CSCI-1680
APls

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

Final project is online

* Group registration form: due tomorrow (11/29) by Spm EST
* Brief proposal: due Friday 1mdays permitted!!

— We will review all of these over the weekend

* HWA4 (probably last HW): out this week, due next week

e TCP grading: end of this week, early next week
— Look for email today/tomorrow

Project examples

« Make your own iterative DNS resolver

Build a simple HTTP server

Make your own web API| for something

= —_—

=
Implement Snowcast, etc. using RPCs (more next week)

’/@_
Extend your IP/TCP in some way...

[These are only a few ideas!

Request: GET /thing

Response: 200 OK + thing

HTTP request: a way to fetch (GET) or send (POST) some object
* Doesn't need to be a web page
 Doesn't need to be from a browser

[:> Generic way to ask the server to do something => an API over the network! 1

How do programs communicate?

Need a protocol! We've seen lots of examples....

IP, TCP, ICMP, RIP, OSPF, BGP, DNS, HTTP, Snowcast ...
EE——

LY, U NP €
_Acte Gapevors
. WWIE MACAWE
— IMPL Aepol77C /W[Wé%/\@/u?”
— WL IALT.

p—

Requirements for protocols

Data representation (headers, packet formats) Semantics (when to send each message,
how to handle errors)

From: draft-ietf-tcpm-rfc793bis-28 Internet Standard

0 4 8 16
| ldentfication __[riess| Fromentofiset

Internet Engineering Task Force (IETF) W. Eddy, Ed.
STD: 7 MTI Systems
Request for Comments: 9293 August 2022
Obsoletes: 793, 879, 2873, 6093, 6429, 6528,

6691
Updates: 1011, 1122, 5961
Category: Standards Track
ISSN: 2070-1721

Transmission Control Protocol (TCP)

Abstract

0 31

EAT T —

This document specifies the Transmission Control Protocol (TCP). TCP

is an important transport-layer protocol in the Internet protocol

stack, and it has continuously evolved over decades of use and growth
o o o 0 e 1 1 bee

Network Working Group D. Waitzman
Request for Comments: 1149 BBN STC
1 April 1990

A Standard for the Transmission of IP Datagrams on Avian Carriers

Status of this Memo
This memo describes an experimental method for the encapsulation of

IP datagrams in avian carriers. This specification is primarily
an experimental, not

= Must be specific enough to interoperate o'ie unLiniced.
(support multiple architectures, byte orders, languages, locales ...)

bughput, and low

When you made a custom protocol...

Client to Server Commands

The client sends the server messages called commands. There are two commands the
client can send the server, in the following format:

// Guessing game example (lecture 3!!)
Hello
uints commandType = @ type struct GuessMessage {
uint16 udpPort MessageType uint8

A Number uintlé6

uint8 commandType = 1 }
uintl6é stationNumber

func (m *GuessMessage) Marshal() []byte {

A uint8 is an unsigned 8-bit integer; a uint16 is an buf := new(bytes . Buffer‘)
programs MUST use network byte order. So, to send
send exactly three bytes to the server: one for the co err .= blnar‘y . Wr‘lte(buf, blnar‘y . BlgEndlan) m. MessageType)
if err != nil {
err = binary.Write(buf, binary.BigEndian, m.Number)
if err != nil {
1

All the protocols you've made so far (+IP, TCP, RIP, ...):
manually packing bytes into buffers
g!.

All the protocols you've been writing so far: manually loading bytes
into buffers

This is useful for learning:
* How protocols work under the hood
« How fundamental Internet protocols actually work

But if your job is to build applications, is this what you should be doing?

Almost certainly not.

How SHOULD you write a protocol outside this class?

And why?

* At least, how to start thinking about it

Typical application goal: make an API for something

What you have: some servers/services that live somewhere in the cloud
=> Might be distributed, might not

Want: end-user to be able to use your app
* Read data

* Write/upload data

do_thing()

Response/error

ST

-4

do_thing()

Response/error

Challenges/Requirements

« Heterogeneous devices (desktop/mobile, different OSes)
« Application will change

* Number of user devices will scale

 Number of services/services will scale too!

do_thing()

Response/error

Would like to have a generic API for interacting with application services
=> Flexible to changes
=> Easy to scale

B

Why doesn’t this work? ~UW/”")7/!D/W¢ Lo/ U
Client to Server Commands / pO)J % L\JAM 7‘_& CA/L’(
. —
The client sends the server messages called commands. There are two commands the %@V)’ F(.?/Z/l)ﬂ J

client can send the server, in the following format:

// Guessing game example (lecture 3!!)
Hello
uints commandType = @ type struct GuessMessage {
uint16 udpPort MessageType uint8

