Zoom, +Recorded)
— Any questions you have
— Stuff for milestone |l
— How to test

« HW3: Out now, due next Wed => practice for milestone |l
ﬂ

Warmup

Which of the following contribute to ?fngestion:

a./Packets queueing up at switches

o} High CPU usage on the receiver <2 [LW) Con W Ppop L45
c+/ Many TCP connections on the same link & QYT N MARAA

e cor Rino
d.\Many UDP connections on the same link

e. Poor wifi connection on the sender /

Flow control: making sure we don't RELLT‘”NA
overwhelm the receiver 4 QW(’
2 N
= T AD i 12089 oy pipo) nE
(i)

Congestion control: making sure we don't
: overwhelm the network

—C—o o0&

Thinking about congestion

[}
-
[
S
b
E
(]
2
o
[a]

84 CARUITY, prhy
JWeREASING P 1O DJIFIFEINS

Queuc} Fok
> PACKT,
LoLs,

Amount in flight BDP + BufSize

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

/

o
2
©
S
[
]
2
K
[=]

Amount in flight BDP + BufSize

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit
on a network link at any given time

(Link capacity (bits/sec)) * (RTT (sec))
= (bytes)

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

[
-
©
-
ba)
<
v
=
@
[=]

Amount in flight BDP + BufSize

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit
on a network link at any given time

T . : .
(Link capacity (bits/sec)) * (RTT (sec))

= (bytes)
Eg. 'IGbps link * 1ms RTT = 125KiB BDP

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

[
-
©
-
ba)
<
v
=
@
[=]

Amount in flight BDP + BufSize

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit
on a network link at any given time

(Link capacity (bits/sec)) * (RTT (sec))
= (bytes)
Eg. 'IGbps link * 1ms RTT = 125KiB BDP

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

[
-
©
-
ba)
<
v
=
@
[=]

Amount in flight BDP + BufSize

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit
on a network link at any given time

(Link capacity (bits/sec)) * (RTT (sec))
= (bytes)
Eg. 1Gbps link * Tms RTT = 125KiB BDP
[=> Atter exceeding BDP, network is queueing packets. After queues are full, packets]

getting dropped due to congestiorr

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Congestion control algorithms operate
somewhere in this region

Delivery rate

Amount in flight BDP + BufSize

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit
on a network link at any given time

(Link capacity (bits/sec)) * (RTT (sec))
= (bytes)
Eg. 1Gbps link * Tms RTT = 125KiB BDP
[=> Atter exceeding BDP, network is queueing packets. After queues are full, packets]

getting dropped due to congestion.

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Why is this hard?

Sender doesn’t know the network capacity
R —r —~ MEED 49 Dp A sy

— The network can’t (generally) tell us this
— CONrNIA] PNILE
SO b -

.. and the network may change

« New connections start up

« Connections end
 Link characteristics may change...

Why is this hard?

Sender doesn’t know the network capacity

— The network can’t (generally) tell us this

. and the network may change

« New connections start up

« Connections end
« Link characteristics may change...

£=> Need to measure or model what is going on in the network as }

we are sending, adapt accordingly

The basic principle

Signals from the network
(ACKs, other TCP packet info, more...)

o —]

v

Congestion window: cwnd
S

Lots of CC variants designed with different strategies and goals

Network Signals

 Packet loss (“loss-based”) <—— C
« Delay/RTT (“delay-based”)
« "Marks” added on packets by routers

LALGL Noosts

Goals

« Maximize throughput

« Recover from packet loss or high RTT
« Short-long “flows”

« Datacenter-specific (low-latency)

Lots of CC variants designed with different strategies and goals

Network Signals

« Packet loss (“loss-based”)

« Delay/RTT (“delay-based”)

« "Marks” added on packets by routers

Goals

« Maximize throughput

« Recover from packet loss or high RTT
« Short-long “flows”

« Datacenter-specific (low-latency)

[=> This is a big research area!

CUBIC Remy

[llinois Sprout
HTCP PRR

HSTCP PCC Vivace
Veno CTCP Ledbat TIMELY Copa

New Reno
Vegas 12001 2004 2011 2016 | 2019

@
1994 1999 2003| 2006 2010 BBR

Binomial BIC YeAH DCTCP Proprate
Westwood FAST
Jersey
Hybla

Variant ¢
(New) Reno
Vegas
High Speed
BIC
CuUBIC
caTcplin?]
NATCPI13]
Elastic-TCP
Agile-TCP
H-TCP
FAST
Compound TCP
Westwood
Jersey
BBRI'4]
CLAMP
TFRC
XCP
VCP
MaxNet
JetMax
RED
ECN

Feedback ¢

Loss

Delay

Loss

Loss

Loss
Loss/Delay
Multi-bit signal
Loss/Delay
Loss

Loss

Delay
Loss/Delay
Loss/Delay
Loss/Delay
Delay
Multi-bit signal
Loss

Multi-bit signal
2-bit signal
Multi-bit signal
Multi-bit signal
Loss

Single-bit signal

Required changes ¢
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Receiver, Router
Sender, Receiver
Sender, Receiver, Router
Sender, Receiver, Router
Sender, Receiver, Router
Sender, Receiver, Router
Router

