CSCI-1680

o

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Breathe

i am a tiny cactus
and i believe

in you

you can do the ting |

Administrivia

TCP ofticially due tonight (Tuesday, Nov 21)
— Office hours 2-5pm (Me); 5-7pm (Alex); 7-9pm (Rhea)

— Like with IP: you can continue to make small bugfixes after the deadline
« OK: Fixing small bugs, README, capture files, code cleanup

* Not OK: eg. implementing sendfile/recvfile, teardown, submitting
untested code

— Grading meetings: after break

If you want to submit late
Monday 11/27 by 11:59pm EST => one day late

The final project

Out after break, handout online after class
...maybe skim it before break?

What it is
* Open-ended: build something new related to class topics

* List of ideas in document... or propose your own!

Project examples

Make your own iterative DNS resolver

Build a simple HTTP server

« Make your own web APl (more next week)

Implement Snowcast, etc. using RPCs (more next week)

Extend your IP/TCP in some way...

[These are only a few ideas!

Final project Logistics

Qut after break, document online after class
...maybe skim it before break?

Deadlines

— Team assignment form: Due Tuesday, 11/28
» Keep your current groups, or form new ones, or work solo

— Project proposal: Due Friday, 12/1
— Final submission: Due Thursday, 12/14

IPOAC

How can we improve the physical layer?

I:|I
Traditional links have fixed bandwidth H | '
o L T il 'g‘
* Media limits what frequencies can be used for signal [it
* Places upper bound on channel capacity l"»" I
v 'él,& “.

: 4 5 6 7
22 2427 2.432 2.437 2.442 2.447 2

What if we weren't constrained by the EM spectrum?

How else can we transmit data?

Network Working Group D. Waitzman
Request for Comments: 1149 BBN STC
1 April 1990

A Standard for the Transmission of IP Datagrams on Avian Carriers

Status of this Memo

This memo describes an experimental method for the encapsulation of

IP datagrams in avian carriers. This specification is primarily
useful in Metropolitan Area Networks. This is an experimental, not
recommended standard. Distribution of this memo is unlimited.

Overview and Rational

Avian carriers can provide high delay, low throughput, and low
altitude service. The connection topology is limited to a single
point-to-point path for each carrier, used with standard carriers,
but many carriers can be used without significant interference with
each other, outside of early spring. This is because of the 3D ether

IP over Avian Carriers (1 April 1990)

RFC1149: IPoAC

High delay, low throughput, low
altitude datagram service

Nearly unlimited movement in 3D
etherspace

Intrinsic collision avoidance
Typical MTU: 256 milligrams

Network Working Group D. Waitzman

Request for Comments: 1149 BBN STC
1 April 1990

A Standard for the Transmission of IP Datagrams on Avian Carriers

Status of this Memo

This memo describes an experimental method for the encapsulation of
IP datagrams in avian carriers. This specification is primaril

TAC et

PNy
)1 ovT

IPOAC: Design

9y

CCAO 70

g Petsfo ——

T 2 Vsl

IPOAC: Implementation

Proof of concept: 28 April 2001
Bergen, Norway
https://web.archive.org/web/20140215072548/http://www.blug.linux.no/rfc1149/

https://web.archive.org/web/20140215072548/http:/www.blug.linux.no/rfc1149/

IPOAC in practice

$ ping -c 9 -i 900 10.0.3.1

PING 10.0.3.1 (10.0.3.1): 56 data.bytes

64 bytes from 10.0.3.1: icmp seqgs6| ttl=255 time=6165731.1 ms
64 bytes from 10.0.3.1: icmp_seqs4|ttl=255 time=3211900.8 ms
64 bytes from 10.0.3.1: icmp_seqs2|ttl=255 time=5124922.8 ms
64 bytes from 10.0.3.1: icmp_seqsl/ ttl=255 time=6388671.9 ms

--- 10.0.3.1 ping statistics ---

9 packets transmitted, 4 packets received, 55% packet loss round-trip
min/avg/max = 3211900.8/5222806.6/6388671.9 ms

IPOAC: (more) Modern implementations

Pigeon-powered Internet takes

flight

BUSINESS

One of the Internet's

to life: transmitting n Pigeon carries data bundles faster than
Telkom

Q Stephen Shankland Staff Reporter 10 Sep 2009

Jan. 2, 2002 4:43 p.m. PT

But actually

What happens if you have a LOT of data to move into the cloud?
Example: AWS

aWS Contact Us Supportv Englishv My Accountv Signin '
5 PP 9 y g Create an AWS Account

rellnvent Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events ExploreM > Q

