CSCI-1680
HTTP Il

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

« TCP is due next Tuesday

i am a tiny cactus
and i believe

in you

you can do the ting‘

[Will announce some final project info, grading feedback soon }

Warmup

Browser wants to fetch: http://example.com/page.html

Assuming no caching, what is the minimum number of packets the

browser needs to wait for?

It gets worse

Modern web traffic almost always uses HTTPS: https://example.com/page.html

=> Creates a secure transport layer to prevent eavesdropping, etc
(more on this later)

How does a browser load a page?

* Click a link, type in URL => browser fetches main page

How does a browser load a page?

« Click a link, type in URL => browser fetches main page

* Main page has links to more resources => need to fetch these too!

— Images, CSS, Javascript, etc.

How does a browser load a page?

« Click a link, type in URL => browser fetches main page
* Main page has links to more resources => need to fetch these too!

— Images, CSS, Javascript, etc.

* New resources might load yet more resources...

{ Recursive process with many dependencies!

BROWN Department
5 of
Computer Science

IN DEQ SPFERAMUS

O ilid-4DHRA =01

‘Welcome to the Brown University Computer Science Department Web. Information here is organized into broad categories, which are summarized in the icon bar, above. If you are visiting for tl
or exploring, the rest of this page offers some details about what you'll find.

If you are visiting us in person, you'll need directions to the CIT building. If not, perhaps you just need our address, phone, fax or other vital statistics.

Calendar of Events
Talks, conferences and soirees both at Brown and elsewhere are described.

Programs of Study

Undergraduate concentration requirements and the masters and phd programs are described, accompanied by the relevant forms, brochures and pointers to related information elsewhere.

4
_Research Groups
Active research areas in computer science at Brown include graphics, geometric computing, object-oriented databases, artificial intelligence and robotics. Each group maintains a home pag

describing their research and activities and links to relevant publications.

_Publications
The Department publishes brochures, technical reports, a newsletter, conduit!, and, for locals, house rules.

Early websites: not many dependencies,

Many cou

usually served by one server

amazon
Smt)

= All Holiday Deals Medical Care + Groceries ~+ Best Sellers Amazon Basics Prime v Registry New Releases Today's Deals

Early Black Friday deals
Save up to 50 on Amazon

< smart home devices

Limited-time offer

Gear up for game day Try on Coach styles for Top Deal

free
] -

| Up to 50% off LIl

Shop all teams Shop Coach with Prime Try Before You Buy See all deals

Ring Doorbells, Cameras and Bundles

Sign in for the best
experience

Sign in securely

On a modern webpage...

On a modern webpage...

* Huge number of dependencies, external resources

— ... from many different locations, not just one server!

* Lots of asynchronous operations => loading new resources as
you are using the page

* Lots of dynamic content => generated by the server specifically
for you (your feed, ad data, ...)

[How to make this fast? }

How to make this fast?

What's important for performance?

Observation: lots of small requests

Latency is a problem! Need many RTTs just to fetch one resource!

Observation: lots of small requests

Latency is a problem! Need many RTTs just to fetch one resource!

HTTP/1.0: One TCP connection per request!

Can we do better?

HTTP/1.1: Persistent connections
=> Reuse TCP connection to for multiple requests

Can we do better?

HTTP/1.1: Persistent connections
=> Reuse TCP connection to for multiple requests

[Problems?

Can we do better?

HTTP/1.1 (1996): Persistent connections
=> Reuse TCP connection to for multiple requests

"Problems?
= One big request blocks others => head of line blocking
=> Same if connection has packet loss

e Doesn’t help when fetching from multiple locations

What can be done?

GET / HTTP/1.1

Host: localhost:8000

User-Agent: Mozilla/5.0 (Macinto
Accept: text/xml,application/xm

Accept-Language: en-us,en;qg=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: I50-8859-1,utf-8;9=0.7,*,09=0.7
Keep-Alive: 300

Connection: keep-alive

What can be done?

Pipelining: have multiple "in-flight” requests at once

Two methods

* Multiple TCP connections in parallel

* Change the HTTP protocol: multiple requests per connection

What can be done?