Sender, Receiver, Router

Benefits ¢ | Fairness ¢
— Delay

Less loss Proportional

High bandwidth

High bandwidth

High bandwidth

Ultra-low latency and high bandwidth

Near Optimal Performance

High bandwidth/short & long-distance

High bandwidth/short-distance

High bandwidth

High bandwidth Proportional

High bandwidth Proportional

Lossy links

Lossy links

BLVC, Bufferbloat

Variable-rate links Max-min

No Retransmission Minimum delay

BLFC Max-min
BLF Proportional
BLFSC Max-min
High bandwidth Max-min
Reduced delay

Reduced loss

https://en.wikipedia.org/wiki/TCP_congestion_control

Congestion control has a long history

 Active research area for ~40 years

| am nowhere close to being an expert

« My hope is to get you to understand the problems involved

Classical Congestion Control

Loss-based: assume packet loss => congestion

« TCP Tahoe (1988)

— Slow start, congestion avoidance, fast retransmit

e TCP Reno (1990)
— TCP Tahoe + Fast recovery

« Many variations developed from this... (see optional readings)

Loss-based congestion control
- Slow start (SS): figure out initial capacity, determine capacity again
after a packet oss
=> After finishing a window, cwnd = cwnd * 2
=> Do this until we observe a packet loss
Afrtar firet lnece aava ccthrach ~wvnad
MLl 1ot 1voo, AVGC ool ITColl <<— UWIIuU
If cwnd < ssthresh => slow start mode (window is so low you should be
in startup phase Lﬂdﬁ
if cwnd > ssthresh: congestion-avoidance mode
Lrwndf -
/
1
- Congestion avoidance (CA): steady state process
=> continually look for capacity to change, if so, increase how much
you send. If you see a packet loss, scale back
Ctart with eAarmae initial \wwinadaw Awin A
ladlt WILTT SUTTICT It al WilTidovvy CwWiIiild
After sending whole window
- If no packet loss observed cwnd += MSS
Also written as. Cwnd += 1. => increase by one segment
==> |f nothing went wrong, try to increase capacity YY),
cwr
| W EASE ‘
AP sz 4
_I-Egg;‘f'ikeﬂa%l&ftl@m‘eout/ occd?‘rfe):7 e / / 4
}c vhd = C‘”ﬂﬁﬁuéﬂ Ve ,%é&tbdﬁ, "
L — — (W
=> Reduce amciu‘n{/ve can send in next window dramatically, gfves
network some time /B I J[

Modes of operation

e Slow start (SS)

— Determine initial window, recover after loss

« Congestion avoidance (CA)

— Steady state, slowly probe for changes in capacity

Congestion Avoidance

After finishing a window, recompute cwnd:

e If no losses, cwnd = cwnd + MSS

— (Often written as cwnd += 1)

* If packets were lost: cwnd = cwnd/2

This is called additive increase, multiplicative decrease (AIMD)
- Slowly increase capacity

- Dramatically scale back on loss

AIMD Example
,/7 TAHO L

§>/41—W"/'([N E Pt

L0fC
— %6INVE.

2 ponbbs pest AAYE it

TCP Sagfiooth, red curve represents the network capacity

Slow Start

Turns out AIMD s really slow to start up. So do something faster at connection

start... SN)TAL £287 cw/uﬂ.7 /Z

Slow Start

Turns out AIMD is really slow to start up. So do something faster at connection
start...

After finishing a window
e cwnd =cwnd* 2

« Continue doing this until you experience a loss

o After first loss, keep slow-start threshold (ssthresh):
— If window < ssthresh: slow-start

— If window > ssthresh: congestion avoidance

o After first loss: ssthresh = cwnd / 2

e rre Lol - Skl
Coomp /7.

(e

J

time

TCP Tahoe Sawtooth, red curve represents the network capacity
Slow Start is used after each packet loss until ssthresh is reached

How to Detect Loss
. Timeout — ZM""/ LONb MT

« Any other way?

— Gap in sequence numbers at receiver

— Receiver uses cumulative ACKs: drops => duplicate ACKg

vy
pﬁ

kS [

y

%
ACKE

\

How to Detect Loss

e Timeout

« Any other way?
— Gap in sequence numbers at receiver

— Receiver uses cumulative ACKs: drops => duplicate ACKs

3 Duplicate ACKs considered loss

How to Detect Loss

Timeout

Any other way?
— Gap in sequence numbers at receiver

— Receiver uses cumulative ACKs: drops => duplicate ACKs

3 Duplicate ACKs considered loss

Which one is worse?

cwnd [MSS]

3ll ACKs received
some ACKs received
| O timeout (RTO expired)
O duplicate ACKs received

ACKs for the first
16 TCP segments

Timeout:
+ cwnd(new) = 4 x MSS
« ssthresh(new) = cwnd / 2

cwnd(new)

<—— ssthresh(new)

Duplicate ACKs:
« ssthresh(new) = cwnd /2

Timeout:
» cwnd(new) = 4 x MSS

« ssthresh(new) = cwnd / 2

ssthresh(new)

cwnd(new)

e

Il }

1
T

3

Il Il Il
T T T T

10 " 12 13 14 15

— t [RTT]

16 17

t=0 Slow-Start

« cwnd(init) = 4 x MSS
« ssthresh(init) = co

Congestion Slow-Start

Avoidance

-
Congestion
Avoidance

Slow start every time?!