AWS Snow Family Overview FAQs AWS Snowcone AWS Snowball AWS Snowmobile

AWS Snow Family

Move petabytes of data to and from AWS, or process data at
the edge

Purpose-built devices to cost Field-tested for the most extreme Device options range to optimize for
effectively move petabytes of data, conditions, delivering high security space- or weight-constrained
offline. Lease a Snow device to move and ruggedization into compute and environments, portability, and

your data to the cloud. storage-compatible devices. flexible networking options.

Feature comparison matrix

AWS SNOWBALL
AWS SNOWCONE AWS SNOWBALL EDGE STORAGE OPTIMIZED EDGE COMPUTE AWS SNOWMOBILE
OPTIMIZED

Usable HDD Storage 8TB 80 TB N/A
Usable SSD Storage 14TB 1TB 28 TB No
Usable vCPUs 4 vCPUs 40 vCPUs 104 vCPUs N/A

Usable Memory 4 GB 80 GB 416 GB N/A

9in x 6in x 3in
.) 548 mm x 320 mm x o .
Device Size 548 mm x 320 mm x 501 mm 45 ft. shipping container

227 mm x 148.6 mm x 82.65 mm 501 mm
Device Weight 4.5 lbs. (2.1 kg) 49.7 lbs. (22.3 kq) 49.7 lbs. (22.3 kq) N/A
Storage Clustering No Yes, 5-10 nodes Yes, 5-10 nodes N/A
256-bit Encryption Yes Yes Yes

HIPAA Compliant Yes, eligible Yes, eligible Yes, eligible

RFC791: IPv4 Header

tottototot—t bttt ottt bttt ottt ettt bttt —t—t—+—+
|Version| IHL |Type of Service| Total Length |
tottototot—t—t ettt ot ot ottt bttt ottt bttt —t—F =+ -+ -+
| Identification |Flags | Fragment Offset |
tottmtotot—t bttt otet bttt ot ottt —t bttt —t—t—t—+—+
| Time to Live | Protocol | Header Checksum |
tettototot—t—t ettt ot ottt bttt ot ottt b=ttt —F—+—+—+
| Source Address |
e N I i S S S S
| Destination Address |
tottototot—t ettt ot ottt bttt ot ettt bttt —t—t =t -+ -+
| Data |
tettotototett—t—totot ottt ot ottt ot ettt bttt —t—t—t—+—+

The Internet Header Format [RFC-791]

|IP over Burrito Carriers

ettt otot—t—t—t ot ottt bttt ottt ottt —t =t =ttt —t—+—+
|Obvious| Onion | Jalapenos | Physical Length (mm) |
e s S S S e
| Number Written on Foil |Bean Type| Number of Beans |
s o s o T S R U N N O O s
| Given Delivery Time | Guacamole | Receipt |
ettt ototett—t—t ottt bttt ottt bt ottt b=ttt —F—+—+
Lettuce |
totot—tot—ttt—t—t ottt bttt ottt ottt bttt b b=t —t—+
Rice |

Beef |

+-
tot—tot—tot—tot—tot—tot ettt ettt ettt bttt bttt =t =t -+
tot—t—t—t—t—t—t—t—t—t—t—t ettt bttt bttt ettt —t—F—t—+—+

The Burrito Internet Header Format

April Fool's Day RFCs

April Fools' Day Request for Comments

From Wikipedia, the free encyclopedia
(Redirected from Peg DHCP)

A Request for Comments (RFC), in the context of Internet governance, is a type of publication from the Internet Engineering Task Force (IETF) and the Interng
behaviors, research, or innovations applicable to the working of the Internet and Internet-connected systems.

Almost every April Fools' Day (1 April) since 1989, the Internet RFC Editor has published one or more humorous Request for Comments (RFC) documents, fo
RFC 527 called ARPAWOCKY, a parody of Lewis Carroll's nonsense poem "Jabberwocky". The following list also includes humorous RFCs published on othe!

