CSCI-1680 DNS

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

- <u>TCP milestone II</u>: sign up for a meeting this week (announcement soon)
- <u>TCP gearup III</u>: tentative, but probably this Thursday 5-7pm
- HW3: due tonight—<u>it's short</u>!

We're working through our grading backlog, should have progress soon

Connecting to a server: the story so far

POV: You want to connect to some website

<u>Connecting to a server: the story so far</u>

POV: You want to connect to some website

<u>Why not? Why is this bad?</u>	You	Some site 5.6.7.8
	connect(5.6.7.8, 80)	

- Need to know IP addresses!
 - Users won'tk now
 - <u>Hosts</u> don't know—can't remember every single one!
- Some host ?= its IP address? No!
 - A large website may be run by many servers
 - Devices may move between networks

<u>What we have so far</u>

<u>IP addresses</u>

- Used by routers to forward packets
- Fixed length, binary numbers
- Assigned based on <u>where host is</u> on the network
- Usually refers to <u>one host</u>

<u>What we have so far</u>

<u>IP addresses</u>

- Used by routers to forward packets
- Fixed length, binary numbers
- Assigned based on <u>where host is</u> on the network
- Usually refers to <u>one host</u>

<u>Examples</u>

- 5.6.7.8
- 212.58.224.138
- 2620:6e:6000:900:c1d:c9f7:8a1c:2f48

<u>What we have</u>

<u>IP addresses</u>

- Used by routers to forward packets
- Fixed length, binary numbers
- Assigned based on <u>where host is</u> on the network
- Usually refers to <u>one host</u>

<u>Examples</u>

- 5.6.7.8
- 212.58.224.138
- 2620:6e:6000:900:c1d:c9f7:8a1c:2f48

<u>What we have</u>

<u>IP addresses</u>

- Used by routers to forward packets
- Fixed length, binary numbers
- Assigned based on <u>where host is</u> on the network
- Usually refers to <u>one host</u>

<u>Examples</u>

- 5.6.7.8
- 212.58.224.138
- 2620:6e:6000:900:c1d:c9f7:8a1c:2f48

Efficient forwarding: Human readable: Scalable for distributed services:

=> Need a new abstraction for "stuff" we are trying to access

What we want: a new abstraction for <u>names</u>

What we want: a new abstraction for <u>names</u>

<u>What does this mean?</u>

cs.brown.edu => 128.148.32.110

Why?

- Names are easier to remember
- Addresses can change underneath
- Useful Multiplexing/sharing

cs.brown.edu => 128.148.32.110

<u>Why?</u>

- Names are easier to remember
- Addresses can change underneath
 - e.g, renumbering when changing providers
- Useful Multiplexing/sharing
 - One name -> multiple addresses
 - Multiple names -> one address

Another Change in Layers...

- Remember ARP
 - ARP: maps IP addresses to MAC addresses

The original way: one file: hosts.txt

- Flat namespace
- Central administrator kept master copy (for the Internet)
- To add a host, emailed admin
- Downloaded file regularly

320 **********************************					
	NET HOST NAMES AND		10-Jun-82		
HOST NAME	HOST ADDRESS	SPONSOR	LIAISON		
ACC	10.2.0.54 VD	H ARPA	Lockwood, Gregory (LOCKWOODABBNC) Associated Computer Consultants 414 East Cota Street Santa Barbara, California 93101 (805) 965-1023		
	PDP-11/70(UNIX) 10.2.0.35	ARPA	McBride, William T. (MCBRIDE&USC-ISIC) Naval Ocean Systems Center Code 8321 271 Catalina Boulevard San Diego, California 92152 (714) 225-2083 (AV) 933-2083		
AEROSPACE	10.2.0.65	AFSC	Nelson, Louis C. (LOU@AEROSPACE) Aerospace Corporation A2/1013 P.O. Box 92957 Los Angeles, California 90009 (213) 615-4424		
AFGL	VAX-11/780(UNIX) 10.1.0.66	AFSC	Cosentino. Antonio		
н на 4 4			(COSENTINOMAFSC-HQ) Air Force Geophysics Laboratory SUNA Mail Stop 30 Hanscom Air Force Base, Massachusetts 01731 (617) 861-4161 (AV) 478-4161		
	PDP-11/50(RSX11M)				
		AFSC	Cosentino, Antonio (COSENTINO@AFSC-HQ) Air Force Geophysics Laboratory SUNA Mail Stop 30 Hanscom Air Force Base, Massachusetts 01731 (617) 861-4161 (AV) 478-4161		
CPUtype:	C/30				

The original way: one file: hosts.txt

- Flat namespace
- Central administrator kept master copy (for the Internet)
- To add a host, emailed admin
- Downloaded file regularly

Does it scale?

