CSCI-1680

Congestion Control Mechanics

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

Administrivia

TCP Milestone I: Sign up for a meeting this week, if you haven't
already!

TCP gearup Il TONIGHT (11/2) 5-7pm in CITé68 (+Zoom,
+Recorded)

— Any questions you have
— Stuff for milestone |l
— How to test

HW3: Out now, due next Wed => practice for milestone |l

Warmup

Which of the following contribute to congestion:

a. Packets queueing up at switches
. High CPU usage on the receiver
Many TCP connections on the same link

. Many UDP connections on the same link

® Q O O

Poor wifi connection on the sender

Flow control: making sure we don't
overwhelm the receiver

Congestion control: making sure we don't
overwhelm the network

Thinking about congestion

(]
-
]
S
>
S
(]
.2
K]
a

Amount in flight BDP + BufSize

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Ty

Delivery rate

Amount in flight BDP + BufSize
Bandwidth-delay product (BDP): maximum amount of data that can be in-transit on
a network link at any given time

(Link capacity (bits/sec)) * (RTT (sec))
= (bytes)

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

o
el
]
b
b
1Y
o
2
K
a

Amount in flight BDP + BufSize

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit on
a network link at any given time

(Link capacity (bits/sec)) * (RTT (sec))
= (bytes)
Eg. 1Gbps link * Tms RTT = 125KiB BDP

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

o
el
]
b
b
1Y
o
2
K
a

Amount in flight BDP + BufSize

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit on
a network link at any given time

(Link capacity (bits/sec)) * (RTT (sec))
= (bytes)
Eg. 1Gbps link * Tms RTT = 125KiB BDP

[=> After exceeding BDP, network is queueing packets. After queues are full, packets }
getting dropped due to congestion.

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Congestion control algorithms operate
somewhere in this region

Delivery rate

Amount in flight BDP + BufSize

Bandwidth-delay product (BDP): maximum amount of data that can be in-transit on
a network link at any given time

(Link capacity (bits/sec)) * (RTT (sec))
= (bytes)
Eg. 1Gbps link * Tms RTT = 125KiB BDP

[=> After exceeding BDP, network is queueing packets. After queues are full, packets }
getting dropped due to congestion.

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

Why is this hard?

Sender doesn’t know the network capacity
— The network can’t (generally) tell us this

... and the network may change

* New connections start up
e Connections end
 Link characteristics may change...

=> Need to measure or model what is going on in the network as
we are sending, adapt accordingly

The basic principle

The basic principle

Signals from the network

(ACKs, other TCP packet info, more...)

Congestion window: cwnd

The basic principle

Signals from the network

(ACKs, other TCP packet info, more...)

Congestion window: cwnd

l
e e

The basic principle

Signals from the network

(ACKs, other TCP packet info, more...)

Congestion window: cwnd

l
e e

= Different CC algorithms use different signals, different techniques for
adapting cwnd, but most fit this format

Lots of CC variants designed with different strategies and goals

Network Signals
 Packet loss (“loss-based”)
* Delay/RTT (“delay-based”)

« "Marks” added on packets by routers

Goals

* Maximize throughput

* Recover from packet loss or high RTT
« Short-long “flows”
 Datacenter-specitic (low-latency)

[— This is a big research area!

CUBIC
lllinois
HTCP

HSTCP
Veno CTCP

New Reno

Vegas

&
1994 1999 2003| 2006

Binomial BIC YeAH
Westwood FAST
Jersey
Hybla

Remy

Sprout

PRR

PCC Vivace
TIMELY Copa

DCTCP Proprate

Variant ¢ Feedback ¢ Required changes ¢ Benefits ¢ Fairness ¢

(New) Reno Loss — — Delay
Vegas Delay Sender Less loss Proportional
High Speed Loss Sender High bandwidth

BIC Loss Sender High bandwidth

CUBIC Loss Sender High bandwidth

c2TcPl2l | Loss/Delay Sender Ultra-low latency and high bandwidth

NATCPI13] Multi-bit signal | Sender Near Optimal Performance

Elastic-TCP Loss/Delay Sender High bandwidth/short & long-distance

Agile-TCP Loss Sender High bandwidth/short-distance

H-TCP Loss Sender High bandwidth

FAST Delay Sender High bandwidth Proportional
Compound TCP | Loss/Delay Sender High bandwidth Proportional
Westwood Loss/Delay Sender Lossy links

