
CSCI-1680
HTTP II

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

• TCP is due next Tuesday

Will announce some final project info, grading feedback soon

Warmup
Browser wants to fetch: http://example.com/page.html

Assuming no caching, what is the minimum number of packets the
browser needs to wait for?

Webserver
example.com

Browser DNS

Lookup

Ensor

It gets worse
Modern web traffic almost always uses HTTPS: https://example.com/page.html
 => Creates a secure transport layer to prevent eavesdropping, etc
(more on this later)

Webserver
example.com

Browser

EXTRA SETUPSTEPS

F ITEM
SAKE

T
y.toyytfopsnf

How does a browser load a page?

• Click a link, type in URL => browser fetches main page
• Main page has links to more resources => need to fetch these too!

– Images, CSS, Javascript, etc.

Webserver
example.com

Browser

I

How does a browser load a page?

• Click a link, type in URL => browser fetches main page
• Main page has links to more resources => need to fetch these too!

– Images, CSS, Javascript, etc.

• New resources might load yet more resources…

Recursive process with many dependencies!

i

Early websites: not many dependencies,
usually served by one server

FEW RESOURCES

MOSTALL From
ONE SEVEN

Now???

On a modern webpage…

• Huge number of dependencies, external resources
– … from many different locations, not just one server!

• Lots of asynchronous operations => loading new resources as
you are using the page

• Lots of dynamic content => generated by the server specifically
for you (your feed, ad data, …)

How to make this fast?

I
Lots OF Corruption

How to make this fast?

What’s important for performance?

Observation: lots of small requests

Latency is a problem! Need many RTTs just to fetch one resource!

HTTP/1.0: One TCP connection per request!

LOTS OF LATENCY

one

Can we do better?

HTTP/1.1: Persistent connections
 => Reuse TCP connection to for multiple requests

119977

PROBLEM
MULTIPLE NOT TRULY STARLESS

Ins 1118 Handsome
REQUEST EVERY TIME
in order

PROBLEMS

Can we do better?

HTTP/1.1: Persistent connections
 => Reuse TCP connection to for multiple requests

Problems?

Can we do better?

HTTP/1.1 (1996): Persistent connections
 => Reuse TCP connection to for multiple requests

Problems?
ÞOne big request blocks others => head of line blocking
=> Same if connection has packet loss
=> Doesn’t help when fetching from multiple locations

What can be done?

GOAL PIPELINING

MULTIPLE CONNECTIONS BROWSERS HAVE
A POOL OF REQUEST THREADS

MULTIPLE SERVERS

WOULD LIKEÉ
topsve mum
STREAMS ONSAME
TCPconnection

HTTP/1.1 Request

GET / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

What can be done?

Pipelining: have multiple “in-flight” requests at once

Two methods
• Multiple TCP connections in parallel

• Change the HTTP protocol: multiple requests per connection

What can be done?

Pipelining: have multiple “in-flight” requests at once

Two methods
• Multiple TCP connections in parallel
 => Browsers often do this (up to a limit)

• Change the HTTP protocol: multiple requests per connection
 => Newer HTTP versions: HTTP/2, HTTP/3

HTTP/2 (2015)

Adds support for multiplexed streams on one connection

https://www.twilio.com/blog/2017/10/http2-issues.html

What happens if a packet gets dropped?

884884yyygg.LYIXIII4
XP TMULTIy

APPUNTILDROPPED

DEDoo

TCP doesn’t know about multiple
streams

 => If packet loss on one stream,
others are blocked until packet
comes in

=> Head of line blocking

HTTP/2 (2015)

Adds support for multiplexed streams on one connection

TCP provides a single, ordered byte stream
 => doesn’t know about multiple connections!

https://www.twilio.com/blog/2017/10/http2-issues.html

Encumbered by TCP’s semantics:
If a packet is lost, all streams suffer! ! ! !

HTTP/2 (2015)

Adds support for multiplexed streams on one connection

TCP provides a single, ordered byte stream
 => doesn’t know about multiple connections!

https://www.twilio.com/blog/2017/10/http2-issues.html

Encumbered by TCP’s semantics:
If a packet is lost, all streams suffer! ! ! !

=> Head of line blocking

TEH
OULD LIKE TO

DEIE HTTPFROM
TLP SEMANTICS

HTTP/3 (2022): HTTP + QUIC

QUIC (RFC9000): Newer transport-layer protocol, same goals as TCP
– Supports multiple streams at once
– Various tricks to reduce message size and latency
– Integrates security by default (TLS)

• By moving multiplexing into the transport layer, can do so in a way
that benefits HTTP (no head of line blocking!)