Contents [hide]
1 List of April Fools' RFCs
2 Other humorous RFCs
3 Non-RFC IETF humor
4 Submission of April Fools' Day RFCs
5 References
6 Further reading
7 External links

List of April Fools' RFCs [edit]

1978
M. R. Crispin (1 April 1978). TELNET RANDOMLY-LOSE option®. IETF. doi:10.17487/RFC0748 @. RFC 748 (2.
A parody of the TCP/IP documentation style. For a long time it was specially marked in the RFC index with "note date of issue".

1989

Enjoy!

https://en.wikipedia.org/wiki/April_Fools%27_Day_Request_for_Comments

Back to HTTP

X |+

C Q_ http://example.com/page.htm

Welcome!

page.html
<html>

<title>hi</title>
<hl1>Welcomel!</h1>
</html>

C

Welcome!

X |+

Q. http://example.com/page.html

GET /page.html

200 OK + (Content of page.html)

page.html

<html>
<title>hi</title>
<hl>Welcome!</h1>
</html>

Request:

GET /thing

>

~—

L U”}/ 5/[/0)@1/*’7/ ,.

Request:

GET /thing

Response:

200 OK + thing

N

/¢ﬂML;/ /ML
I

Cir— INEA
Request: GET /thing
B = >
30 Bl
Response: 200 OK + thing A WA/ }Uf
' APPLIT?

HTTP request: a way to fetch (GET) or send (POST) some object
* Doesn't need to be a web page
 Doesn't need to be from a browser

[:> Generic way to ask the server to do something => an API over the network! 1

Modern websites don't just load pages when you click links:

Every modern webpage is filled with arbitrary code, usually Javascript, which
can make more requests:

async function doRequest() {

const response = await fetch("http://example.com/thing.json");
const data = await response.json();

console.log(data);
}

S h JAKE NTTP
an make requests when.... P
» User does something (click button, scroll, ...) Kb4UC£7

* Periodic events, timers, etc

Modern websites don't just load pages when you click links:

Every modern webpage is filled with arbitrary code, usually Javascript, which
can make more requests: D

async function doRequest() {

const response = await fetch("http://example.com/thing.json");
const data = await response.json();
console.log(data);

Can make requests when....
 User does certain action
* Periodic events, timers, etc

“Arbitrary code”... from a web page?
Sound sketchy? It can be. Take CS1660.

When does this not work?

Request: GET /thing

Response: 200 OK + thing

~z
S—

Request, response model doesn’t always fit...

=> Server may need to send data asynchronously!

But it's TCP right?

Request: GET /thing

Response: 200 OK + thing

[TCP is bidirectional, but the HTTP protocol is not.

What can be done? Zovren
S WA

Do |

/

l”

Can the server connect to the client? l

4 I
Almost always no.

= NAL _Firewalls, security policies are in the way

= Don’t want to allow browser to open a listen port => security risk!
N /

How to wait for the server’s response?
One way: Polling

for {
resp, err := doRequest(“http://example.com/do-you-have-my-data”)
if resp != nil {.
doThing(resp)
}

time.Sleep(l * time.Second)

— TN 2 ke P

— LOTC oF tyrey REG Vetr L
N ‘}QEkAVéD£74444£7a%ggA(

How to wait for the server’s response?

Another way: long polling ‘
= Require server to hold connection open with long timeout, -
respond when data is ready /

for {
resp, err := doRequest(“http://example.com/do-you-have-my-data”)
// » Assume this will block for very long time

doThing(resp)

;; C L1 /waﬂ'/f AAL [106

KEQUST
= Joes ttns on g,

Another way: websockets (RFC6455, 2011)
__——

Persistent, bidirectional transport layer between browser and server
=> Can start with an HTTP request!

GET /chat

Host: javascript.info

Origin: https://javascript.info

Connection: Upgrade

Upgrade: websocket

Sec-WebSocket-Key: Iv8io/9s+1YFgZWcXczP8Q==
Sec-WebSocket-Version: 13

L7 LIVEE Yoi) CAME FI0inseromAl
Spphprre S LgE A #TP Cok s

CIEBSockerc W CLET — RS pnyn

EYABPLE GET JCHAT
—_ | UPGRADE - L
—=Z
MESSAES

ok Swnthiwe

Phorocow e ;ﬁwﬁb’/
o /r 01
Aol [l FourpT,

By7zs AE
(/WS /Mﬂj > uLime I/Ef-

- Coct
A

} A
How it works:
- Client starts a TCP connection to webserver and sends a normal HTTP request
- Header in request asks to “upgrade” to websocket connection
- Server switches protocol: client and server can now use the same TCP
connection to communicate using websocket protocol
=> Can send arbitrary bytes => not limited to HTTP format
=> Bidirectional, like a standard TCP socket => not limited to request/response
semantics!!
=> This means the client can WAIT for packet sfrom the server (think like
snowcast!), which is what we want!

