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Administrivia

• TCP is due next Tuesday

Will announce some final project info, grading feedback soon



Warmup
Browser wants to fetch:  http://example.com/page.html

Assuming no caching, what is the minimum number of packets the 
browser needs to wait for?
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It gets worse
Modern web traffic almost always uses HTTPS:  https://example.com/page.html
 => Creates a secure transport layer to prevent eavesdropping, etc 
(more on this later)
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How does a browser load a page?

• Click a link, type in URL => browser fetches main page
• Main page has links to more resources => need to fetch these too!

– Images, CSS, Javascript, etc.
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How does a browser load a page?

• Click a link, type in URL => browser fetches main page
• Main page has links to more resources => need to fetch these too!

– Images, CSS, Javascript, etc.

• New resources might load yet more resources…

Recursive process with many dependencies!
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Early websites:  not many dependencies, 
usually served by one server

FEW RESOURCES

MOSTALL From
ONE SEVEN



Now???



On a modern webpage…

• Huge number of dependencies, external resources
– … from many different locations, not just one server!

• Lots of asynchronous operations => loading new resources as 
you are using the page

• Lots of dynamic content => generated by the server specifically 
for you (your feed, ad data, …)

How to make this fast?

I
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How to make this fast?  

What’s important for performance?



Observation:  lots of small requests

Latency is a problem!   Need many RTTs just to fetch one resource!

HTTP/1.0:  One TCP connection per request!

LOTS OF LATENCY
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Can we do better?

HTTP/1.1:  Persistent connections
 => Reuse TCP connection to for multiple requests
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Can we do better?

HTTP/1.1:  Persistent connections
 => Reuse TCP connection to for multiple requests

Problems?



Can we do better?

HTTP/1.1 (1996):  Persistent connections
 => Reuse TCP connection to for multiple requests

Problems?
ÞOne big request blocks others => head of line blocking
=> Same if connection has packet loss
=> Doesn’t help when fetching from multiple locations



What can be done?
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HTTP/1.1 Request

GET / HTTP/1.1 
Host: localhost:8000 
User-Agent: Mozilla/5.0 (Macinto ... 
Accept: text/xml,application/xm ... 
Accept-Language: en-us,en;q=0.5 
Accept-Encoding: gzip,deflate 
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7 
Keep-Alive: 300 
Connection: keep-alive



What can be done?

Pipelining:  have multiple “in-flight” requests at once

Two methods
• Multiple TCP connections in parallel

• Change the HTTP protocol: multiple requests per connection



What can be done?

Pipelining:  have multiple “in-flight” requests at once

Two methods
• Multiple TCP connections in parallel
    => Browsers often do this (up to a limit)

• Change the HTTP protocol: multiple requests per connection
 => Newer HTTP versions:  HTTP/2, HTTP/3



HTTP/2 (2015)

Adds support for multiplexed streams on one connection

https://www.twilio.com/blog/2017/10/http2-issues.html

What happens if a packet gets dropped?
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TCP doesn’t know about multiple 
streams

 => If packet loss on one stream, 
others are blocked until packet 
comes in

=> Head of line blocking



HTTP/2 (2015)

Adds support for multiplexed streams on one connection

TCP provides a  single, ordered byte stream 
            => doesn’t know about multiple connections!
  

https://www.twilio.com/blog/2017/10/http2-issues.html

Encumbered by TCP’s semantics:  
If a packet is lost, all streams suffer! ! ! ! 



HTTP/2 (2015)

Adds support for multiplexed streams on one connection

TCP provides a  single, ordered byte stream 
            => doesn’t know about multiple connections!
  

https://www.twilio.com/blog/2017/10/http2-issues.html

Encumbered by TCP’s semantics:  
If a packet is lost, all streams suffer! ! ! ! 

=> Head of line blocking
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HTTP/3 (2022):  HTTP + QUIC

QUIC (RFC9000):  Newer transport-layer protocol, same goals as TCP
– Supports multiple streams at once
– Various tricks to reduce message size and latency
– Integrates security by default (TLS)

• By moving multiplexing into the transport layer, can do so in a way 
that benefits HTTP (no head of line blocking!)