Jersey Loss/Delay Sender Lossy links

BBRI[14] Delay Sender BLVC, Bufferbloat

CLAMP Multi-bit signal | Receiver, Router Variable-rate links Max-min
TFRC Loss Sender, Receiver No Retransmission Minimum delay
XCP Multi-bit signal | Sender, Receiver, Router | BLFC Max-min
VCP 2-bit signal Sender, Receiver, Router | BLF Proportional
MaxNet Multi-bit signal | Sender, Receiver, Router | BLFSC Max-min
JetMax Multi-bit signal | Sender, Receiver, Router | High bandwidth Max-min
RED Loss Router Reduced delay

ECN Single-bit signal | Sender, Receiver, Router | Reduced loss

https://en.wikipedia.org/wiki/TCP_congestion_control

Congestion control has a long history

 Active research area for ~40 years

* | am nowhere close to being an expert

* My hope is to get you to understand the problems involved

Classical Congestion Control

Loss-based: assume packet loss => congestion

Classical Congestion Control

Loss-based: assume packet loss => congestion

« TCP Tahoe (1988)

— Slow start, congestion avoidance, fast retransmit

Classical Congestion Control

Loss-based: assume packet loss => congestion

« TCP Tahoe (1988)

— Slow start, congestion avoidance, fast retransmit

« TCP Reno (1990)
— TCP Tahoe + Fast recovery

» Many variations developed from this... (see optional readings)

Modes of operation

e Slow start (SS)

— Determine initial window, recover after loss

« Congestion avoidance (CA)

— Steady state, slowly probe for changes in capacity

Congestion Avoidance

After finishing a window, recompute cwnd:

e |f no losses, cwnd = cwnd + MSS
— (Often written as cwnd += 1)

* If packets were lost: cwnd = cwnd/2

Congestion Avoidance

After finishing a window, recompute cwnd:

e |f no losses, cwnd = cwnd + MSS
— (Often written as cwnd += 1)

* If packets were lost: cwnd = cwnd/2

4 I

This is called additive increase, multiplicative decrease (AIMD)
- Slowly increase capacity
- Dramatically scale back on loss

_)

AIMD Example

time

TCP Sawtooth, red curve represents the network capacity

Slow Start

Turns out AIMD is really slow to start up. So do something faster at connection
start...

Slow Start

Turns out AIMD is really slow to start up. So do something faster at connection
start...

After finishing a window
* cwnd =cwnd * 2

+ Continue doing this until you experience a loss

Slow Start

Turns out AIMD is really slow to start up. So do something faster at connection
start...

After finishing a window
e cwnd = cwnd * 2
+ Continue doing this until you experience a loss

* After first loss, keep slow-start threshold (ssthresh):
— If window < ssthresh: slow-start

— If window > ssthresh: congestion avoidance
 After first loss: ssthresh = cwnd / 2

timeout

time

TCP Tahoe Sawtooth, red curve represents the network capacity
Slow Start is used after each packet loss until ssthresh is reached

How to Detect Loss

Timeout

Any other way?
— Gap in sequence numbers at receiver
— Receiver uses cumulative ACKs: drops => duplicate ACKs

3 Duplicate ACKs considered loss

Which one is worse?

cwnd [MSS]

all ACKs received T

+ cwnd(new) = 4 x MSS
» ssthresh(new) = cwnd /2

10 1 © some ACKs received

- O timeout (RTO expired)

60 Duplicate ACKs:

O duplicate ACKs received « ssthresh(new) = cwnd /2
50

Timeout:

20 + . « cwnd(new) = 4 x MSS
ACKs for the first » ssthresh(new) = cwnd /2

16 TCP segments

30 <—— ssthresh(new)

20

10
cwnd(new) cwnd(new)

; : : - t [RTT]

10 1" 12

[-

=0 Slow-Start Congestion Slow-Start Congestion

« cwnd(init) = 4 x MSS

« ssthresh(init) = oo AVOidance AVOidanCE

cwnd |

Putting it all together

Timeout

Timeout

AIMD

ssthresh —»

|

i

AIMD

,//////////////

Slow
Start

Slow
Start

Slow
Start

Time

Y

Slow start every time?!