A

Q: why bother starting with an HTTP request?
- Servers already support HTTP: the idea is to extend the protocol with new functionality
without altering how servers normally do things
- Browsers don’t let website code make arbitrary connections on the client:

=> Generally, can only make HTTP requests (and with many restrictions), so a
websocket connection mostly fits within the existing model for how browsers operate (few
new security risks)
- Most firewalls/NATs/etc are designed to permit web traffic: don’t need to rethink how
these work, or invent new security policies to support websockets!

Speaking of chat...
Old IM applications (AIM, ICQ, MSN); one TCP connection to server, can AEMistersmi... =] E3
only receive message when online (not so different from Snowcast) by AM _Beople Help

= SydneyAWeb : DevinJacks - Instant Message E]

File Edit Insert People SydneyAWeb's Warning Level: 0%

L. 1 N &

WEEKDAYS, 3 PM. ET
CLICK HERE

Online | List Setup |

= SydneyAWeb: Hi, you there?
* | Devindacks: Want to meet later?
SydneyAWeh: Sure, what time?
% | DevinJacks: 9:00?
4 SydneyAWeh: Sounds good. See you then.

« Co-Workers (0/0'

A 9 A®M B 7 U k@@ ® o° E] v Offline (7/7)

Free Icons & %\ @ @

More Warn Block Expressions

(B £} 2

[E].. AOL5338 +0.28 INI
. . . ices delayed at least 15 minutes.
Old chat/IM applications: one TCP connection

=> Can we still do that?

Why doesn’t this work anymore?

Smartphones!
- Maintaining a persistent connection uses battery! Want to avoid this as
much as possible
=> Android/iOS halts most apps when phone goes to sleep, unless
special permissions granted => Can’t maintain a persistent connection!

Therefore...
=> MUST be able to receive messages when offline => server needs to
store messages for later retrieval
(not a new concept, but was new to chat apps way back then)
=> Need to rethink how we send messages asynchronously!

Push notifications: service provided by OS to handle pushing events for an
application
- OS (i0S, Android) maintains a push notification service
Initial setup
App developer registers application wish push service
Each user’s device is registered with service, also registered with app after

user installs it
% st

ﬁ ﬁ
Seb Pisy) (EMWILE
. ; oMcE
pLV/LC Riaa

ngu WL

Device maintains one persistent connection with push service (could
be its own TCP connection, one of the web methods we’ve been
talking about, etc.)

When an app wants to send a notification:

3. Application tells the push notification service (has an API for what
messages can look like, how long they can be, etc.)

4. When device wakes up, it checks in with the push service and
loads any notifications

Why is this important?

- Each app doesn’t need to maintain its own push service (hard,

expensive)

- Using only one push service means the device needs to do less

work when it wakes up (and the OS can control when it wakes up)
=> Preserves battery for mobile devices!!

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '*]'.

GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 24 Mar 2011 12:58:46 GMT

Server: Apache/2.2.9 (Debian) mod ss1/2.2.9 OpenSSL/0.9.8¢g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT

ETag: "840a88b-236c-49f3992853bcO"

Accept-Ranges: bytes

Content-Length: 9068

Vary: Accept-Encoding

Connection: close

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtmll-strict.dtd">

Example: Github public API

curl https://api.github.com/users/ndemarinis

"login": "ndemarinis",

"id": 1191319,

"node_id": "MDQ6VXN1lcjExXOTEzMTk=",

"avatar_url": "https://avatars.githubusercontent.com/u/1191319?v=4",

"gravatar_id": ,

"url": "https://api.github.com/users/ndemarinis"”,
"type": "User",

"site admin": false,

"name": "Nick DeMarinis",

"blog": "https://vty.sh",

"twitter_username": null,

"public_repos": 10,

New Tab

C

Welcome!

D

NS
example.com? J

GET /page.html

200 OK + (Content of page.html)

x|+

Q_ http://example.com/page.html

page.html
<html>

<title>hi</title>
<hl1>Welcome!</h1>
</html>

Server returns response (in this case, with HTML)

