CSCI-1680 DNS

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

- <u>TCP milestone II</u>: sign up for a meeting soon (by Monday at latest—don't stress about having it all done)
- <u>TCP gearup III</u>: tonight (11/9), 5-7pm
- <u>HW4</u>: TBA, but due after TCP

The story so far

The story so far

The story so far

<u>The story so far</u>

<u>The story so far</u>

Warmup

Q: If the randomsite.com's DNS server goes down, can another DNS server still resolve randomsite.com?

How it scales: caching

DNS Resolvers cache responses to avoid doing recursive/iterative queries

• Many messages => extra computation, extra latency

<pre>\$ dig cs.brown.edu</pre>	@10.1.1.10			
;; ANSWER SECTION:				
cs.brown.edu.	1800	IN	А	128.148.32.12

How it scales: caching

DNS Resolvers cache responses to avoid doing recursive/iterative queries

• Many messages => extra computation, extra latency

How long to cache?

=> Every record has a TTL (in seconds), delete when it expires

<pre>\$ dig cs.brown.edu @1</pre>	0.1.1.10			
;; ANSWER SECTION:				
cs.brown.edu.	1800	IN	А	128.148.32.12

\$ dig cs.brown.edu @10.1.1.10 ; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10 ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 1220 ;; QUESTION SECTION: ;cs.brown.edu. IN A

;; ANSWER SECTION:

cs.brown.edu. 1800 IN A 128.148.32.12

;; Query time: 69 msec ;; SERVER: 10.1.1.10#53(10.1.1.10) ;; WHEN: Tue Apr 19 09:03:39 EDT 2022 ;; MSG SIZE rcvd: 57

How it scales: caching

DNS Resolvers cache responses to avoid doing recursive/iterative queries

• Many messages => extra computation, extra latency

How long to cache?

=> Every record has a TTL (in seconds), delete when it expires

<pre>\$ dig cs.brown.edu @1</pre>	0.1.1.10			
;; ANSWER SECTION:				
cs.brown.edu.	1800	IN	А	128.148.32.12

<u>Related: redundant services via DNS</u>

Can return multiple answers for one record => If a client can't connect to first result, can try next one

```
$ dig nytimes.com
;; ANSWER SECTION:
nytimes.com. 111 IN A 151.101.65.164
nytimes.com. 111 IN A 151.101.1.164
nytimes.com. 111 IN A 151.101.129.164
nytimes.com. 111 IN A 151.101.193.164
;; Query time: 40 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
  WHEN: Thu Nov 09 08:42:41 EST 2023
;; MSG SIZE rcvd: 104
```

DNS server usually shuffles answers on each response—why?

Facebook DNS outage (2021)

<u>BGP configuration bug</u>: Facebook withdraws all routes for its DNS servers to the Internet

=> Facebook DNS unreachable—not even Facebook could access their systems!

<u>Traffic graph</u> <u>Many writeups here</u>

```
user@host$ dig @1.1.1.1 facebook.com # CloudFlare
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 5153
;facebook.com.
                                TΝ
                                        А
user@host$ dig @8.8.8.8 facebook.com # Google Public DNS
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 43224
:facebook.com.
                                TΝ
                                        А
user@host$ dig @208.67.222.222 facebook.com # OpenDNS
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 7643
;facebook.com.
                                TΝ
                                        А
user@host$ dig @176.103.130.130 facebook.com # AdGuard
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 5434
:facebook.com.
                                IΝ
                                        А
```


DNS record types

RR Type	Purpose	Example
А	IPv4 Address	128.148.56.2
AAAA	IPv6 Address	2001:470:8956:20::1

More: <u>https://en.wikipedia.org/wiki/List_of_DNS_record_types</u>

DNS record types

RR Type	Purpose	Example
А	IPv4 Address	128.148.56.2
AAAA	IPv6 Address	2001:470:8956:20::1
CNAME	Specifies an alias ("Canonical name")	systems.cs.brown.edu. 86400 IN CNAME systems-v3.cs.brown.edu. systems-v3.cs.brown.edu. 86400 IN A 128.148.36.51
NS	DNS servers for a domain	cs.brown.edu. 86400 IN NS br1.brown.edu
MX	Mail servers	MX <priority> <ip>eg. MX 10 1.2.3.4</ip></priority>
SOA	Start of authority	Information about who owns a zone
PTR	Reverse IP lookup	7.34.148.128.in-addr.arpa. 86400 IN PTR quanto.cs.brown.edu.
SRV	How to reach specific services (eg. host, port)	_minecrafttcp.example.net 3600 SRV <priority> <weight> <port> <server ip=""></server></port></weight></priority>

More: <u>https://en.wikipedia.org/wiki/List_of_DNS_record_types</u>

What if we want to map IP address => domain name?