SHORTERHANDSHAKE

IIIT HIII app

http://httpwg.org/specs/rfc7540.html

11

o

Comparison: QUIC’s handshake

What else can we do?

Caching
Place caches throughout network
- Use locality: closer to clients => lower latency
- Improve throughput by avoiding bottleneck links

Big Requests

• Problem is throughput on edge link

• Use an HTTP proxy cache
- Can also improve latency!

clients

server

Internet

proxy

cacheYyBointnterj

t
FETCH ASMUCH AS POSSIBLE

FROM CACHES

How to Control Caching?

• Server sets options
– Expires header
– No-Cache header

• Client can do a conditional request:
– Header option: if-modified-since
– Server can reply with 304 NOT MODIFIED

My trowson itself
IN THENETWORK

Where to cache content?
Server

Clients

Backbone ISP

ISP-1 ISP-2

o

Where to cache content?

• Client (browser): avoid extra network transfers
• Server: reduce load on the server
• Service Provider: reduce external traffic

Server

Clients

Backbone ISP

ISP-1 ISP-2

MEEE

x

P

EG MULTIPLE PAGES
ON SAME SITE

How well does caching work?

• Very well, up to a point
– Large overlap in requested objects
– Objects with one access place upper bound on hit ratio
– Dynamic objects not cacheable*

• Example: Wikipedia
– About 400 servers, 100 are HTTP Caches (Squid)
– 85% Hit ratio for text, 98% for media

* But can cache portions and run special code on edges to reconstruct

Reverse Proxies

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

=> Cache close to server at

WITHIN SERVER's NETWORK CLOSE TO IT
DISTRIBUTE LOAD CACHE COMMONRESOURCES

ACCELERATOR

Reverse Proxies

• Also called Accelerators
• Can distribute load within datacenter

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

=> Cache close to server

Forward Proxies

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

O

REDUCE TRAFFIC

WORKS BEST FOR STATIC CONTENT

Forward Proxies

Typically done by ISPs or Enterprises
– Reduce network traffic and decrease latency
– May be transparent or configured

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

O

Q CACHING Https

CLETE CACHING SERVERNEEDS

to Know THE DATA
YouWANT

CAUSES PROBLEMS
FOR HTTPS WHICH ENCRYPTS

TRAFFIC BETWEEN ENDPOINTS

SOLUTION HTTPS
CONNECTION ENDPOINTIS USUALLY

THE CACHING SERVER ITSELF

NEEDS TO USE OTHER MEANS

TO DO SECURE CONNECTION

TO BACKEND SERVER

Content Distribution Networks (CDNs)

Companies that specialize in providing caching services
(among other things)
=> Akamai, Cloudflare, …

HAVE CACHES AT MANY
POINTS ACROSS NETWORK

CUSTOMERS PUSH DATA INTO
CDN'S CACHES

CON REDIRECTS CLIENTS TO THEIRCACHES

CLIENT comCAosenunJ

Content Distribution Networks (CDNs)

Companies that specialize in providing caching services
(among other things)
=> Akamai, Cloudflare, …

• Provide both forward and reverse caching

• Can also do some processing

TEMPIO
VIDEO TRANSCODING

Content Distribution Networks (CDNs)

Companies that specialize in providing caching services
(among other things)
=> Akamai, Cloudflare, …

• Provide both forward and reverse caching
– Pull: result from client requests
– Push: expectation of high access rates to some objects

• Can also do some processing
– Deploy code to handle some dynamic requests
– Can do other things, such as transcoding

An Example CDN

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN

How a CDN works

 - Eg. Best Buy sets up CDN services with CDN like Akamai

 - DNS for www.bestbuy.com controlled by Akamai

When client C resolves bestbuy.com, CDN tries to find best possible cache
within CDN for client

 => DNS response points to “best” server within Akamai

How you select the “best” server”

Example:

 - Leverage location info for client (GeoIP, AS, …)

 - Might look up IP, do active measurements like ping/traceroute, etc.

=> DNS resolver, other caching elements are more intelligent than standard DNS
server, etc.

How Akamai works

Akamai has cache servers deployed close to clients
– Co-located with many ISPs

• Challenge: make same domain name resolve to a proxy close to the client
• Lots of DNS tricks. BestBuy is a customer

– Delegate name resolution to Akamai (via a CNAME)

Other CDNs

• Akamai, Limelight, Cloudflare
• Amazon, Facebook, Google, Microsoft
• Netflix
• Where to place content?
• Which content to place? Pre-fetch or cache?

