
CSCI-1680
DNS

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

• TCP milestone II: sign up for a meeting this week
(announcement soon)

• TCP gearup III: tentative, but probably this Thursday 5-7pm

• HW3: due tonight—it’s short!

We’re working through our grading backlog, should have progress soon

BY FRI

You Some site
5.6.7.8

connect(5.6.7.8, 80)

Connecting to a server: the story so far

Is this how users interact with the network? No!

POV: You want to connect to some website

Why not? Why is this bad? You Some site
5.6.7.8

connect(5.6.7.8, 80)

Might have multiple IPs per service

Less error-prone (user don’t want to type/remember
names)

IP addresses can be reassigned

Users don’t know IPs

Client applications don’t know IPs of server

IPs depend on where you are located on the network

IP addresses
• Used by routers to forward packets
• Fixed length, binary numbers
• Assigned based on where host is on the network
• Usually refers to one host

Examples
• 5.6.7.8
• 212.58.224.138
• 2620:6e:6000:900:c1d:c9f7:8a1c:2f48

What we have

Efficient forwarding: ✅
Human readable: ❌
Scalable for distributed services: ❌

=> Need a new abstraction for “stuff” we are trying to access

You

Server for
website.com

5.6.7.8

connect(“website.com”, 80)

What we want: a new abstraction for names

connect(5.6.7.8, 80)

DECOUPLING NAME OF Host
OR SEDE
FROM THE IP

You

Server for
website.com

5.6.7.8

connect(“website.com”, 80)

What we want: a new abstraction for names

Want: names
 - Human-readable
 - Variable length
 - Don’t need to care about where destination is/what server it is
 => Can refer to a service, not just a host

connect(5.6.7.8, 80)

What does this mean?

cs.brown.edu => 128.148.32.110

Why?
• Names are easier to remember
• Addresses can change underneath

• Useful Multiplexing/sharing

DNS

CAN ADJUST
MAPPING

WO AFFECTING
UJths

ONLINE MULTIPLE IPS
MULTIPLE NANG 7 ONE I P

Another Change in Layers…

• Remember ARP
– ARP: maps IP addresses to MAC addresses

ARP WHOHAS 1.2.34
HA BB EDDI

23 L2

DNS NAME WHO HAS GOOGLE.com Quien
y

NETWORK LAYER INFO 1 2 3Y ANSWI

The original way: one file: hosts.txt
• Flat namespace
• Central administrator kept master copy (for the Internet)
• To add a host, emailed admin
• Downloaded file regularly

name IP METADATA AUTHORITY

Scalable (Address <-> Name) Mappings

Original way: one file: hosts.txt
• Flat namespace
• Central administrator kept master copy (for the Internet)
• To add a host, emailed admin
• Downloaded file regularly

Is this feasible today? Lol no.

Domain Name System (DNS)
• Originally proposed by RFC882, RFC883 (1983)

• Distributed protocol to translate hostnames -> IP addresses
– Human-readable names
– Delegated control
– Load-balancing/content delivery
– So much more…

=> Distributed key-value store, before it was cool…

High-level DNS goals

Scalability: need to be able to have a huge number of “records”

 - Lots of queries for names

 - Lots of updates (though updates << queries)

Distributed control: need to let people/organizations etc control
their own names

Redundancy/fault tolerance

 - Need to have redundant way to do lookups, provide name
records

Some properties about the system that make this possible

 - Loose consistency: when changing records, not a huge
problem if it takes a while to propagate

 (several minutes)

 - Read-mostly database: can do lots of caching for records all
over the world

The good news

Compared to other distributed systems, some properties that make these
goals easier to achieve…

1. Read-mostly database
Lookups MUCH more frequent than updates

2. Loose consistency
When adding a machine, not end of the world if it takes minutes or hours to propagate

Can use lots and lots of caching
– Once you’ve lookup up a hostname, remember
– Don’t have to look again in the near future

How it works

Hierarchical namespace broken into zones

cslab1a.cs.brown.edu

MANAGEDBY
MAYER L

REGISTRARS

Poot
t t

F In.TTTOP LEVEL DOMAIN TLD
HOSTNAME

NAME OF
ONE HOSTSERVICE SOME ORGENTITY

Types of DNS servers

Types of DNS servers
 - “Authoritative” servers: servers that have records for some
domain (servers that “own” the records for cs.brown.edu)

 - Resolver: you (or another DNS server) queries it to look up
names, tries to get closer to authoritative server

 => in most cases you interact with, will find authoritative server

How it works

• Hierarchical namespace broken into zones
– root (.), edu., brown.edu., cs.brown.edu.,
– Zones separately administered => delegation
– Parent zone tells you how to find servers for subdomains

• Each zone served from multiple replicated servers
• Lots and lots of caching

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

“Types” of DNS servers

• Top Level Domain (TLD) servers
– Generic domains (e.g., com, org, edu)
– Country domains (e.g., uk, br, tv, in, ly)
– Special domains (e.g., arpa)
– Corporate domains (...)