The original way: one file: hosts.txt

- Flat namespace
- Central administrator kept master copy (for the Internet)
- To add a host, emailed admin
- Downloaded file regularly

Does it scale?

Lol no.

Scalable (Address <-> Name) Mappings

Original way: one file: hosts.txt

- Flat namespace
- Central administrator kept master copy (for the Internet)
- To add a host, emailed admin
- Downloaded file regularly

Is this feasible today? Lol no.

Domain Name System (DNS)

- Originally proposed by RFC882, RFC883 (1983)
- Distributed protocol to translate hostnames -> IP addresses
 - Human-readable names
 - Delegated control
 - Load-balancing/content delivery
 - So much more...

=> Distributed key-value store, before it was cool...

• Scalability

• Distributed Control

• Fault Tolerance

Goals for DNS

- Scalability
 - Must handle a huge number of records
 - With some software synthesizing names on the fly
 - Must sustain update and lookup load

- Distributed Control
 - Let people control their own names
- Fault Tolerance
 - Minimize lookup failures in face of other network problems

The good news

Compared to other distributed systems, some properties that make these goals easier to achieve...

1. Read-mostly database

Lookups MUCH more frequent than updates

2. Loose consistency

When adding a machine, not end of the world if it takes minutes or hours to propagate

Can use lots and lots of caching

- Once you've lookup up a hostname, remember
- Don't have to look again in the near future

The good news

Compared to other distributed systems, some properties that make these goals easier to achieve...

The good news

Compared to other distributed systems, some properties that make these goals easier to achieve...

1. Read-mostly database

Lookups MUCH more frequent than updates

2. Loose consistency

When adding a machine, not end of the world if it takes minutes or hours to propagate

How it works

Hierarchical namespace broken into zones

cslab1a.cs.brown.edu

How it works

- Hierarchical namespace broken into zones
 - root (.), edu., brown.edu., cs.brown.edu.,
 - Zones separately administered => delegation
 - Parent zone tells you how to find servers for subdomains
- Each zone served from multiple replicated servers
- Lots and lots of caching

Types of DNS servers

"Types" of DNS servers

- Top Level Domain (TLD) servers
 - Generic domains (e.g., com, org, edu)
 - Country domains (e.g., uk, br, tv, in, ly)
 - Special domains (e.g., arpa)
 - Corporate domains (...)
- Authoritative DNS servers
 - Provides public records for hosts at an organization
 - Can be maintained locally or by a service provider
- Recursive resolvers
 - Big public servers, or local to a network
 - Lots of caching

Resolver operation

- Apps make recursive queries to local DNS server (1)
 - Ask server to get answer for you
- Server makes iterative queries to remote servers (2,4,6)
 - Ask servers who to ask next
 - Cache results aggressively

Where is the root server?

- Located in New York
- How do we make the root scale?

Verisign, New York, NY

DNS Root Servers

- 13 Root Servers (www.root-servers.org)
 - Labeled A through M (e.g, A.ROOT-SERVERS.NET)
- Does this scale?

DNS Root Servers

- 13 Root Servers (www.root-servers.org)
 - Labeled A through M (e.g, A.ROOT-SERVERS.NET)
- Remember anycast?

DNS Root Servers: Today

From: www.root-servers.org

DNS Caching

- Recursive queries are expensive
- Caching greatly reduces overhead
 - Top level servers very rarely change
 - Popular sites visited often
 - Local DNS server caches information from many users
- How long do you store a cached response?
 - Original server tells you: TTL entry
 - Server deletes entry after TTL expires

Reverse DNS

How do we get the other direction, IP address to name?