Pipelining: have multiple "in-flight” requests at once

Two methods

* Multiple TCP connections in parallel
=> Browsers often do this (up to a limit)

* Change the HTTP protocol: multiple requests per connection
=> Newer HTTP versions: HTTP/2, HTTP/3

HTTP/2 (2015)

Adds support for multiplexed streams on one connection

[What happens if a packet gets dropped?

https://www.twilio.com/blog/2017/10/http2-issues.html

HTTP/2 (2015)

Adds support for multiplexed streams on one connection

TCP provides a single, ordered byte stream
=> doesn’t know about multiple connections!

https://www.twilio.com/blog/2017/10/http2-issues.html

HTTP/2 (2015)

Adds support for multiplexed streams on one connection

TCP provides a single, ordered byte stream
=> doesn’t know about multiple connections!

Encumbered by TCP’s semantics:
If a packet is lost, all streams suffer! & & &

https://www.twilio.com/blog/2017/10/http2-issues.html

HTTP/2 (2015)

Adds support for multiplexed streams on one connection

TCP provides a single, ordered byte stream
=> doesn’t know about multiple connections!

Encumbered by TCP’s semantics: W
If a packet is lost, all streams suffer! & & &

Nt PS:/WWW. o S o) mu s) 20y tiepe 1osucsmrt,

HTTP/3 (2022): HTTP + QUIC

QUIC (RFC9000): Newer transport-layer protocol, same goals as TCP
— Supports multiple streams at once

— Various tricks to reduce message size and latency
— Integrates security by default (TLS)

* By moving multiplexing into the transport layer, can do so in a way
that benefits HTTP (no head of line blocking!)

HTTP Semantics

HTTP 1.1 HTTP/2 HTTP/3

(gﬁi/osr%n TLS 1.2+ TLS 1.3

QUIC

TCP

IPv4 / IPv6

http://httpwg.org/specs/rfc7540.html

Comparison: QUIC's handshake

What else can we do?

Caching

Place caches throughout network
- Use locality: closer to clients => lower latency
- Improve throughput by avoiding bottleneck links

clients

proxy
cache

server

How to Control Caching?

* Server sets options
— Expires header
— No-Cache header
 Client can do a conditional request:

— Header option: if-modified-since
— Server can reply with 304 NOT MODIFIED

Where to cache content?

Where to cache content?

Clients

* Client (browser): avoid extra network transfers
e Server: reduce load on the server
e Service Provider: reduce external traffic

How well does caching work?

* Very well, up to a point
— Large overlap in requested objects

— Objects with one access place upper bound on hit ratio
— Dynamic objects not cacheable*

« Example: Wikipedia
— About 400 servers, 100 are HTTP Caches (Squid)
— 85% Hit ratio for text, 98% for media

* But can cache portions and run special code on edges to reconstruct

Reverse Proxies

=> Cache close to server

Reverse proxies

Reverse Proxies

=> Cache close to server

Reverse proxies

Clients ——

e Also called Accelerators
e Can distribute load within datacenter

Forward Proxies

Reverse proxies

Forward proxies

Forward Proxies

Reverse proxies

Forward proxies

Clients

Typically done by ISPs or Enterprises
— Reduce network traffic and decrease latency
— May be transparent or configured

Content Distribution Networks (CDNs)

Companies that specialize in providing caching services
(among other things)

=> Akamai, Cloudflare, ...

Content Distribution Networks (CDNs)

Companies that specialize in providing caching services
(among other things)

=> Akamai, Cloudflare, ...

* Provide both forward and reverse caching

* Can also do some processing

Content Distribution Networks (CDNs)

Companies that specialize in providing caching services
(among other things)

=> Akamai, Cloudflare, ...

* Provide both forward and reverse caching

— Pull: result from client requests

— Push: expectation of high access rates to some objects
* Can also do some processing

— Deploy code to handle some dynamic requests

— Can do other things, such as transcoding

An Example CDN

How Akamai works

Akamai has cache servers deployed close to clients
— Co-located with many ISPs

* Challenge: make same domain name resolve to a proxy close to the client

« Lots of DNS tricks. BestBuy is a customer
— Delegate name resolution to Akamai (via a CNAME)

Other CDNs

Akamai, Limelight, Cloudflare

Amazon, Facebook, Google, Microsoft
Netflix

Where to place content?

Which content to place? Pre-fetch or cache?

DNS Resolution

dig www.bestbuy.com
;» ANSWER SECTION:

www.bestbuy.com. 3600 IN CNAME www.bestbuy.com.edgesuite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME all05.b.akamai.net.
all05.b.akamai.net. 20 IN A 198.7.236.235
all05.b.akamai.net. 20 IN A 198.7.236.240

;; AUTHORITY SECTION:

b.akamai.net. 1101 IN NS nlb.akamai.net.
b.akamai.net. 1101 IN NS n0b.akamai.net.

