
CSCI-1680
DNS

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

too

Breathe

Administrivia

TCP officially due tonight (Tuesday, Nov 21)
– Office hours 2-5pm (Me); 5-7pm (Alex); 7-9pm (Rhea)

– Like with IP: you can continue to make small bugfixes after the deadline
• OK: Fixing small bugs, README, capture files, code cleanup

• Not OK: eg. implementing sendfile/recvfile, teardown, submitting
untested code

– Grading meetings: after break

If you want to submit late
Monday 11/27 by 11:59pm EST => one day late

The final project

Out after break, handout online after class
…maybe skim it before break?

What it is
• Open-ended: build something new related to class topics
• List of ideas in document… or propose your own!

Project examples

• Make your own iterative DNS resolver

• Build a simple HTTP server

• Make your own web API (more next week)

• Implement Snowcast, etc. using RPCs (more next week)

• Extend your IP/TCP in some way…

These are only a few ideas!

Final project Logistics

Out after break, document online after class
…maybe skim it before break?

Deadlines
– Team assignment form: Due Tuesday, 11/28
• Keep your current groups, or form new ones, or work solo

– Project proposal: Due Friday, 12/1
– Final submission: Due Thursday, 12/14

IPoAC

How can we improve the physical layer?

Traditional links have fixed bandwidth
• Media limits what frequencies can be used for signal
• Places upper bound on channel capacity

What if we weren’t constrained by the EM spectrum?

How else can we transmit data?

RFC1149: IPoAC

IP over Avian Carriers (1 April 1990)
• High delay, low throughput, low

altitude datagram service
• Nearly unlimited movement in 3D

etherspace
• Intrinsic collision avoidance
• Typical MTU: 256 milligrams

IPoAC: Design

PACKET Ocr

9
PRINT
ITOUT SCAN IT IN

H Y
BPlaton PIGEON

IPoAC: Implementation

Proof of concept: 28 April 2001
Bergen, Norway
https://web.archive.org/web/20140215072548/http://www.blug.linux.no/rfc1149/

https://web.archive.org/web/20140215072548/http:/www.blug.linux.no/rfc1149/

IPoAC in practice

$ ping -c 9 -i 900 10.0.3.1
PING 10.0.3.1 (10.0.3.1): 56 data bytes
64 bytes from 10.0.3.1: icmp_seq=0 ttl=255 time=6165731.1 ms
64 bytes from 10.0.3.1: icmp_seq=4 ttl=255 time=3211900.8 ms
64 bytes from 10.0.3.1: icmp_seq=2 ttl=255 time=5124922.8 ms
64 bytes from 10.0.3.1: icmp_seq=1 ttl=255 time=6388671.9 ms

--- 10.0.3.1 ping statistics ---
9 packets transmitted, 4 packets received, 55% packet loss round-trip
min/avg/max = 3211900.8/5222806.6/6388671.9 ms

IPoAC: (more) Modern implementations

Today: microSD card: ~250mg, 1TB

+ = ???

But actually

What happens if you have a LOT of data to move into the cloud?
Example: AWS

I

RFC791: IPv4 Header

IP over Burrito Carriers

April Fool’s Day RFCs

https://en.wikipedia.org/wiki/April_Fools%27_Day_Request_for_Comments Enjoy!

https://en.wikipedia.org/wiki/April_Fools%27_Day_Request_for_Comments

Back to HTTP

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser

Welcome!

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser

GET /page.html

200 OK + (Content of page.html)

Welcome!

HTTP serverClient

Request: GET /thing

URLENDPOINT

HTTP serverClient

Request: GET /thing

Response: 200 OK + thing

HTML IMG
SON

HTTP serverClient

Request: GET /thing

Response: 200 OK + thing

ÞGeneric way to ask the server to do something => an API over the network!

HTTP request: a way to fetch (GET) or send (POST) some object
• Doesn’t need to be a web page
• Doesn’t need to be from a browser

GET INFO
a

AWAY
TOBUILD

APPLICATIONS

I

Modern websites don’t just load pages when you click links:

Every modern webpage is filled with arbitrary code, usually Javascript, which
can make more requests:

async function doRequest() {
 const response = await fetch("http://example.com/thing.json");
 const data = await response.json();
 console.log(data);
}

Can make requests when….
• User does something (click button, scroll, ...)
• Periodic events, timers, etc
• …

MAKE HTTP
REQUEST

Modern websites don’t just load pages when you click links:

Every modern webpage is filled with arbitrary code, usually Javascript, which
can make more requests:

async function doRequest() {
 const response = await fetch("http://example.com/thing.json");
 const data = await response.json();
 console.log(data);
}

Can make requests when….
• User does certain action
• Periodic events, timers, etc
• …

“Arbitrary code”… from a web page?
Sound sketchy? It can be. Take CS1660.

When does this not work?

HTTP
server

Browser

Request: GET /thing

Response: 200 OK + thing

Request, response model doesn’t always fit…

=> Server may need to send data asynchronously!

I

But it’s TCP right?

HTTP
server

Browser

Request: GET /thing

Response: 200 OK + thing

TCP is bidirectional, but the HTTP protocol is not.

WebserverBrowser

What can be done?

