TCP milestone II: sign up for a meeting soon (by Monday at latest—don’t stress about having it all done)

TCP gearup III: tonight (11/9), 5-7pm

HW4: TBA, but due after TCP
The story so far

POV: You want to connect to some website

connect(example.com, 80)
The story so far

POV: You want to connect to some website

You → DNS resolver

A example.com?

5.6.7.8

connect(example.com, 80)
The story so far

POV: You want to connect to some website

connect(example.com, 80)

A example.com?

5.6.7.8

...
The story so far

POV: You want to connect to some website

You

DNS resolver

A example.com?

... 5.6.7.8 5.6.7.8

5.6.7.8

example.com DNS server

example.com 5.6.7.8

connect(example.com, 80)
The story so far

POV: You want to connect to some website

connect(example.com, 80)

A example.com?

5.6.7.8

... 5.6.7.8

5.6.7.8

example.com DNS server

development
Q: If the randomsite.com’s DNS server goes down, can another DNS server still resolve randomsite.com?

connect(example.com, 80)

A example.com?

5.6.7.8

...
How it scales: caching

DNS Resolvers cache responses to avoid doing recursive/iterative queries
• Many messages => extra computation, extra latency

$ dig cs.brown.edu @10.1.1.10
;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12
How it scales: caching

DNS Resolvers cache responses to avoid doing recursive/iterative queries
• Many messages => extra computation, extra latency

How long to cache?
=> Every record has a TTL (in seconds), delete when it expires

$ dig cs.brown.edu @10.1.1.10
;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12
$ dig cs.brown.edu @10.1.1.10
; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12

;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE rcvd: 57
Today

How does this work in practice? What can go wrong?
How it scales: caching

DNS Resolvers cache responses to avoid doing recursive/iterative queries

- Many messages => extra computation, extra latency

How long to cache?

=> Every record has a TTL (in seconds), delete when it expires

```bash
$ dig cs.brown.edu @10.1.1.10
;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12
```
Related: redundant services via DNS

Can return multiple answers for one record

=> If a client can’t connect to first result, can try next one

```
$ dig nytimes.com

;; ANSWER SECTION:
nytimes.com. 111 IN A 151.101.65.164
nytimes.com. 111 IN A 151.101.1.164
nytimes.com. 111 IN A 151.101.129.164
nytimes.com. 111 IN A 151.101.193.164

;; Query time: 40 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Thu Nov 09 08:42:41 EST 2023
;; MSG SIZE  rcvd: 104
```

DNS server usually shuffles answers on each response—why?
Facebook DNS outage (2021)

BGP configuration bug: Facebook withdraws all routes for its DNS servers to the Internet

=> Facebook DNS unreachable—not even Facebook could access their systems!

Traffic graph
Many writeups here
user@host$ dig @1.1.1.1 facebook.com # CloudFlare

;; ->HEADER<< opcode: QUERY, status: SERVFAIL, id: 5153
;facebook.com. IN A
user@host$ dig @8.8.8.8 facebook.com # Google Public DNS

;; ->HEADER<< opcode: QUERY, status: SERVFAIL, id: 43224
;facebook.com. IN A
user@host$ dig @208.67.222.222 facebook.com # OpenDNS

;; ->HEADER<< opcode: QUERY, status: SERVFAIL, id: 7643
;facebook.com. IN A
user@host$ dig @176.103.130.130 facebook.com # AdGuard

;; ->HEADER<< opcode: QUERY, status: SERVFAIL, id: 5434
;facebook.com. IN A
DNS record types

<table>
<thead>
<tr>
<th>RR Type</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IPv4 Address</td>
<td>128.148.56.2</td>
</tr>
<tr>
<td>AAAA</td>
<td>IPv6 Address</td>
<td>2001:470:8956:20::1</td>
</tr>
</tbody>
</table>

DNS record types

<table>
<thead>
<tr>
<th>RR Type</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IPv4 Address</td>
<td>128.148.56.2</td>
</tr>
<tr>
<td>AAAA</td>
<td>IPv6 Address</td>
<td>2001:470:8956:20::1</td>
</tr>
<tr>
<td>CNAME</td>
<td>Specifies an alias (“Canonical name”)</td>
<td>systems.cs.brown.edu. 86400 IN systems-v3.cs.brown.edu. systems-v3.cs.brown.edu. 86400 IN A 128.148.36.51</td>
</tr>
<tr>
<td>NS</td>
<td>DNS servers for a domain</td>
<td>cs.brown.edu. 86400 IN NS br1.brown.edu</td>
</tr>
<tr>
<td>MX</td>
<td>Mail servers</td>
<td>MX <priority> <ip></td>
</tr>
<tr>
<td>SOA</td>
<td>Start of authority</td>
<td>Information about who owns a zone</td>
</tr>
<tr>
<td>PTR</td>
<td>Reverse IP lookup</td>
<td>7.34.148.128.in-addr.arpa. 86400 IN quanto.cs.brown.edu. PTR quanto.cs.brown.edu.</td>
</tr>
<tr>
<td>SRV</td>
<td>How to reach specific services (eg. host, port)</td>
<td>_minecraft._tcp.example.net 3600 SRV <priority> <weight> <port> <server IP></td>
</tr>
</tbody>
</table>
Reverse DNS