A Number uintlé6

uint8 commandType = 1 }
uintl6é stationNumber

func (m *GuessMessage) Marshal() []byte {

A uint8 is an unsigned 8-bit integer; a uint16 is an buf := new(bytes . Buffer‘)

programs MUST use network byte order. So, to send

send exactly three bytes to the server: one for the co err .= blnar‘y . Wr‘lte(buf, blnar‘y . BlgEndlan) m. MessageType)
if err != nil {
err = binary.Write(buf, binary.BigEndian, m.Number)
if err != nil {

return buf.Bytes()

do_thing()

Response/error

Usually, build on existing tools that can define the API for you
=> Creates endpoints where you write code to perform actions

=> Don’t need to worry about serializing/deserializing messages

=> Build on existing protocols to handle scaling
(eg. HTTP proxies, load balancing, caching, etc.)

Concepts: endpoints U\WW
N
(/L”’J‘/(S pa__m A
é‘;“///ﬁ{ DB UM
_ | (
Pa— |
/ —
<
N

7 HAPBS Coopyrt

GET /component/do _some_action

200 OK + (Data)

>

AJTTP Q- copE

Endpoints at various URLs
Usually: Request data with GET, upload with POST

N T ATl Rsfpomst:

Client authenticates/passes inputs data with headers, cookies
Response normally JSON, XML, or other self-describing format

c Wy 7 o
/ 7»4:1://#/4&&7;5 PR 5@2 NG

curl -X GET 'https://www.gradescope.com/courses/567871/memberships.csv’
—— = -t
,* -H 'User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.15; rv:109.0) Gecko/20100101

Firefox/118.0°
-H '"Accept: text/html,application/xhtml+xml,application/xml;q=0.9,1image/avif,image/webp,*/*;q=0.8"
-H 'Accept-LangtageT en-US,en;q=0.5"
/ -H 'Accept-Encoding: gzip, deflate, br’
-H 'Referer: https://www.gradescope.com/courses/567871/memberships’
-H 'DNT: 1°
-H 'Connection: keep-alive’
/g;ii 'Cookie: remember_me=XXXXXXXXXXXXXXXX; __stripe_mid=XXXXXXXXXXXXX;
S

igned_token=XXXXXXXXXXXXXXX; _gradescope_session=XXXXXX[. . .]IXXXXXXXX; __stripe_sid=XXXXXXXXXXX’
-H 'Upgrade-Insecure-Requests: 1°

-H 'Sec-Fetch-Dest: document’

-H 'Sec-Fetch-Mode: navigate’

-H 'Sec-Fetch-Site: same-origin’

-H 'Sec-Fetch-User: ?1'

\
AEADEA S

Example: docs for Github’s REST API

Here’s one method for listing the repositories in a github org

For more: https://docs.github.com/en/rest

11:33 Tue Nov 28

O GitHub Docs

= REST API |/ Repositories / Repositories

Version: Free, Pro, & Team ~

List organization repositories ¢
@ Works with GitHub Apps

Lists repositories for the specified organization.

Note: In order to see the security_and_analysis block for a repository
you must have admin permissions for the repository or be an owner or
security manager for the organization that owns the repository. For more
information, see "Managing_security managers in your organization."

Parameters for "List organization repositories"

Headers —

accept string

Setting to application/vnd.github+json is recommended.

Path parameters

org string Required

The organization name. The name is not case sensitive.

Query parameters

= 79% @m)

Search GitHub Docs ©) () Sign up

Queny Uk

Code samples for "List organizafion repositories"

@ /orgs/{org}/repos

cURL JavaScript GitHub CLI Ll.j

curl -L \
—-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer <YOUR-TOKEN>" \
—-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/orgs/ORG/repos

Response

Example response Response schema

Status: 200

"id": 1296269,
"node_id": "MDEw01J1cG9zaXRvcnkxMjk2MjY5",

"name": "Hello-World",
"full_name": "octocat/Hello-World", °

"owner": {

1

nag tOCAT ",

é PG UL

JPY 7{

Example: Github public API

curl https://api.github.com/users/ndemarinis

"login": "ndemarinis",

"id": 1191319,

"node_id": "MDQ6VXN1lcjExXOTEzMTk=",

"avatar_url": "https://avatars.githubusercontent.com/u/1191319?v=4",

"gravatar_id": ,

"url": "https://api.github.com/users/ndemarinis"”,
"type": "User",

"site admin": false,

"name": "Nick DeMarinis",

"blog": "https://vty.sh",

"twitter_username": null,

"public_repos": 10,

Why is this useful?

« HTTP is ubiquitous

* Lots of existing tools to scale HTTP
— Cookies etc. for user authentication
— Proxies/load balancers

Why use JSON/etc vs. a binary encoding?