Can the server connect to the client?

Almost always no.
ÞNAT, Firewalls, security policies are in the way
ÞDon’t want to allow browser to open a listen port => security risk!

RITA

How to wait for the server’s response?

for {
 resp, err := doRequest(“http://example.com/do-you-have-my-data”)
 if resp != nil {.
 doThing(resp)
 }
 time.Sleep(1 * time.Second)
}

One way: Polling

TIME TO WAKE UP
LOTS OF EXTRA REQUESTS
ON SERVERNETWORK

How to wait for the server’s response?

for {
 resp, err := doRequest(“http://example.com/do-you-have-my-data”)
 // ^ Assume this will block for very long time

 doThing(resp)
}

Another way: long polling
ÞRequire server to hold connection open with long timeout,
respond when data is ready

Fit

CLIENTALWAYSHAS PENDING

REQUEST
MORE Wolters on Staron

Another way: websockets (RFC6455, 2011)

Persistent, bidirectional transport layer between browser and server
=> Can start with an HTTP request!

GET /chat
Host: javascript.info
Origin: https://javascript.info
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Key: Iv8io/9s+lYFgZWcXczP8Q==
Sec-WebSocket-Version: 13
1 a

GIVES YOU SAME BIDIRECTIONAL
SEMANTICS LIKE A TCP SOCKET

ÉÉÉ.fi iiiYPROTOCOL

ARBITRARY IN
DIFFERENT

YI
ÉÉÉÉ

How it works:

 - Client starts a TCP connection to webserver and sends a normal HTTP request

 - Header in request asks to “upgrade” to websocket connection

 - Server switches protocol: client and server can now use the same TCP
connection to communicate using websocket protocol

 => Can send arbitrary bytes => not limited to HTTP format

 => Bidirectional, like a standard TCP socket => not limited to request/response
semantics!!

 => This means the client can WAIT for packet sfrom the server (think like
snowcast!), which is what we want!

Q: why bother starting with an HTTP request?

 - Servers already support HTTP: the idea is to extend the protocol with new functionality
without altering how servers normally do things

 - Browsers don’t let website code make arbitrary connections on the client:

 => Generally, can only make HTTP requests (and with many restrictions), so a
websocket connection mostly fits within the existing model for how browsers operate (few
new security risks)

 - Most firewalls/NATs/etc are designed to permit web traffic: don’t need to rethink how
these work, or invent new security policies to support websockets!

Speaking of chat…

Old chat/IM applications: one TCP connection
=> Can we still do that?

I

Old IM applications (AIM, ICQ, MSN); one TCP connection to server, can
only receive message when online (not so different from Snowcast)

Why doesn’t this work anymore?

Smartphones!

 - Maintaining a persistent connection uses battery! Want to avoid this as
much as possible

 => Android/iOS halts most apps when phone goes to sleep, unless
special permissions granted => Can’t maintain a persistent connection!

Therefore…

 => MUST be able to receive messages when offline => server needs to
store messages for later retrieval

 (not a new concept, but was new to chat apps way back then)

 => Need to rethink how we send messages asynchronously!

8

ii

Daily IF
PERFDKALLY

LOAD
NOTIFICATIONS

Push notifications: service provided by OS to handle pushing events for an
application

 - OS (iOS, Android) maintains a push notification service

Initial setup

 1. App developer registers application wish push service

 2. Each user’s device is registered with service, also registered with app after
user installs it

Device maintains one persistent connection with push service (could
be its own TCP connection, one of the web methods we’ve been
talking about, etc.)

When an app wants to send a notification:

3. Application tells the push notification service (has an API for what
messages can look like, how long they can be, etc.)

4. When device wakes up, it checks in with the push service and
loads any notifications

Why is this important?

 - Each app doesn’t need to maintain its own push service (hard,
expensive)

 - Using only one push service means the device needs to do less
work when it wakes up (and the OS can control when it wakes up)

 => Preserves battery for mobile devices!!

HTTP

> telnet www.cs.brown.edu 80
Trying 128.148.32.110...
Connected to www.cs.brown.edu.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 24 Mar 2011 12:58:46 GMT
Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9 OpenSSL/0.9.8g
Last-Modified: Thu, 24 Mar 2011 12:25:27 GMT
ETag: "840a88b-236c-49f3992853bc0"
Accept-Ranges: bytes
Content-Length: 9068
Vary: Accept-Encoding
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en”>

Example: Github public API
$ curl https://api.github.com/users/ndemarinis
{
 "login": "ndemarinis",
 "id": 1191319,
 "node_id": "MDQ6VXNlcjExOTEzMTk=",
 "avatar_url": "https://avatars.githubusercontent.com/u/1191319?v=4",
 "gravatar_id": "",
 "url": "https://api.github.com/users/ndemarinis",
 "type": "User",
 "site_admin": false,
 "name": "Nick DeMarinis",
 "blog": "https://vty.sh",
 "twitter_username": null,
 "public_repos": 10,
 . . .
}

Webserver
example.com

page.html
<html>
<title>hi</title>
<h1>Welcome!</h1>
</html>

Web browser DNS

example.com?

GET /page.html

200 OK + (Content of page.html)

Server returns response (in this case, with HTML)

Welcome!