Reverse DNS

What if we want to map IP address => domain name?

Leverages hierarchy in IP addresses, but in reverse => How? reverse the numbers: 12.32.148.128, then look that up What happens when you register a new domain?

Registering a new domain

Your new startup helpme.com

- Get a block of addresses from ISP
 - Say 212.44.9.0/24
- Register helpme.com at namecheap.com (for ex.)
 - Provide name and address of your authoritative name server (primary and secondary)
 - Registrar inserts RR pair into the .com TLD server:
 - helpme.com NS dns1.helpme.com
 - dns1.helpme.com A 212.44.9.120
- Configure your authoritative server (dns1.helpme.com)
 - Type A record for www.helpme.com
 - Type MX record for helpme.com

Registering a new domain

Your new startup helpme.com

- Get a block of addresses from ISP
 - Say 212.44.9.0/24
- Register helpme.com at namecheap.com (for ex.)
 - Provide name and address of your authoritative name server (primary and secondary)
 - Registrar inserts RR pair into the .com TLD server:
 - helpme.com NS dns1.helpme.com
 - dns1.helpme.com A 212.44.9.120
- Configure your authoritative server (dns1.helpme.com)
 - Type A record for www.helpme.com
 - Type MX record for helpme.com

Inserting a Record in DNS, cont

- Need to provide reverse PTR bindings
 - E.g., 212.44.9.120 -> dns1.helpme.com
- Configure your dns server to serve the 9.44.212.in-addr.arpa zone
 Need to add a record of this NS into the parent zone (44.212.in-addr.arpa)
- Insert the bindings into the 9.44.212.in-addr.arpa zone

What can go wrong?

example.com 5.6.7.8

DNS Protocol

- TCP/UDP port 53
- Most traffic uses UDP
 - Lightweight protocol has 512 byte message limit
 - Can run over TCP (more on this later)
- A few options to request recursive queries, ...

DNS Security

- You go to starbucks, how does your browser find www.google.com?
 - Ask local name server, obtained from DHCP

	perona (15) Domarn Name	
\sim)ption: (6) Domain Name Server	
	Length: 12	
	Domain Name Server: 1.1.1.1	
	Domain Name Server: 4.2.2.1	
	Domain Name Server: 8.8.8.8	

• Can you trust this DNS server?

example.com 5.6.7.8

Great Firewall of CIT

If attacker is on the path (say, it is the ISP, or a malicious version of TStaff), what could they do?

Great Firewall of CIT

If attacker is on the path (say, it is the ISP, or a malicious version of TStaff), what could they do?

- Can sniff all DNS queries
- Send fake responses back first
- Could do this selectively, to direct facebook.com to cs.brown.edu, for example...

https://www.thousandeyes.com/blog/internet-censorship-around-the-world

https://blog.thousandeyes.com/monitoring-dns-in-china/

Public DNS

Public DNS resolvers provided by cloud companies and ISPs

- 8.8.8.8 (Google)
- 1.1.1.1 (Cloudflare)
- ... and others

Why do this?

Changing DNS servers in response to blocking of Twitter in Turkey (2014)

Writeup, with more links: https://www.thousandeyes.com/blog/internet-censorship-around-the-world

"Helpful" ISPs

- Many ISPs hijack NXDOMAIN responses to "help" by offering search and advertisement related to the domain
- E.g., <u>www.bicycleisntadomain.com</u> doesn't (currently) exist
 - Could return a page with search and ads on bicycles (or domain registrations?)

What can be done?

Some defenses against DNS spoofing/hijacking

What can be done?

Some defenses against DNS spoofing/hijacking

- DNSSEC: protocol to sign/verify hierarchy of DNS lookups
 - Expensive to deploy, hierarchy must support at all levels
 - APNIC DNSSEC monitor: <u>https://stats.labs.apnic.net/dnssec</u>
 - <u>https://www.internetsociety.org/resources/deploy360/2012/nist-ipv6-and-dnssec-statistics-6/</u>
- Tunneling DNS: client uses DNS via more secure protocol
 DNS over HTTPS
 - DNS over TLS

More on DNS

Structure of a DNS Message

- Same format for queries and replies
 - Query has 0 RRs in Answer/Authority/Additional
 - Reply includes question, plus has RRs
- Authority allows for delegation
- Additional for glue, other RRs client might need

Header format

- Id: match response to query; QR: 0 query/1 response
- RCODE: error code.
- AA: authoritative answer, TC: truncated,
- RD: recursion desired, RA: recursion avai

0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5
++	4	+	+	+	4		+ II	++)		+	F4		+	+	+
++		+ Opc	ode	+ 	AA	TC	+ RD	RA		Z			RCC	DE	+
++·						(2DC(DUNT							
								ראטכ							
· · ·		+				1		' ראטכ ++							' +
 +-	4	+	·+·	+			ARC(+	DUNT ++		+			+	+	 +