SHORTERHANDSHAKE
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http://httpwg.org/specs/rfc7540.html
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Comparison:  QUIC’s handshake



What else can we do?



Caching
Place caches throughout network
- Use locality:  closer to clients => lower latency
- Improve throughput by avoiding bottleneck links

Big Requests

• Problem is throughput on edge link

• Use an HTTP proxy cache
- Can also improve latency!
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How to Control Caching?

• Server sets options
– Expires header
– No-Cache header

• Client can do a conditional request:
– Header option: if-modified-since
– Server can reply with 304 NOT MODIFIED

My trowson itself
IN THENETWORK



Where to cache content?
Server

Clients
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Where to cache content?

• Client (browser): avoid extra network transfers
• Server: reduce load on the server
• Service Provider: reduce external traffic

Server
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How well does caching work?

• Very well, up to a point
– Large overlap in requested objects
– Objects with one access place upper bound on hit ratio
– Dynamic objects not cacheable* 

• Example: Wikipedia
– About 400 servers, 100 are HTTP Caches (Squid)
– 85% Hit ratio for text, 98% for media

* But can cache portions and run special code on edges to reconstruct



Reverse Proxies
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Reverse Proxies

• Also called Accelerators
• Can distribute load within datacenter
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=> Cache close to server



Forward Proxies
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Forward Proxies

Typically done by ISPs or Enterprises
– Reduce network traffic and decrease latency
– May be transparent or configured 
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Content Distribution Networks (CDNs)

Companies that specialize in providing caching services 
(among other things)
=> Akamai, Cloudflare, …
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Content Distribution Networks (CDNs)

Companies that specialize in providing caching services 
(among other things)
=> Akamai, Cloudflare, …

• Provide both forward and reverse caching

• Can also do some processing

TEMPIO
VIDEO TRANSCODING



Content Distribution Networks (CDNs)

Companies that specialize in providing caching services 
(among other things)
=> Akamai, Cloudflare, …

• Provide both forward and reverse caching
– Pull: result from client requests
– Push: expectation of high access rates to some objects

• Can also do some processing
– Deploy code to handle some dynamic requests
– Can do other things, such as transcoding



An Example CDN
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How a CDN works

 - Eg. Best Buy sets up CDN services with CDN like Akamai

 - DNS for www.bestbuy.com controlled by Akamai



When client C resolves bestbuy.com, CDN tries to find best possible cache 
within CDN for client

 => DNS response points to “best” server within Akamai



How you select the “best” server”

Example:

 - Leverage location info for client (GeoIP, AS, …)

 - Might look up IP, do active measurements like ping/traceroute, etc.



=> DNS resolver, other caching elements are more intelligent than standard DNS 
server, etc. 



How Akamai works

Akamai has cache servers deployed close to clients
– Co-located with many ISPs

• Challenge: make same domain name resolve to a proxy close to the client
• Lots of DNS tricks. BestBuy is a customer

– Delegate name resolution to Akamai (via a CNAME)



Other CDNs

• Akamai, Limelight, Cloudflare
• Amazon, Facebook, Google, Microsoft
• Netflix
• Where to place content?
• Which content to place? Pre-fetch or cache?



DNS Resolution

dig www.bestbuy.com
;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.
a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240
;; AUTHORITY SECTION:
b.akamai.net.  1101 IN NS n1b.akamai.net.
b.akamai.net.  1101 IN NS n0b.akamai.net.
;; ADDITIONAL SECTION:
n0b.akamai.net.  1267 IN A 24.143.194.45
n1b.akamai.net.  2196 IN A 198.7.236.236

• n1b.akamai.net finds an edge server close to the client’s local 
resolver
• Uses knowledge of network: BGP feeds, traceroutes. Their secret sauce…



Example

From Brown
dig www.bestbuy.com
;; ANSWER SECTION:
www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME a1105.b.akamai.net.
a1105.b.akamai.net. 20 IN A 198.7.236.235
a1105.b.akamai.net. 20 IN A 198.7.236.240