What if we want to map IP address => domain name?
Reverse DNS

What if we want to map IP address => domain name?

Leverages hierarchy in IP addresses, but in reverse
 => How? reverse the numbers: 12.32.148.128, then look that up
What happens when you register a new domain?
Registering a new domain

Your new startup helpme.com

• Get a block of addresses from ISP
 – Say 212.44.9.0/24

• Register helpme.com at namecheap.com (for ex.)
 – Provide name and address of your authoritative name server (primary and secondary)
 – Registrar inserts RR pair into the .com TLD server:
 • helpme.com NS dns1.helpme.com
 • dns1.helpme.com A 212.44.9.120

• Configure your authoritative server (dns1.helpme.com)
 – Type A record for www.helpme.com
 – Type MX record for helpme.com
Registering a new domain

Your new startup helpme.com

• Get a block of addresses from ISP
 – Say 212.44.9.0/24

• Register helpme.com at namecheap.com (for ex.)
 – Provide name and address of your authoritative name server (primary and secondary)
 – Registrar inserts RR pair into the .com TLD server:
 • helpme.com NS dns1.helpme.com
 • dns1.helpme.com A 212.44.9.120

• Configure your authoritative server (dns1.helpme.com)
 – Type A record for www.helpme.com
 – Type MX record for helpme.com
Inserting a Record in DNS, cont

- Need to provide reverse PTR bindings
 - E.g., 212.44.9.120 -> dns1.helpme.com
- Configure your dns server to serve the 9.44.212.in-addr.arpa zone
 - Need to add a record of this NS into the parent zone (44.212.in-addr.arpa)
- Insert the bindings into the 9.44.212.in-addr.arpa zone
What can go wrong?
connect(example.com, 80)

A example.com?

5.6.7.8
DNS Protocol

- TCP/UDP port 53
- Most traffic uses UDP
 - Lightweight protocol has 512 byte message limit
 - Can run over TCP (more on this later)
- A few options to request recursive queries, ...
DNS Security

- You go to Starbucks, how does your browser find www.google.com?
 - Ask local name server, obtained from DHCP

- Can you trust this DNS server?
You → Local DNS → example.com 5.6.7.8
Great Firewall of CIT

If attacker is on the path (say, it is the ISP, or a malicious version of TStaff), what could they do?
You → Local DNS → Public DNS → example.com 5.6.7.8
Great Firewall of CIT

If attacker is on the path (say, it is the ISP, or a malicious version of TStaff), what could they do?

- Can sniff all DNS queries
- Send fake responses back first
- Could do this selectively, to direct facebook.com to cs.brown.edu, for example…
https://www.thousandeyes.com/blog/internet-censorship-around-the-world
https://blog.thousandeyes.com/monitoring-dns-in-china/
Public DNS

Public DNS resolvers provided by cloud companies and ISPs
• 8.8.8.8 (Google)
• 1.1.1.1 (Cloudflare)
• … and others

Why do this?
Changing DNS servers in response to blocking of Twitter in Turkey (2014)

Writeup, with more links: https://www.thousandeyes.com/blog/internet-censorship-around-the-world
“Helpful” ISPs

• Many ISPs hijack NXDOMAIN responses to “help” by offering search and advertisement related to the domain

• E.g., www.bicycleisntadomain.com doesn’t (currently) exist
 – Could return a page with search and ads on bicycles (or domain registrations?)
What can be done?

Some defenses against DNS spoofing/hijacking
What can be done?