Other RR Types

- CNAME (canonical name): specifies an alias
- www.google.com.446199 INCNAMEwww.l.google.com.www.l.google.com.300INA72.14.204.147
- MX record: specifies servers to handle mail for a domain (the part after the @ in email addr)
 - Different for historical reasons
- SOA (start of authority)
 - Information about a DNS zone and the server responsible for the zone
- PTR (reverse lookup)
 - 7.34.148.128.in-addr.arpa. 86400 IN PTR quanto.cs.brown.edu.

dig . ns

dig +norec www.cs.brown.edu @a.root-servers.net

dig +norec www.cs.brown.edu @a.edu-servers.net

dig +norec www.cs.brown.edu @bru-ns1.brown.edu

www.cs.brown.edu. 86400 IN A 128.148.32.110

Resource Records

All DNS info represented as resource records (RR) name [ttl] [class] type rdata

- name: domain name
- TTL: time to live in seconds
- class: for extensibility, normally IN (1) "Internet"
- type: type of the record
- rdata: resource data dependent on the type

• Example RRs

www.cs.brown.edu.	86400 I	IN A	٩	128.148.32.110
cs.brown.edu.	86400 I	IN N	۱S	dns.cs.brown.edu.
cs.brown.edu.	86400 I	IN N	٧S	ns1.ucsb.edu.

DNS Example

```
$ dig cs.brown.edu @10.1.1.10
; <<>> DiG 9.10.6 <<>> cs.brown.edu @10.1.1.10
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8536
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1220
;; QUESTION SECTION:
;cs.brown.edu. IN A
;; ANSWER SECTION:
cs.brown.edu.
                       1800
                                 IN A 128.148.32.12
;; Query time: 69 msec
;; SERVER: 10.1.1.10#53(10.1.1.10)
;; WHEN: Tue Apr 19 09:03:39 EDT 2022
;; MSG SIZE rcvd: 57
```

% dig +norec cs.brown.edu @j.root-servers.net

When server doesn't know all info...

; <<>> DiG 9.10.6 <<>> +norec cs.brown.edu @j.root-servers.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61618</pre>

;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 27

;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 1232 ;; QUESTION SECTION: ;cs.brown.edu. IN A

;; AUTHORITY SECTION: edu. 172800 IN NS a.edu-servers.net. edu. 172800 IN NS b.edu-servers.net. edu. 172800 IN NS l.edu-servers.net. edu. 172800 IN NS m.edu-servers.net.

;; ADDITIONAL SECTION: a.edu-servers.net. 172800 IN A 192.5.6.30 b.edu-servers.net. 172800 IN A 192.33.14.30 c.edu-servers.net. 172800 IN A 192.26.92.30 d.edu-servers.net. 172800 IN A 192.31.80.30 e.edu-servers.net. 172800 IN A 192.12.94.30

<u>What we have</u>

<u>IP addresses</u>

- Used by routers to forward packets
- Fixed length, binary numbers
- Assigned based on <u>where host is</u> on the network
- Usually refers to <u>one host</u>

<u>Examples</u>

- 5.6.7.8
- 212.58.224.138
- 2620:6e:6000:900:c1d:c9f7:8a1c:2f48

<u>What we have</u>

<u>IP addresses</u>

- Used by routers to forward packets
- Fixed length, binary numbers
- Assigned based on <u>where host is</u> on the network
- Usually refers to <u>one host</u>

<u>Examples</u>

- 5.6.7.8
- 212.58.224.138
- 2620:6e:6000:900:c1d:c9f7:8a1c:2f48

Efficient forwarding: Human readable: Scalable for distributed services:

=> Need a new abstraction for "stuff" we are trying to access

What we want: a new abstraction for <u>names</u>

What we want: a new abstraction for <u>names</u>

Some important details

- How do local servers find root servers?
 - DNS lookup on a.root-servers.net ?
 - Servers configured with root cache file
 - Contains root name servers and their addresses

. 3600000 IN NS A.ROOT-SERVERS.NET. A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4 ...

- How do you get addresses of other name servers?
 - To obtain the address of www.cs.brown.edu, ask a.edu-servers.net, says a.rootservers.net
 - How do you find a.edu-servers.net?
 - Glue records: A records in parent zone

Other uses of DNS

- Local multicast DNS
 - Used for service discovery
 - Made popular by Apple
 - This is how you learn of different Apple TVs in the building
- Load balancing
- CDNs (more on this later)

Reliability

- Answers may contain several alternate servers
- Try alternate servers on timeout
 - Exponential backoff when retrying same server
- Use same identifier for all queries
 - Don't care which server responds, take first answer