– Ping time: 2.53ms

From Berkeley, CA
a1105.b.akamai.net. 20 IN A 198.189.255.200
a1105.b.akamai.net. 20 IN A 198.189.255.207

– Ping time: 3.20ms



Example
dig www.bestbuy.com
;; QUESTION SECTION:
;www.bestbuy.com. IN A

;; ANSWER SECTION:
www.bestbuy.com. 2530 IN CNAME www.bestbuy.com.edgekey.net.
www.bestbuy.com.edgekey.net. 85 IN CNAME e1382.x.akamaiedge.net.
e1382.x.akamaiedge.net. 16 IN A 104.88.86.223

;; Query time: 6 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Thu Nov 16 09:43:11 2017
;; MSG SIZE  rcvd: 123

traceroute to 104.88.86.223 (104.88.86.223), 64 hops max, 52 byte packets
1 router (192.168.1.1) 2.461 ms 1.647 ms 1.178 ms
2 138.16.160.253 (138.16.160.253) 1.854 ms 1.509 ms 1.462 ms
3 10.1.18.5 (10.1.18.5) 1.886 ms 1.705 ms 1.707 ms
4 10.1.80.5 (10.1.80.5) 4.276 ms 6.444 ms 2.307 ms
5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.804 ms 1.870 ms 1.727 ms
6 131.109.200.1 (131.109.200.1) 2.841 ms 2.587 ms 2.530 ms
7 host-198-7-224-105.oshean.org (198.7.224.105) 4.421 ms 4.523 ms 4.496 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.099 ms 3.974 ms 4.290 ms
9 * ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 4.689 ms 4.109 ms

10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 8.863 ms 10.205 ms 10.477 ms
11 ae-1.r08.nycmny01.us.bb.gin.ntt.net (129.250.5.62) 9.298 ms

ae-1.r07.nycmny01.us.bb.gin.ntt.net (129.250.3.181) 10.008 ms 8.677 ms
12 ae-0.a00.nycmny01.us.bb.gin.ntt.net (129.250.3.94) 8.543 ms 7.935 ms

ae-1.a00.nycmny01.us.bb.gin.ntt.net (129.250.6.55) 9.836 ms
13 a104-88-86-223.deploy.static.akamaitechnologies.com (104.88.86.223) 9.470 ms 8.483 
ms 8.738 ms

dig www.bestbuy.com @109.69.8.51

e1382.x.akamaiedge.net. 12 IN A 23.60.221.144

traceroute to 23.60.221.144 (23.60.221.144), 64 hops max, 52 byte packets
1 router (192.168.1.1) 44.072 ms 1.572 ms 1.154 ms
2 138.16.160.253 (138.16.160.253) 2.460 ms 1.736 ms 2.722 ms
3 10.1.18.5 (10.1.18.5) 1.841 ms 1.649 ms 3.348 ms
4 10.1.80.5 (10.1.80.5) 2.304 ms 15.208 ms 2.895 ms
5 lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.784 ms 4.744 ms 1.566 ms
6 131.109.200.1 (131.109.200.1) 3.581 ms 5.866 ms 3.238 ms
7 host-198-7-224-105.oshean.org (198.7.224.105) 4.288 ms 6.218 ms 8.332 ms
8 5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.209 ms 6.103 ms 5.031 ms
9 ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 3.982 ms 5.824 ms 4.514 ms
10 ae-6.r24.nycmny01.us.bb.gin.ntt.net (129.250.4.114) 9.735 ms 12.442 ms 8.689 ms
11 ae-9.r24.londen12.uk.bb.gin.ntt.net (129.250.2.19) 81.098 ms 81.343 ms 81.120 ms
12 ae-6.r01.mdrdsp03.es.bb.gin.ntt.net (129.250.4.138) 102.009 ms 110.595 ms 103.010 
ms
13 81.19.109.166 (81.19.109.166) 99.426 ms 93.236 ms 101.168 ms
14 a23-60-221-144.deploy.static.akamaitechnologies.com (23.60.221.144) 94.884 ms 92.779 
ms 93.281 ms

http://www.bestbuy.com/