;; ADDITIONAL SECTION:

n0b.akamai.net. 1267 IN A 24.143.194.45
nlb.akamai.net. 2196 IN A 198.7.236.236

* n1b.akamai.net finds an edge server close to the client’s local
resolver

« Uses knowledge of network: BGP feeds, traceroutes. Their secret sauce...

Example

From Brown

dig www.bestbuy.com
;; ANSWER SECTION:

www.bestbuy.com. 3600 1IN CNAME www.bestbuy.com.edgesulite.net.
www.bestbuy.com.edgesuite.net. 21600 IN CNAME allOb.b.akamail.net.
allO0b.b.akamail.net. 20 IN A 198.7.236.235
allO0b.b.akamail.net. 20 IN A 198.7.236.240

— Ping time: 2.53ms
From Berkeley, CA
all05.b.akamai.net. 20 IN A 198.189.255.200

allO5.b.akamai.net. 20 IN A 198.189.255.207
— Ping time: 3.20ms

dig www.bestbuy.com
;; QUESTION SECTION:
;www. bestbuy.com. IN A

1)

ANSWER SECTION:

www.bestbuy.com. 2530 IN CNAME www.bestbuy.com.edgekey.net.

www . bestbuy.com.edgekey.net. 85 IN CNAME e1382.x.akamaiedge.net.
e1382.x.akamaiedge.net. 16 IN A 104.88.86.223

;3 Query time: 6 msec
;3 SERVER: 192.168.1.1#53(192.168.1.1)

1)

1)

WHEN: Thu Nov 16 09:43:11 2017
MSG SIZE rcvd: 123

traceroute to 104.88.86.223 (104.88.86.223), 64 hops max, 52 byte packets

1

- ® VW 0 N O Ul A W N

—_ .

—_
N

13
ms

router (192.168.1.1) 2.461 ms 1.647 ms 1.178 ms

138.16.160.253 (138.16.160.253) 1.854 ms 1.509 ms 1.462 ms

10.1.18.5 (10.1.18.5) 1.886 ms 1.705 ms 1.707 ms

10.1.80.5 (10.1.80.5) 4.276 ms 6.444 ms 2.307 ms
lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.804 ms 1.870 ms 1.727 ms
131.109.200.1 (131.109.200.1) 2.841 ms 2.587 ms 2.530 ms
host-198-7-224-105.0shean.org (198.7.224.105) 4.421 ms 4.523 ms 4.496 ms
5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.099 ms 3.974 ms 4.290 ms

* ae-4.r00.bstnma07.us.bb.gin.ntt.net (129.250.66.93) 4.689 ms 4.109 ms
ae-6.r24.nycmny@1.us.bb.gin.ntt.net (129.250.4.114) 8.863 ms 10.205 ms 10.477 ms
ae-1.r08.nycmny@1.us.bb.gin.ntt.net (129.250.5.62) 9.298 ms
ae-1.r07.nycmny@1.us.bb.gin.ntt.net (129.250.3.181) 10.008 ms 8.677 ms
ae-0.a00.nycmny@1.us.bb.gin.ntt.net (129.250.3.94) 8.543 ms 7.935 ms
ae-1.a00.nycmny@1.us.bb.gin.ntt.net (129.250.6.55) 9.836 ms

a104-88-86-223.deploy.static.akamaitechnologies.com (104.88.86.223) 9.470 ms 8.483
8.738 ms