- Addresses have a natural hierarchy:
 - 128.148.32.12
- Idea: reverse the numbers: 12.32.148.128 ...
 - and look that up in DNS
- Under what TLD?
 - Convention: in-addr.arpa
 - Lookup 12.32.148.128.in-addr.arpa
 - in6.arpa for IPv6

DNS Protocol

- TCP/UDP port 53
- Most traffic uses UDP
 - Lightweight protocol has 512 byte message limit
 - Retry using TCP if UDP fails (e.g., reply truncated)
- Bit in query determines if query is recursive

DNS Example

```
$ dig cs.brown.edu @10.1.1.10
; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
;cs.brown.edu. IN A
;; ANSWER SECTION:
cs.brown.edu.
                       1800
                                 IN A 128.148.32.12
;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE rcvd: 57
```

% dig +norec cs.brown.edu @j.root-servers.net

When server doesn't know all info...

; <<>> DiG 9.10.6 <<>> +norec cs.brown.edu @j.root-servers.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61618</pre>

;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 1232 ;; QUESTION SECTION: ;cs.brown.edu. IN A

;; AUTHORITY SECTION: edu. 172800 IN NS a.edu-servers.net. edu. 172800 IN NS b.edu-servers.net. edu. 172800 IN NS l.edu-servers.net. edu. 172800 IN NS m.edu-servers.net.

;; ADDITIONAL SECTION: a.edu-servers.net. 172800 IN A 192.5.6.30 b.edu-servers.net. 172800 IN A 192.33.14.30 c.edu-servers.net. 172800 IN A 192.26.92.30 d.edu-servers.net. 172800 IN A 192.31.80.30 e.edu-servers.net. 172800 IN A 192.12.94.30

dig . ns

dig +norec www.cs.brown.edu @a.root-servers.net

dig +norec www.cs.brown.edu @a.edu-servers.net

dig +norec www.cs.brown.edu @bru-ns1.brown.edu

www.cs.brown.edu. 86400 IN A 128.148.32.110

Resource Records

All DNS info represented as resource records (RR) name [ttl] [class] type rdata

- name: domain name
- TTL: time to live in seconds
- class: for extensibility, normally IN (1) "Internet"
- type: type of the record
- rdata: resource data dependent on the type

• Example RRs

www.cs.brown.edu.	86400	IN	А	128.148.32.110
cs.brown.edu.	86400	IN	NS	dns.cs.brown.edu.
cs.brown.edu.	86400	IN	NS	ns1.ucsb.edu.

DNS record types

RR Type	Purpose	Example
А	IPv4 Address	128.148.56.2
AAAA	IPv6 Address	2001:470:8956:20::1
CNAME	Specifies an alias ("Canonical name")	systems.cs.brown.edu. 86400 IN CNAME systems-v3.cs.brown.edu. systems-v3.cs.brown.edu. 86400 IN A 128.148.36.51
MX	Mail servers	MX <priority> <ip>eg. MX 10 1.2.3.4</ip></priority>
SOA	Start of authority	Information about who owns a zone
PTR	Reverse IP lookup	7.34.148.128.in-addr.arpa. 86400 IN PTR quanto.cs.brown.edu.
SRV	How to reach specific services (eg. host, port)	_minecrafttcp.example.net 3600 SRV <priority> <weight> <port> <server ip=""></server></port></weight></priority>

More: <u>https://en.wikipedia.org/wiki/List_of_DNS_record_types</u>

Inserting a Record in DNS

Your new startup helpme.com

Some important details

- How do local servers find root servers?
 - DNS lookup on a.root-servers.net ?
 - Servers configured with root cache file
 - Contains root name servers and their addresses

. 3600000 IN NS A.ROOT-SERVERS.NET. A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4 ...