// Here's an example JSON response from the Github API when querying for info

// about a repo (eg. GET https://api.github.com/repositories/org/something

// Q: Why bother using JSON when we could use a binary format? A binary format
// would use so much less space!

/1
/1
/1
/1

- If we had a binary format, both sides would need to
know how the data is organized
=> This is a "Self-describing format" (eg. JSON, YAML, XML, ...)
- need a lot less info up front on each device using it

// - Human-readable
// - Easy to use by web tools (JSON works well with Javascript)
// - Can leverage web caching, proxies, load-balancers, etc.

/1
[

"id": 1296269,
"“node_id": "MDEwOlJ1lcG9zaXRvcnkxMjk2MjY5",
"name": "Hello-World",
"full_name": "octocat/Hello-World",
"owner": {
"login": "octocat",
“id": 1,
"node_id": "MDQ6VXNlcjE=",
"avatar_url": "https://github.com/images/error/octocat_happy.gif",
"gravatar_id": "",
"url": "https://api.github.com/users/octocat”,
"html_url": "https://github.com/octocat”,
"followers_url": "https://api.github.com/users/octocat/followers",
"following_url":

"https://api.github.com/users/octocat/following{/other_user}",

"gists_url": "https://api.github.com/users/octocat/gists{/gist_id}",
"starred_url":

"https://api.github.com/users/octocat/starred{/owner}{/repo}",

"subscriptions_url": "https://api.github.com/users/octocat/subscriptions"”,
"organizations_url": "https://api.github.com/users/octocat/orgs",
"repos_url": "https://api.github.com/users/octocat/repos",

"events_url": "https://api.github.com/users/octocat/events{/privacy}",

"received_events_url":

"https://api.github.com/users/octocat/received_events",|Note: these are

"type": "User", other API endpoints!
"site_admin": false => a form of
}, indirection, refers
"private": false, to other places we

"html_url": "https://github.com/octocat/Hello-World'¢an query for even
more info!

"labels_url":
"https://api.github.com/repos/octocat/Hello-World/labels{/name}",

"languages_url":
"https://api.github.com/repos/octocat/Hello-World/languages",

"merges_url": "https://api.github.com/repos/octocat/Hello-World/merges",

"milestones_url":
"https://api.github.com/repos/octocat/Hello-World/milestones{/number}",

"notifications_url":
"https://api.github.com/repos/octocat/Hello-World/notifications{?since,all, partic
ipating}",

"pulls_url":
"https://api.github.com/repos/octocat/Hello-World/pulls{/number}",

"releases_url":
"https://api.github.com/repos/octocat/Hello-World/releases{/id}",

"ssh_url": "git@github.com:octocat/Hello-World.git",

"stargazers_url":
"https://api.github.com/repos/octocat/Hello-World/stargazers",

"statuses_url":
"https://api.github.com/repos/octocat/Hello-World/statuses/{sha}",

"subscribers_url":
"https://api.github.com/repos/octocat/Hello-World/subscribers",

"subscription_url":
"https://api.github.com/repos/octocat/Hello-World/subscription”,

"tags_url": "https://api.github.com/repos/octocat/Hello-World/tags",

“teams_url": "https://api.github.com/repos/octocat/Hello-World/teams",

“trees_url":
"https://api.github.com/repos/octocat/Hello-World/git/trees{/sha}",

"“clone_url": "https://github.com/octocat/Hello-World.git",

"mirror_url": "git:git.example.com/octocat/Hello-World",

"hooks_url": "https://api.github.com/repos/octocat/Hello-World/hooks",

"svn_url": "https://svn.github.com/octocat/Hello-World",

"homepage": "https://github.com”,

"language": null,

"forks_count": 9,

"stargazers_count": 80, /j@')/ \)Ufj/—g/
"watchers_count": 80, 6\ -
"size": 108, £?77Z1A)
"default_branch": "master",
"open_issues_count": 0,
"is_template": false,
"topics": [

"octocat",

"atom",

"electron",

api
1,

"has_issues": true,

"has_projects": true,

"has_wiki": true,

"has_pages": false,
"has_downloads": true,
"has_discussions": false,
"archived": false,

"disabled": false,

"visibility": "public",
"pushed_at": "2011-01-26T19:06:43Z"

"permissions”: {
"admin": false,
"push": false,
"pull”: true
}
"security_and_analysis": {
"advanced_security": {

"status": "enabled"
}
"secret_scanning": {
"status": "enabled"
}

"secret_scanning_push_protection”
"status": "disabled"

o FAESTAMP

"created_at": "2011-01-26T19:01:12Z2",
"updated_at": "2011-01-26T19:14:43Z2",

HAY ST
Neep £ XRA
Lotk 10 PRz 74

What if you need more flexibility?