* Losses have large effect on throughput
» Fast Recovery (TCP Reno)

— Same as TCP Tahoe on Timeout: w = 1, slow start
— On triple duplicate ACKs: w = w/2
— Retransmit missing segment (fast retransmit)

— Stay in Congestion Avoidance mode

« Why 3 dup-acks instead of just 17

This is just the beginning...

Lots of congestion control schemes, with different strategies/goals:
+ Tahoe (1988)] L o8s ~PMD CC
 Reno (1990)
« Vegas (1994): Detect based on RTT
Jes \ 777
* New Reno: Better recovery multiple losses

« Cubic (2006): Linux default, window size scales by cubic function

« BBR (2016): Used by GoogNeasures bandwidth/RTT

LIV, Macoll.

BBR: what'’s different ’ Pl L oA

[
L
©
-
ba)
<
(]
2
K
a

Amount in flight BDP + BufSize

Not based just based on packet loss

- Tries to measure both RTT and link capacity

Normal phase swaps between measuring link capacity (sending more)
vs. measuring RTT (sends less, looks for RTT to go down)

=> Uses both,of these things to figure out a sending rate

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

BBR

« Problem: can't measure both RTTprop and Bottleneck BW at the

same time
BBR:

— Slow start

— Measure throughput when RTT starts to increase
— Measure RTT when throughput is still increasing
— Pace packets at the BDP

— Probe by sending faster for 1RTT, then slower to compensate

BBR (20/5)

Link Capacity

From:

https://labs.ripe.net/Members/gih/bbr-tcp
https://labs.ripe.net/Members/gih/bbr-tcp
https://labs.ripe.net/Members/gih/bbr-tcp
https://labs.ripe.net/Members/gih/bbr-tcp
https://labs.ripe.net/Members/gih/bbr-tcp
https://labs.ripe.net/Members/gih/bbr-tcp

Another way: ECN E”U’ZW&AM'\)

- A1 FICAT] o/)
What if we didn’t have to drop packets? g

» Routers/switches set bits in packet to indicate congestion
_ A
o © o0

« When sender sees congestion bit, scales back cwnd 7"

« Must be supported by both sender and receiver

=>Avoids retransmissions optionally dropped packets

NS, MoriE/ Bere QUPFEA gL VP,
Oy LS 17 ROITHL COPENTE (V7 scaner

Special purpose example: DCTCP (201(P)
/v AACHTA £ 200 R

Designed for datacenter usage only

« Want to avoid queuing as much as possible
* Routers/switches mark packets with ECN bit in header

« When this happens, senders scale back dramatically

—> P ATACENTER - frovipia_ cpn
B COTroL LKOE Crack

(Cenven z _gu)/r(qs/eé ,&)%‘/’-,g
APA(. -)

What happens in practice now?

THE EVOLUTION OF THE TCP ECOSYSTEM

INOE
T -

[~

i

2001 2004 2011 2019

—

mAIMD m CUBIC mBIC mHSTCP ¥ Scalable Vegas Westwood u CTCP
H lllinois Veno YeAH mHTCP BBR BBR G1.1 ® AkamaiCC Unknown

AYUSH MISHRA, IETF 109, 20TH NOV 2020

https://dl.acm.org/doi/abs/10.1145/3366693

DISTRIBUTION BY POPULARITY

AND TRAFFIC SHARE

Unresponsive

Unknown
and
shortflows

Others

= CTCP/lllinois

Share of congestion control algorithms deployed
by website count in the Alexa Top 250 websites

Among the top 250 Alexa websites, BBR has a
larger share by website count than Cubic

In terms of traffic share, BBR is now contributing to
more than 409% of the downstream traffic on the
Internet!

Site Downstream traffic share Variant

Amazon Prime 3.69% CUBIC
Netflix ’ 15% CUBIC
YouTube 11.35% BBR

Other Google sites - 28% BBR

Steam downloads 2.84% BBR

(As measured on static HTTP webpages)
AYUSH MISHRA, IETF 109, 20TH NOV 2020 14

https://dl.acm.org/doi/abs/10.1145/3366693

LOOKING CLOSER AT THE
UNCLASSIFIED VARIANTS

We had a total of 6,330 (31.65%) of websites that were unclassified

We ran a variety of network profiles on these websites to infer something about their congestion
control mechanism

Type React to Packet Loss? React to BDP? Websites (share)

AkamaiCC v 1,103 (5.52%)
Unknown Akamai ? 157 (0.79%)

493 (2.47%)

Unkn
frnown 1,782 (8.91%)

Short flows ? 1,493 (7.47%)

Unresponsive ? ? 1,302 (6.51%)

Total 6,330 (31.65%)

AYUSH MISHRA, IETF 109, 20TH NOV 2020 15

https://dl.acm.org/doi/abs/10.1145/3366693