dig www.bestbuy.com @109.69.8.51

e1382.x.akamaiedge.net. 12 IN A 23.60.221.144

traceroute to 23.60.221.144 (23.60.221.144), 64 hops max, 52 byte packets

1

00 N O Ul A~ WN

1

12
ms
13

14
ms

router (192.168.1.1) 44.072 ms 1.572 ms 1.154 ms

138.16.160.253 (138.16.160.253) 2.460 ms 1.736 ms 2.722 ms

10.1.18.5 (10.1.18.5) 1.841 ms 1.649 ms 3.348 ms

10.1.80.5 (10.1.80.5) 2.304 ms 15.208 ms 2.895 ms

lsb-inet-r-230.net.brown.edu (128.148.230.6) 1.784 ms 4.744 ms 1.566 ms
131.109.200.1 (131.109.200.1) 3.581 ms 5.866 ms 3.238 ms
host-198-7-224-105.0shean.org (198.7.224.105) 4.288 ms 6.218 ms 8.332 ms
5-1-4.bear1.boston1.level3.net (4.53.54.21) 4.209 ms 6.103 ms 5.031 ms
ae-4.r00.bstnma@7.us.bb.gin.ntt.net (129.250.66.93) 3.982 ms 5.824 ms 4.514 ms
ae-6.r24.nycmny@1.us.bb.gin.ntt.net (129.250.4.114) 9.735 ms 12.442 ms 8.689 ms
ae-9.r24.londen12.uk.bb.gin.ntt.net (129.250.2.19) 81.098 ms 81.343 ms 81.120 ms
ae-6.r01.mdrdsp@3.es.bb.gin.ntt.net (129.250.4.138) 102.009 ms 110.595 ms 103.010

81.19.109.166 (81.19.109.166) 99.426 ms 93.236 ms 101.168 ms

a23-60-221-144.deploy.static.akamaitechnologies.com (23.60.221.144) 94.884 ms 92.77
93.281 ms

http://www.bestbuy.com/

W o

New Tab

C

Welcome!

example.com?

>

GET /page.html

200 OK + (Content of page.html)

X+

Q_ http://example.com/page.html

page.html
<html>

<title>hi</title>
<hl>Welcome!</h1>
</html>

Server returns response (in this case, with HTML)

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '"]'.

GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 24 Mar 2011 12:58:46 GMT

Server: Apache/2.2.9 (Debian) mod ssl1/2.2.9 OpenSSL/0.9.8¢g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT

ETag: "840a88b-236c-49f3992853bcO"

Accept-Ranges: bytes

Content-Length: 9068

Vary: Accept-Encoding

Connection: close

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en”>

HTTP Cookies

e Client-side state maintenance
— Client stores small state on behalf of server

— Sends request in future requests to the server
— Cookie value is meaningful to the server (e.g., session id)

 Can provide authentication
1. Request

2. Response
Set-Cookie: XYZ

3. Request
Cookie: XYZ

Modern web pages and HTTP

« Web APIs: HTTP response/requests are a standard way to ask for anything
* Modern web pages: use Javascript to make lots of requests without
reloading page
— And can use APIs for all kinds of other stuff

Example: Github public API

curl https://api.github.com/users/ndemarinis

"login": "ndemarinis",

"id": 1191319,

"node_id": "MDQ6VXN1cjEXOTEzMTk=",

"avatar_url": "https://avatars.githubusercontent.com/u/1191319°?v=4",

"gravatar_id": s

"url"”: "https://api.github.com/users/ndemarinis”,
"type": "User",

"site _admin": false,

"name": "Nick DeMarinis",

"blog": "https://vty.sh",

"twitter_username": null,

"public_repos": 10,

Modern web pages and HTTP

« Web APIs: HTTP response/requests are a standard way to ask for anything
* Modern web pages: use Javascript to make lots of requests without
reloading page
— And can use APIs for all kinds of other stuff

Example: Github public API

curl https://api.github.com/users/ndemarinis

"login": "ndemarinis",

"id": 1191319,

"node_id": "MDQ6VXN1cjEXOTEzMTk=",

"avatar_url": "https://avatars.githubusercontent.com/u/1191319°?v=4",

"gravatar_id": s

"url"”: "https://api.github.com/users/ndemarinis”,
"type": "User",

"site _admin": false,

"name": "Nick DeMarinis",

"blog": "https://vty.sh",

"twitter_username": null,

"public_repos": 10,

HTTP: What matters for performance?

Depends on type of request
— Lots of small requests (objects in a page)
— Some big requests (large download or video)

Small Requests

* Latency matters
« RTT dominates
* Major steps:
— DNS lookup (if not cached)

— Opening a TCP connection
— Setting up TLS (optional, but now common)
— Actually sending the request and receiving response

How can we reduce the number ot connection setups?

+ Keep the connection open and request all objects serially
— Works for all objects coming from the same server
— Which also means you don’t have to “open” the window each time

Persistent connections (HTTP/1.1)

Small Requests (cont)

» Second problem is that requests are serialized
— Similar to stop-and-wait protocols!

 Two solutions
— Pipelined requests (similar to sliding windows)

— Parallel Connections
* Browsers implement this differently—see “Inspect element”

— How are these two approaches different?