* Losses have large effect on throughput
* Fast Recovery (TCP Reno)

— Same as TCP Tahoe on Timeout: w = 1, slow start
— On triple duplicate ACKs: w = w/2

— Retransmit missing segment (fast retransmit)

— Stay in Congestion Avoidance mode

» Why 3 dup-acks instead of just 17

This is just the beginning...

Lots of congestion control schemes, with different strategies/goals:

 Tahoe (1988)

* Reno (1990)

* Vegas (1994): Detect based on RTT

* New Reno: Better recovery multiple losses

* Cubic (2006): Linux default, window size scales by cubic function
BBR (2016): Used by Google, measures bandwidth/RTT

BBR: what's different

()
-
o
S
b
|
[
2
@
[a]

Amount in flight BDP + BufSize

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

BBR

* Problem: can't measure both RTT orop and Bottleneck BW at the
same time

BBR:

— Slow start

— Measure throughput when RTT starts to increase

— Measure RTT when throughput is still increasing

— Pace packets at the BDP

— Probe by sending faster for 1RTT, then slower to compensate

BBR

Link Capacity

2
©
14
=)
=
S
|
o]
1)
3
©
o

ReN0 s
CUBIC s
BBR wsm

From:

https://labs.ripe.net/Members/gih/bbr-tcp

Another way: ECN

What if we didn’t have to drop packets?

* Routers/switches set bits in packet to indicate congestion

* When sender sees congestion bit, scales back cwnd
* Must be supported by both sender and receiver

=>Avoids retransmissions optionally dropped packets

Special purpose example: DCTCP (2010)

Designed for datacenter usage only

* Want to avoid queuing as much as possible
* Routers/switches mark packets with ECN bit in header
* When this happens, senders scale back dramatically

What happens in practice now?

THE EVOLUTION OF THE TCP ECOSYSTEM

2001 2004 2011 2019

mAIMD m CUBIC mBIC mHSTCP ® Scalable Vegas Westwood ® CTCP
® |llinois Veno YeAH mHTCP BBR BBR G1.1 m AkamaiCC Unknown

AYUSH MISHRA, IETF 109, 20TH NOV 2020

https://dl.acm.org/doi/abs/10.1145/3366693

DISTRIBUTION BY POPULARITY

AND TRAFFIC SHARE

Unresponsive

Unknown
and
shoriflows

Others

CTCP/lllinois

Share of congestion control algorithms deployed
by website count in the Alexa Top 250 websites

* Among the top 250 Alexa websites, BBR has a
larger share by website count than Cubic

* In terms of traffic share, BBR is now contributing to
more than 40% of the downstream traffic on the
Internet!

Site Downstream traffic share Variant

Amazon Prime 3.69% CUBIC
Netflix 15% CUBIC
YouTube 11.35% BBR
Other Google sites 28% BBR
Steam downloads 2.84% BBR

(As measured on static HTTP webpages)
AYUSH MISHRA, IETF 109, 20TH NOV 2020 14

https://dl.acm.org/doi/abs/10.1145/3366693

LOOKING CLOSER AT THE
UNCLASSIFIED VARIANTS

We had a total of 6,330 (31.65%) of websites that were unclassified

We ran a variety of network profiles on these websites to infer something about their congestion
control mechanism

Type React to Packet Loss? React to BDP? Websites (share)

AkamaiCC v 1,103 (5.52%)
Unknown Akamai ? 157 (0.79%)

493 (2.47%)

Unknown
1,782 (8.91%)

Short flows : 1,493 (7.47%)

Unresponsive ? ? 1,302 (6.51%)

Total 6,330 (31.65%)

AYUSH MISHRA, IETF 109, 20TH NOV 2020 15

https://dl.acm.org/doi/abs/10.1145/3366693

A Short History of TCP

1974: 3-way handshake

1978: IP and TCP split

1983: January 15t, ARPAnet switches to TCP/IP
1984: Nagle predicts congestion collapses

1986: Internet begins to suffer congestion collapses
— LBL to Berkeley drops from 32Kbps to 40bps

1987/8: Van Jacobson fixes TCP, publishes seminal
paper*: (TCP Tahoe)

1990: Fast transmit and fast recovery added
(TCP Reno)

* Van Jacobson and Michael Karels. Congestion avoidance and control. SIGCOMM ’88

Congestion Collapse
Nagle, rfc896, 1984

* Mid 1980’s: Problem with the protocol implementations, not the
protocol!