Some defenses against DNS spoofing/hijacking

• DNSSEC: protocol to sign/verify hierarchy of DNS lookups
 – Expensive to deploy, hierarchy must support at all levels
 – APNIC DNSSEC monitor: https://stats.labs.apnic.net/dnssec

• Tunneling DNS: client uses DNS via more secure protocol
 – DNS over HTTPS
 – DNS over TLS
More on DNS
Structure of a DNS Message

- Same format for queries and replies
 - Query has 0 RRs in Answer/Authority/Additional
 - Reply includes question, plus has RRs
- Authority allows for delegation
- Additional for glue, other RRs client might need

```
+---------------------+
|   Header            |
+---------------------+
| Question            | the question for the name server
+---------------------+
| Answer              | RRs answering the question
+---------------------+
| Authority           | RRs pointing toward an authority
+---------------------+
| Additional          | RRs holding additional information
+---------------------+
```
Header format

- **Id**: match response to query; QR: 0 query/1 response
- **RCODE**: error code.
- **AA**: authoritative answer, **TC**: truncated,
- **RD**: recursion desired, **RA**: recursion available

![Header format diagram]
Other RR Types

- **CNAME (canonical name):** specifies an alias

 `www.l.google.com. 300 IN A 72.14.204.147`

- **MX record:** specifies servers to handle mail for a domain (the part after the @ in email addr)

 – Different for historical reasons

- **SOA (start of authority):**

 – Information about a DNS zone and the server responsible for the zone

- **PTR (reverse lookup):**

 `7.34.148.128.in-addr.arpa. 86400 IN PTR quanto.cs.brown.edu.`
dig . ns

dig +norec www.cs.brown.edu @a.root-servers.net

dig +norec www.cs.brown.edu @a.edu-servers.net

dig +norec www.cs.brown.edu @bru-ns1.brown.edu

www.cs.brown.edu. 86400 IN A 128.148.32.110
All DNS info represented as resource records (RR)

- name: domain name
- TTL: time to live in seconds
- class: for extensibility, normally IN (1) “Internet”
- type: type of the record
- rdata: resource data dependent on the type

• Example RRs
  ```
  www.cs.brown.edu. 86400 IN A 128.148.32.110
  cs.brown.edu. 86400 IN NS dns.cs.brown.edu.
  cs.brown.edu. 86400 IN NS ns1.ucsb.edu.
  ```
$ dig cs.brown.edu @10.1.1.10
; <<< DIG 9.10.6 <<< cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; ANSWER SECTION:
cs.brown.edu. 1800 IN A 128.148.32.12

;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE rcvd: 57
% dig +norec cs.brown.edu @j.root-servers.net

; <>> DiG 9.10.6 <>> +norec cs.brown.edu @j.root-servers.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61618
;; flags: qr QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
;; QUESTION SECTION:
;cs.brown.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS l.edu-servers.net.
edu. 172800 IN NS m.edu-servers.net.

;; ADDITIONAL SECTION:
a.edu-servers.net. 172800 IN A 192.5.6.30
b.edu-servers.net. 172800 IN A 192.33.14.30
c.edu-servers.net. 172800 IN A 192.26.92.30
d.edu-servers.net. 172800 IN A 192.31.80.30
e.edu-servers.net. 172800 IN A 192.12.94.30

When server doesn’t know all info...
What we have

IP addresses
• Used by routers to forward packets
• Fixed length, binary numbers
• Assigned based on where host is on the network
• Usually refers to one host

Examples
• 5.6.7.8
• 212.58.224.138
• 2620:6e:6000:900:c1d:c9f7:8a1c:2f48

Efficient forwarding: ✅
Human readable: ❌
Scalable for distributed services: ❌
What we have

IP addresses
- Used by routers to forward packets
- Fixed length, binary numbers
- Assigned based on where host is on the network
- Usually refers to one host

Examples
- 5.6.7.8
- 212.58.224.138
- 2620:6e:6000:900:c1d:c9f7:8a1c:2f48

=> Need a new abstraction for “stuff” we are trying to access
What we want: a new abstraction for names

connect("website.com", 80)

connect(5.6.7.8, 80)
What we want: a new abstraction for names

Want: names
- Human-readable
- Variable length
- Don’t need to care about where destination is/what server it is
 => Can refer to a service, not just a host
Some important details

- **How do local servers find root servers?**
 - DNS lookup on a.root-servers.net?
 - Servers configured with *root cache* file
 - Contains root name servers and their addresses

hostname	ttl	type	value
.	3600000	NS	A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET.	3600000	A	198.41.0.4

- **How do you get addresses of other name servers?**
 - To obtain the address of www.cs.brown.edu, ask a.edu-servers.net, says a.root-servers.net
 - How do you find a.edu-servers.net?
 - Glue records: A records in parent zone
Other uses of DNS

• Local multicast DNS
 – Used for service discovery
 – Made popular by Apple
 – This is how you learn of different Apple TVs in the building

• Load balancing

• CDNs (more on this later)
Reliability

- Answers may contain several alternate servers
- Try alternate servers on timeout
 - Exponential backoff when retrying same server
- Use same identifier for all queries
 - Don’t care which server responds, take first answer