RPC (Remote procedure call) fMUd]
- Basically, make a function call CLLNT' ;Clmﬂ"
happen over the network in some way £]mﬂm7’ﬁ%m()

— Defining how the data should be
formatted /ﬁMM/)

=> Could be a custom binary format, —
could still be JSON,

: £
- Semantics for messages ﬁlﬁﬂg{
- What happens when there’s an - _ 7
error? (timeout, retry, ch.) &~ - -
- one request => multiple responses, | /-
or vice versa

- Could be blocking/non-blocking

=> More flexibility vs. HTTP since not
constrained to HTTP’'s request/response
semantics

Imagine Snowcast but after abstracting
away abstracting away the logic for when
to send and how to wait for snowcast
message, handle timeouts

Lots of examples of RPC frameworks:
- RPC (Network file system (NFS)
- gRPC: Google’s RPC framework
- Apache thrift
- Java remote methods

In general, an RPC framework provides the following:
- A way to define messages you want to send/receive
- Semantics for how they work (sync/async, one-to-many, etc)
- A way to describe the data format

=> Provides library to use in your implementation:

=> Client: generates “stubs” where you can call functions in
your code, serializes request + args, which go to network

=>

Callee
(server)

Arguments l 7\ Arguments

Client

seab | CAn) AL ZfT10 /
Request Reply Mﬂ YLy y Request

RPC 4 E07E -

protocol protocol

<

Stub Functions

Local stub functions at client and server give appearance of a local function
call
client stub

— marshalls parameters -> sends to server -> waits

— unmarshalls results -> returns to client

server stub

— creates socket/ports and accepts connections
— receives message from client stub -> unmarshalls parameters -> calls server function

— marshalls results -> sends results to client stub

gRPC

Apache Thrift
JSON-RPC
XML-RPC, SOAP

Some examples

Alternative to self-describing data
(JSON, XML, YAML, etc.) is to pre-
define the schema for the data in a way
that the framework can use

IDL (Interface Description Language) :
=> Specify precisely what you want
the data format to look like
=> Framework generates code that
does the serialization (think: header
files, class/struct defs)

Gives you: basic integer types,
arrays, maps, enums, string, etc.

IDL provides:

=> Serialization for these basic
types, code generation to stitch this
together to serialize data structures

Example: gRPC

 |IDL-based, defined by Google

— Protocol Buffers as IDL

» User specities services, calls

— Single and streaming calls

— Support for timeouts,
cancellations, etc

 Transport: based on HTTP/2

I

service HelloService { k{/
rpc_SayHello (HelloRequest)
returns (HelloResponse);

}

Méé&gge HelloRequest {
string greeting = 1;

}

message HelloResponse {
string reply = 1;

}

gRPC

« Generates stubs in many languages
— C/C++, C#, Node.js, PHP, Ruby, Python, Go, Java
— These are interoperable

* Transport is http/2

Protocol Buffers (€6 morss)

 Defined by Google, released to the public
— Widely used internally and externally
— Supports common types, service definitions

— Natively generates C++/Java/Python/Go code
« Over 20 other supported by third parties

— Efficient binary encoding, readable text encoding
* Performance

— 3 to 10 times smaller than XML

— 20 to 100 times faster to process

message Student {

Protocol Buffers Example (for a file) required String name = 1;

students.txt

required int32 credits = 2;

Student s;

s.set_name(“Jane”);

s.set _credits(20);

fstream output(“students.txt” , ios:out | ios:binary);
s.SerializeToOstream(&output);

Student s;
fstream input(“students.txt” , ios:in ios:binary

)5

s.ParseFromIstream();

Conclusions

* Unless you really want to optimize your protocol for performance, use an IDL

 Parsing code is easy to get (slightly) wrong, hard to make fast—only want to
do this once!

* Which one should you use?

LXTEN Caret
Ve 72 LM

Which data types?

« Basic types

— Integers, floating point, characters

— Some issues: endianness (ntohs, htons), character encoding, IEEE 754
* Flat types

— Strings, structures, arrays

— Some issues: packing of structures, order, variable length
« Complex types

— Pointers! Must flatten, or serialize data structures

protobuf: Binary Encoding

Variable-length integers

— 7 bits out of 8 to encode integers

— Msb: more bits to come

— Multi-byte integers: least significant group first
Signed integers: zig-zag encoding, then varint

— 0:0, -1:1, 1:2, -2:3, 2:4, ...

— Advantage: smaller when encoded with varint
General:

— Field number, field type (tag), value
Strings:

— Varint length, unicode representation

Apache Thrift

Originally developed by Facebook
Used heavily internally

Supports (at least): C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#,
Cocoa, Smalltalk, and Ocaml

Types: basic types, list, set, map, exceptions
Versioning support

Many encodings (protocols) supported
— Efficient binary, json encodings