- How do you get addresses of other name servers?
 - To obtain the address of www.cs.brown.edu, ask a.edu-servers.net, says a.rootservers.net
 - How do you find a.edu-servers.net?
 - Glue records: A records in parent zone

Other uses of DNS

- Local multicast DNS
 - Used for service discovery
 - Made popular by Apple
 - This is how you learn of different Apple TVs in the building
- Load balancing
- CDNs (more on this later)

Reliability

- Answers may contain several alternate servers
- Try alternate servers on timeout
 - Exponential backoff when retrying same server
- Use same identifier for all queries
 - Don't care which server responds, take first answer

Inserting a Record in DNS

- Your new startup helpme.com
- Get a block of addresses from ISP
 - Say 212.44.9.0/24
- Register helpme.com at namecheap.com (for ex.)
 - Provide name and address of your authoritative name server (primary and secondary)
 - Registrar inserts RR pair into the .com TLD server:
 - helpme.com NS dns1.helpme.com
 - dns1.helpme.com A 212.44.9.120
- Configure your authoritative server (dns1.helpme.com)
 - Type A record for www.helpme.com
 - Type MX record for helpme.com

Inserting a Record in DNS, cont

- Need to provide reverse PTR bindings
 - E.g., 212.44.9.120 -> dns1.helpme.com
- Configure your dns server to serve the 9.44.212.in-addr.arpa zone
 Need to add a record of this NS into the parent zone (44.212.in-addr.arpa)
- Insert the bindings into the 9.44.212.in-addr.arpa zone

DNS Security

- You go to starbucks, how does your browser find www.google.com?
 - Ask local name server, obtained from DHCP

	optioni (15) Domain Name	
\sim	Option: (6) Domain Name Server	
	Length: 12	
	Domain Name Server: 1.1.1.1	
	Domain Name Server: 4.2.2.1	
	Domain Name Server: 8.8.8.8	

• Can you trust this DNS server?

Great Firewall of CIT

If attacker is on the path (say, it is the ISP, or a malicious version of TStaff), what could they do?

- Can sniff all DNS queries
- Send fake responses back first
- Could do this selectively, to direct facebook.com to cs.brown.edu, for example...

Great Firewall of CIT

If attacker is on the path (say, it is the ISP, or a malicious version of TStaff), what could they do?

https://blog.thousandeyes.com/monitoring-dns-in-china/

Public DNS

Public DNS resolvers provided by cloud companies and ISPs

- 8.8.8.8 (Google)
- 1.1.1.1 (Cloudflare)
- ... and others

Why do this?

"Helpful" ISPs

- Many ISPs hijack NXDOMAIN responses to "help" by offering search and advertisement related to the domain
- E.g., <u>www.bicycleisntadomain.com</u> doesn't (currently) exist
 - Could return a page with search and ads on bicycles (or domain registrations?)

What can be done?

Some defenses against DNS spoofing/hijacking

What can be done?

Some defenses against DNS spoofing/hijacking

- DNSSEC: protocol to sign/verify hierarchy of DNS lookups
 - Expensive to deploy, hierarchy must support at all levels
 - APNIC DNSSEC monitor: <u>https://stats.labs.apnic.net/dnssec</u>
 - <u>https://www.internetsociety.org/resources/deploy360/2012/nist-ipv6-and-dnssec-statistics-6/</u>
- Tunneling DNS: client uses DNS via more secure protocol
 DNS over HTTPS
 - DNS over TLS

More on DNS

Structure of a DNS Message

- Same format for queries and replies
 - Query has 0 RRs in Answer/Authority/Additional
 - Reply includes question, plus has RRs
- Authority allows for delegation
- Additional for glue, other RRs client might need

Header format

- Id: match response to query; QR: 0 query/1 response
- RCODE: error code.
- AA: authoritative answer, TC: truncated,
- RD: recursion desired, RA: recursion avai

0	1	2	3	4	5			_		0	1	2	1 3	4	1 5
+++++++++++++															
++ QR						TC	RD	RA		Z	I		RCC		
+++++++++++++															
+++++++++++++															
+++++++++++++															
++						1	ARCO	DUNT	•						I.

Other RR Types

- CNAME (canonical name): specifies an alias
- www.google.com.446199 INCNAMEwww.l.google.com.www.l.google.com.300INA72.14.204.147
- MX record: specifies servers to handle mail for a domain (the part after the @ in email addr)
 - Different for historical reasons
- SOA (start of authority)
 - Information about a DNS zone and the server responsible for the zone
- PTR (reverse lookup)
 - 7.34.148.128.in-addr.arpa. 86400 IN PTR quanto.cs.brown.edu.