* What was happening?

* If close to capacity, and, e.g., a large flow arrives suddenly...
— RTT estimates become too short
— Lots of retransmissions = increase in queue size
— Eventually many drops happen (full queues)
— Fraction of useful packets (not copies) decreases

The problem

» https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-
aimd.ogv

https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv
https://witestlab.poly.edu/respond/sites/genitutorial/files/tcp-aimd.ogv

Just a few TCP implementations

What's the difference?

General usage
* Reno (1980s)
* Tahoe

* Vegas

* New Vegas

* Westwood

» Cubic

BBR (2016)

Dealing with Congestion

To start:

« Assume losses are due to congestion
 After a loss, reduce congestion window

— How much to reduce?
* |dea: conservation of packets at equilibrium

— Want to keep roughly the same number of packets in network
— Analogy with water in fixed-size pipe

— Put new packet into network when one exits

BBR

Link Capacity

2
©
14
=)
=
S
|
o]
1)
3
©
o

ReN0 s
CUBIC s
BBR wsm

From: https://labs.ripe.net/Members/gih/bbr-tcp

TCP State Diagram

CONNECT/SYN (Step 1 of the 3-way-handshake)

ceeveeneen. e UNusual event
————> client/receiver path (Start) _ P ORI

———> server/sender path LISTEN/-¢

T TR
i CLOSE/-

(St 2 of the 3- -handshake) SYN/SYN+ACK
ep o e way-handshake | LISTEN |

.

RST- SEND/SYN

SYN :
RECEIVED | <o SYNSYNFACK (simultancous open)

Data exchange occurs
SYN+ACK/ACK

- (Step 3 of the 3-way-handshake)

.
v

{ CLOSE/FIN
‘ CLOSE/FIN FINJACK

| Active CLOSE| |Passive CLOSE|-
\
| CLOSEWAIT |

FIN/ACK

| FIN WAIT 1

CLOSING |
FIN+ACK/ACK :

£ ACK- CLOSE/FIN

| Y
FIN/ACK

Timeout

0

0123456789 012345067890123456789O01

TCP Header

1

2

3

s R e s st e e A e At ¥

Source Port

Destination Port

s R e s st e e A e At ¥

Sequence Number

s R e s st e e A e At ¥

Acknowledgment Number

s R e s st e e A e At ¥
|[UIA|P|R|S|F|
IRICISISIY|T]
|GIKIH|T|N|N|
s R e s st e e A e At ¥

Data |
Offset|

Reserved

Checksum

Window

Urgent Pointer

s R e s st e e A e At ¥

Options

Padding

s R e s st e e A e At ¥

data

s R e s st e e A e At ¥

Extra congestion control content

cwnd |

Putting it all together

Timeout

Timeout

AIMD

ssthresh —»

|

i

AIMD

,//////////////

Slow
Start

Slow
Start

Slow
Start

Time

Y

Fast Recovery and Fast Retransmit

cwnd

Al/MD

Slow Start <I/|/

Fast retransmit

Time

TCP Friendliness

» Can other protocols co-exist with TCP?

— E.g., if you want to write a video streaming app
using UDP, how to do congestion control?

- 1 UDP Flow at 10MBps

31 TCP Flows
Sharing a 10MBps link

—

O =~ NN W & O1 O N 0 © O

_—
7]
Q
2
=
N’
frer]
=
Q
L
()]
=
(o)
-
L
-

1 4 7 10 13 16 19 22 25 28 31
Flow Number

TCP Friendliness

 Can other protocols co-exist with TCP?

— E.g., if you want to write a video streaming app using UDP, how to do
congestion control?

* Equation-based Congestion Control

— Instead of implementing TCP’s CC, estimate the rate at which TCP would
send. Function of what?

— RTT, MSS, Loss
e Measure RTT, Loss, send at that rate!

TCP Throughput

Assume a TCP congestion of window W (segments), round-trip
time of RTT, segment size MSS

— Sending Rate S= W x MSS/ RTT (1)

Drop: W = W/2

— grows by MSS for W/2 RTTs, until another drop at W= W
Average window then 0.75xS

— From (1), S=0.75 WMSS/ RTT (2)

Loss rate is 1 in number of packets between losses:
—Loss=1/(1+W/2+W/2+1 +W/2+2 + ...+ W)
=1/(3/8 W?) (3)

TCP Throughput (cont)

— Loss = 8/(3W-?