DNS Resolution

dig www.bestbuy.com
;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.
a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240
;; AUTHORITY SECTION:
b.akamai.net. 1101 IN NS n1b.akamai.net.
b.akamai.net. 1101 IN NS n0b.akamai.net.
;; ADDITIONAL SECTION:
n0b.akamai.net. 1267 IN A 24.143.194.45
n1b.akamai.net. 2196 IN A 198.7.236.236

• n1b.akamai.net finds an edge server close to the client’s local
resolver
• Uses knowledge of network: BGP feeds, traceroutes. Their secret sauce…

Example

From Brown
dig www.bestbuy.com
;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.
a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240

– Ping time: 2.53ms

From Berkeley, CA
a1105.b.akamai.net. 20 IN A 198.189.255.200
a1105.b.akamai.net. 20 IN A 198.189.255.207

– Ping time: 3.20ms

Example
dig www.bestbuy.com
;; QUESTION SECTION:
;www.bestbuy.com. IN A

;; ANSWER SECTION:
www.bestbuy.com. 2530 IN CNAME www.bestbuy.com.edgekey.net.
www.bestbuy.com.edgekey.net. 85 IN CNAME e1382.x.akamaiedge.net.
e1382.x.akamaiedge.net. 16 IN A 104.88.86.223

;; Query time: 6 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Thu Nov 16 09:43:11 2017
;; MSG SIZE rcvd: 123

traceroute to 104.88.86.223 (104.88.86.223), 64 hops max, 52 byte packets
1 router (192.168.1.1) 2.461 ms 1.647 ms 1.178 ms
2 138.16.160.253 (138.16.160.253) 1.854 ms 1.509 ms 1.462 ms
3 10.1.18.5 (10.1.18.5) 1.886 ms 1.705 ms 1.707 ms
4 10.1.80.5 (10.1.80.5) 4.276 ms 6.444 ms 2.307 ms
5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.804 ms 1.870 ms 1.727 ms
6 131.109.200.1 (131.109.200.1) 2.841 ms 2.587 ms 2.530 ms
7 host-198-7-224-105.oshean.org (198.7.224.105) 4.421 ms 4.523 ms 4.496 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.099 ms 3.974 ms 4.290 ms
9 * ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 4.689 ms 4.109 ms

10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 8.863 ms 10.205 ms 10.477 ms
11 ae-1.r08.nycmny01.us.bb.gin.ntt.net (129.250.5.62) 9.298 ms

ae-1.r07.nycmny01.us.bb.gin.ntt.net (129.250.3.181) 10.008 ms 8.677 ms
12 ae-0.a00.nycmny01.us.bb.gin.ntt.net (129.250.3.94) 8.543 ms 7.935 ms

ae-1.a00.nycmny01.us.bb.gin.ntt.net (129.250.6.55) 9.836 ms
13 a104-88-86-223.deploy.static.akamaitechnologies.com (104.88.86.223) 9.470 ms 8.483
ms 8.738 ms

dig www.bestbuy.com @109.69.8.51

e1382.x.akamaiedge.net. 12 IN A 23.60.221.144

traceroute to 23.60.221.144 (23.60.221.144), 64 hops max, 52 byte packets
1 router (192.168.1.1) 44.072 ms 1.572 ms 1.154 ms
2 138.16.160.253 (138.16.160.253) 2.460 ms 1.736 ms 2.722 ms
3 10.1.18.5 (10.1.18.5) 1.841 ms 1.649 ms 3.348 ms
4 10.1.80.5 (10.1.80.5) 2.304 ms 15.208 ms 2.895 ms
5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.784 ms 4.744 ms 1.566 ms
6 131.109.200.1 (131.109.200.1) 3.581 ms 5.866 ms 3.238 ms
7 host-198-7-224-105.oshean.org (198.7.224.105) 4.288 ms 6.218 ms 8.332 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.209 ms 6.103 ms 5.031 ms
9 ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 3.982 ms 5.824 ms 4.514 ms
10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 9.735 ms 12.442 ms 8.689 ms
11 ae-9.r24.londen12.uk.bb.gin.ntt.net (129.250.2.19) 81.098 ms 81.343 ms 81.120 ms
12 ae-6.r01.mdrdsp03.es.bb.gin.ntt.net (129.250.4.138) 102.009 ms 110.595 ms 103.010
ms
13 81.19.109.166 (81.19.109.166) 99.426 ms 93.236 ms 101.168 ms
14 a23-60-221-144.deploy.static.akamaitechnologies.com (23.60.221.144) 94.884 ms 92.779
ms 93.281 ms

http://www.bestbuy.com/