• Authoritative DNS servers
– Provides public records for hosts at an organization
– Can be maintained locally or by a service provider

• Recursive resolvers
– Big public servers, or local to a network
– Lots of caching

How A DNSQuine works ITERATIVE
6,4 1IE

NO CACHING
VERSION

Root
Host

ggfiiio.nuQiCSLABIs.CS.BRowNiEbO RESOLVER

TRYASKING
Brown.EDUAT

so EDU
NOTE RESOLVER NAMESERVEN
we
n m

4

ggRESPONSES

FOR LATER IFENG.IEEnu

Brown
NAMESERVEN

success

Rg

d CUBA G BrownEno

CSDEPTNAMESERVENT
AUTHORITATIVE

FOR CSBROWN't
HOISTASKS LOCAL RESOLVER
RESOLVER STARTS RECURSIVE QUERY FROM ROOT
203040INTERMEDIATE NAMESERVERS DON'THAVE ANSWER
BUTRESPOND W NEXTSERVER THATKNOWSMORE

FOUND SERVERW AUTHORITATIVE ANSWER

RECURSIVE DNS QUEUES
MORE COMMON

Host a

A CsBrown.EDU s.PYYf.tYzg148X.Y

CLOSEST
RESOLVER

É

ROOT

EM Brown

ONLY IF NOT
CACHED

More commonly, hosts perform recursive queries to larger DNS servers, which
do the typical iteration process (from the previous page) on the client’s behalf.

Why? All resolvers cache responses—a larger resolver is more likely to have
these entries in its cache. If the resolver has a valid answer for any of the steps,
it can skip it! (For example, if the nameserver for .edu is cached but
cs.brown.edu is not, the local resolver can skip skeps 2-3.

Resolver operation

• Apps make recursive queries to local DNS
server (1)
– Ask server to get answer for you

• Server makes iterative queries to remote
servers (2,4,6)
– Ask servers who to ask next
– Cache results aggressively

DNS software architecture

• Two types of query
- Recursive
- Non-Recursive

• Apps make recursive queries to
local DNS server (1)

• Local server queries remote
servers non-recursively (2, 4, 6)

- Aggressively caches result
- E.g., only contact root on first query

ending .umass.edu

DNS Caching

• Recursive queries are expensive
• Caching greatly reduces overhead

– Top level servers very rarely change
– Popular sites visited often
– Local DNS server caches information from many users

• How long do you store a cached response?
– Original server tells you: TTL entry
– Server deletes entry after TTL expires

WHEN TTL EXPIRES
DELETE CACHE ENTRY

Where is the root server?

• Located in New York
• How do we make the root scale?

Verisign, New York, NY

DNS Root Servers

• 13 Root Servers (www.root-servers.org)
– Labeled A through M (e.g, A.ROOT-SERVERS.NET)

• Does this scale?

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium
 Palo Alto, CA

K RIPE London

M WIDE Tokyo

A Verisign, New York, NY
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Columbus, OH
H ARL Aberdeen, MD
J Verisign I Netnod, Stockholm

ANCAST
USING BGRADVERTISE

IP FROM NUPE
PLACES

u

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA
(plus 157 other locations)

E NASA Mt View, CA (+70)
F Internet Software
 Consortium,
 Palo Alto, CA
 (and 57 other locations)

M WIDE Tokyo
 plus Seoul, Paris,
 San Francisco,
Osaka

A Verisign, New York, NY (also Frankfurt, HK, London, LA)
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago, Frankfurt and 3+)
D U Maryland College Park, MD (also in 106 other locations)
G US DoD Columbus, OH (+5)
H ARL Aberdeen, MD (also San Diego)
J Verisign (118 locations) I Netnod, Stockholm

(plus 49 other locations)

K RIPE London (plus 41 other locations)

DNS Root Servers

• 13 Root Servers (www.root-servers.org)
– Labeled A through M (e.g, A.ROOT-SERVERS.NET)

• Remember anycast?

DNS Root Servers: Today

From: www.root-servers.org

http://www.root-servers.org/

DNS Example
$	dig	cs.brown.edu	@10.1.1.10	

;	<<>>	DiG	9.10.6	<<>>	cs.brown.edu	@10.1.1.10	

;;	global	options:	+cmd	
;;	Got	answer:	

;;	->>HEADER<<-	opcode:	QUERY,	status:	NOERROR,	id:	8536	

;;	flags:	qr	aa	rd	ra;	QUERY:	1,	ANSWER:	1,	AUTHORITY:	0,	ADDITIONAL:	1	

	

;;	OPT	PSEUDOSECTION:	

;	EDNS:	version:	0,	flags:;	udp:	1220	

;;	QUESTION	SECTION:	

;cs.brown.edu.	IN	A	

	

;;	ANSWER	SECTION:	

cs.brown.edu.												1800						IN						A								128.148.32.12	

	

;;	Query	time:	69	msec	

;;	SERVER:	10.1.1.10#53(10.1.1.10)	

;;	WHEN:	Tue	Apr	19	09:03:39	EDT	2022	

;;	MSG	SIZE		rcvd:	57	

	

North's

g

HOW
LONG THIS CAN BE

CACHED

yd
CAN HAVE MULTIPLE
ANGELS

DNS Example
$ dig cs.brown.edu @10.1.1.10
; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12

;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE rcvd: 57

WTF
NAMESERVER

toAsk

TTL SECONDS HOWLONG
TOCACHERECORD

RESULT TYPE

Howcont IT T ANSWER
CANHAVEMULTIPLE

DNS Example
% dig +norec cs.brown.edu @j.root-servers.net

; <<>> DiG 9.10.6 <<>> +norec cs.brown.edu @j.root-servers.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61618
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS l.edu-servers.net.
edu. 172800 IN NS m.edu-servers.net.

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
d.edu-servers.net. 172800 IN A 192.31.80.30
e.edu-servers.net. 172800 IN A 192.12.94.30

When server doesn’t know all info…

Yo
ANSWER

But Lists
OTHER SERVERS

to TRY