— Substituting (

Throughput =
1.22 x M35

RTT- A/ Loss

* Equation-based rate control can be TCP friendly and have better
properties, e.g., small jitter, fast ramp-up...

What Happens When Link is Lossy?

* Throughput = 1/ sqrt(Loss)

" NN
) ’lmmmmm‘m‘m

A/

Wy WVM’}?’"’WM‘M A AVAMA

0

2
1

1 26 51 76 101126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

What can we do about it?

 Two types of losses: congestion and corruption

* One option: mask corruption losses from TCP
— Retransmissions at the link layer

— E.g. Snoop TCP: intercept duplicate acknowledgments, retransmit locally,
filter them from the sender

* Another option:

— Tell the sender about the cause for the drop
— Requires moditication to the TCP endpoints

Congestion Avoidance

» TCP creates congestion to then back oft
— Queues at bottleneck link are often full: increased delay
— Sawtooth pattern: jitter

 Alternative strategy
— Predict when congestion is about to happen
— Reduce rate early

* Other approaches

— Delay Based: TCP Vegas (not covered)

— Better model of congestion: BBR
— Router-centric: RED, ECN, DECBit, DCTCP

Another view of Congestion Control

) A 1 1
£ l l
= I i
o ' '
o 1 1
= : :
N o) [e e e e e e e e e e e e e e e e —————— Fm———————-
c : !
> 1 1
O : :
(a'ed i i .
Bytes in Flight
=
> A 1 1
o 1 1
L 1 1
Yo b e e mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm e A
> 1 1
() I I
[1 1
— I I
I I
I I
I I
I I
I I
]]

L

<

Tput =
InFlight/
RTT5r0p

Bytes in Flight

(h

Diagrams based on Cardwell et al.,
Communications of the ACM, Vol. 60 No. 2, Pages 58-66.

https://cacm.acm.org/magazines/2017/2/212428-bbr-congestion-based-congestion-control/fulltext

Another view of Congestion Control

) 1 I
= i !
i~ : i
o I :
= RTTprop i i
© T e s Fo--=----
S ! |
O I I
or I I
Bytes in Flight
45 A 1 1
o I 1
< BDP! Bottleneck BW :
[T S T
= \D |
=l i
% i i

Bytes in Flight

Another view of Congestion Control

) A 1 1
£ I W !
a qope = H°
= RTTorop !]
o] R e EEE R Fm——————-
= : :
o) i i
o : : g
Bytes in Flight
45 A 1 1
(@ 1 1
< ; Bottleneck BW :
5 o i E
I s
% i i
BDP Bytes in Flight BDP+Bottleneck
Queue

(h

Another view of Congestion Control

o Ideal . .
= Operating Poiht ;
= g & 7ol o= 1[BW !
o ! S\oP :
= RTT,r0p : ! Loss-based CC
© : --------------------------------------- :r ---------
S ! |
@] I I
o l l g
Bytes in Flight
45 A 1 1
o ! 1
< : Bottleneck BW :
[T P < T
= \D |
=l i
% i i
BDP Bytes in Flight BDP+Bottleneck

Queue

BBR

* Problem: can't measure both RTT orop and Bottleneck BW at the
same time

* BBR:

— Slow start

— Measure throughput when RTT starts to increase

— Measure RTT when throughput is still increasing

— Pace packets at the BDP

— Probe by sending faster for 1RTT, then slower to compensate

BBR

Link Capacity

2
©
14
=)
=
S
|
o]
1)
3
©
o

ReN0 s
CUBIC s
BBR wsm

From: https://labs.ripe.net/Members/gih/bbr-tcp

Help from the network

* What it routers could tell TCP that congestion is happening?

— Congestion causes queues to grow: rate mismatch
» TCP responds to drops
* |dea: Random Early Drop (RED)

— Rather than wait for queue to become full, drop packet with some
probability that increases with queue length

— TCP will react by reducing cwnd
— Could also mark instead of dropping: ECN

RED Details

» Compute average queue length (EWMA)

— Don't want to react to very quick fluctuations

Queue length

Instantaneous

\

\ Average

LIZAN

RED Drop Probability

e Define two thresholds: MinThresh, MaxThresh
* Drop probability:

MinThresh MaxThresh

* Improvements to spread drops (see book)

RED Advantages

Probability of dropping a packet ot a particular flow is roughly
proportional to the share of the bandwidth that flow is currently

getting
Higher network utilization with low delays
Average queue length small, but can absorb bursts

ECN
— Similar to RED, but router sets bit in the packet

— Must be supported by both ends
— Avoids retransmissions optionally dropped packets

What happens it not everyone cooperates?

* TCP works extremely well when its assumptions are valid
— All flows correctly implement congestion control
— Losses are due to congestion

Cheating TCP

» Possible ways to cheat
— Increasing cwnd faster
— Large initial cwnd

— Opening many connections
— Ack Division Attack

Larger Initial Window

B
E

x starts SS with cwnd = 4
y starts SS yvith cwnd =1

Figure from Walrand, Berkeley EECS 122, 2003

Open Many Connections

« Web Browser: has to download k objects for a page

— Open many connections or download sequentially?

A B
D E

Assume:
— A opens 10 connections to B
— B opens 1 connection to E
« TCP is fair among connections
— A gets 10 times more bandwidth than B

Figure from Walrand, Berkeley EECS 122, 2003

Exploiting Implicit Assumptions

« Savage, et al., CCR 1999:

11 1

» Exploits ambiguity in meaning of ACK
— ACKs can specify any byte range for error control

— Congestion control assumes ACKs cover entire sent segments

* What it you send multiple ACKs per segment?

http://www.cs.washington.edu/homes/tom/pubs/CCR99.pdf

ACK Division Attack

* Receiver: "upon receiving a segment with N bytes, divide the

Sender Receiver

bytes in M groups and acknowledge eac|
 Sender will grow window M times faster

e Could cause growth to 4GB in 4 RTTs!
— M =N = 1460

TCP Daytona!

(%))
()
—
>
Q
—
(V)
0
£
>S5
c
(o}
o
c
()
-]
(on
)
)}

Data Segments

ACKs

Data Segments (normal)
ACKs (normal)

Defense

* Appropriate Byte Counting
— [RFC3465 (2003), RFC 5681 (2009)]
— |In slow start, cwnd += min (N, MSS)
where N is the number of newly acknowledged bytes in the received ACK

More help from the network

* Problem: still vulnerable to malicious flows!

— RED will drop packets from large flows preterentially, but they don’t have
to respond appropriately

* |dea: Multiple Queues (one per flow)
— Serve queues in Round-Robin
— Nagle (1987)
— Good: protects against misbehaving flows
— Disadvantage?

Solution

* Bit-by-bit round robing
« Can we do this?

— No, packets cannot be preempted!

* We can only approximate it...

Fair Queueing

* Define a fluid flow system as one where flows are served bit-by-
bit

 Simulate ff, and serve packets in the order in which they would
finish in the ff system

» Each flow will receive exactly its fair share

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid flow
system

Packet
system

Example

time

time

time

time

Implementing FQ

Suppose clock ticks with each bit transmitted
— (RR, among all active flows)

P, is the length of the packet

S, is packet i's start of transmission time

F; is packet i's end of transmission time

F.=S + P,

When does router start transmitting packet i?
— If arrived before F. ;, S. = F.

— If no current packet for this flow, start when packet arrives (call this A): S; = A,

ThUS, Fi — maX(Fi_'| ,Ai) + Pi

Fair Queueing

* Across all flows
— Calculate F; for each packet that arrives on each flow
— Next packet to transmit is that with the lowest F,
— Clock rate depends on the number of flows

« Advantages
— Achieves , independent of sources
— Work conserving
« Disadvantages
— Requires non-trivial support from routers
— Requires reliable identification of flows
— Not perfect: can’t preempt packets

Fair Queueing Example

* 10Mbps link, 1 T0Mbps UDP, 31 TCPs

—

O =~ N WO & O OO N 0 © O
| [

—_
7))
Q
o)
=
N
rrt
=
Q
L
O
=
(o]
|
L
=

1 4 7 10 13 16 19 22 25 28 31 T4 7 10 13 16 19 2225 28 31
Flow Number Flow Number

Big Picture

* Fair Queuing doesn’t eliminate congestion: just manages it
* You need both, ideally:

— End-host congestion control to adapt
— Router congestion control to provide isolation

