
CSCI-1680
APIs

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

Final project is online
• Group registration form: due tomorrow (11/29) by 5pm EST
• Brief proposal: due Friday 12/1, no late days permitted!!

– We will review all of these over the weekend

• HW4 (probably last HW): out this week, due next week

• TCP grading: end of this week, early next week
– Look for email today/tomorrow

Project examples

• Make your own iterative DNS resolver

• Build a simple HTTP server

• Make your own web API for something

• Implement Snowcast, etc. using RPCs (more next week)

• Extend your IP/TCP in some way…

These are only a few ideas!

HTTP serverClient

Request: GET /thing

Response: 200 OK + thing

ÞGeneric way to ask the server to do something => an API over the network!

HTTP request: a way to fetch (GET) or send (POST) some object
• Doesn’t need to be a web page
• Doesn’t need to be from a browser

How do programs communicate?

Need a protocol! We’ve seen lots of examples….
IP, TCP, ICMP, RIP, OSPF, BGP, DNS, HTTP, Snowcast ...

ppps

PACKET STRUCTURE

STATE MACHINE

IMPL AGNOSTIC INEROPEHABILITY

INTERFACE

Requirements for protocols

Data representation (headers, packet formats) Semantics (when to send each message,
 how to handle errors)

Þ Must be specific enough to interoperate
(support multiple architectures, byte orders, languages, locales …)

When you made a custom protocol…

// Guessing game example (lecture 3!!)
type struct GuessMessage {
 MessageType uint8
 Number uint16
}

func (m *GuessMessage) Marshal() []byte {
 buf := new(bytes.Buffer)
 err := binary.Write(buf, binary.BigEndian, m.MessageType)
 if err != nil {
 . . .
 }

 err = binary.Write(buf, binary.BigEndian, m.Number)
 if err != nil {
 . . .
 }
 return buf.Bytes()
}

All the protocols you’ve made so far (+IP, TCP, RIP, …):
 manually packing bytes into buffers

All the protocols you’ve been writing so far: manually loading bytes
into buffers

This is useful for learning:
• How protocols work under the hood
• How fundamental Internet protocols actually work

But if your job is to build applications, is this what you should be doing?

Almost certainly not.

How SHOULD you write a protocol outside this class?

And why?

* At least, how to start thinking about it

Typical application goal: make an API for something

Your App

What you have: some servers/services that live somewhere in the cloud
 => Might be distributed, might not

Want: end-user to be able to use your app
• Read data
• Write/upload data

Client
do_thing()

Response/error

SYNCMASINO

Your App

Challenges/Requirements
• Heterogeneous devices (desktop/mobile, different OSes)
• Application will change
• Number of user devices will scale
• Number of services/services will scale too!

Client
do_thing()

Response/error

Your App

Would like to have a generic API for interacting with application services
 => Flexible to changes
 => Easy to scale
 =>

Client
do_thing()

Response/error API

Why doesn’t this work?

// Guessing game example (lecture 3!!)
type struct GuessMessage {
 MessageType uint8
 Number uint16
}

func (m *GuessMessage) Marshal() []byte {
 buf := new(bytes.Buffer)
 err := binary.Write(buf, binary.BigEndian, m.MessageType)
 if err != nil {
 . . .
 }

 err = binary.Write(buf, binary.BigEndian, m.Number)
 if err != nil {
 . . .
 }
 return buf.Bytes()
}

EMONPRONE W CHANG
DON'TWANT TOCARE
ABOUT FORMAT

Your App

Usually, build on existing tools that can define the API for you
 => Creates endpoints where you write code to perform actions

 => Don’t need to worry about serializing/deserializing messages

 => Build on existing protocols to handle scaling
 (eg. HTTP proxies, load balancing, caching, etc.)

Client
do_thing()

Response/error API

O

Concepts: endpoints

assett

HTTP APIs

HTTP APIClient

GET /component/do_some_action

200 OK + (Data)

App

• Endpoints at various URLs
• Usually: Request data with GET, upload with POST
• Client authenticates/passes inputs data with headers, cookies
• Response normally JSON, XML, or other self-describing format

HEADERSCOOKIES

N T ACTUALRESPONSE
HTTP ERROR CODE

curl -X GET 'https://www.gradescope.com/courses/567871/memberships.csv’
 -H 'User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:109.0) Gecko/20100101

Firefox/118.0’
 -H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8'

-H 'Accept-Language: en-US,en;q=0.5’
 -H 'Accept-Encoding: gzip, deflate, br’
 -H 'Referer: https://www.gradescope.com/courses/567871/memberships’
 -H 'DNT: 1’
 -H 'Connection: keep-alive’
 -H 'Cookie: remember_me=XXXXXXXXXXXXXXXX; __stripe_mid=XXXXXXXXXXXXX;

signed_token=XXXXXXXXXXXXXXX; _gradescope_session=XXXXXX[. . .]XXXXXXXX; __stripe_sid=XXXXXXXXXXX’
 -H 'Upgrade-Insecure-Requests: 1’
 -H 'Sec-Fetch-Dest: document’
 -H 'Sec-Fetch-Mode: navigate’
 -H 'Sec-Fetch-Site: same-origin’
 -H 'Sec-Fetch-User: ?1'

teaming Fogg north

1
t

HEADERS

µ
QUERY URL

1
51

INPUTS

Example: docs for Github’s REST API
Here’s one method for listing the repositories in a github org

For more: https://docs.github.com/en/rest

Example: Github public API
$ curl https://api.github.com/users/ndemarinis
{
 "login": "ndemarinis",
 "id": 1191319,
 "node_id": "MDQ6VXNlcjExOTEzMTk=",
 "avatar_url": "https://avatars.githubusercontent.com/u/1191319?v=4",
 "gravatar_id": "",
 "url": "https://api.github.com/users/ndemarinis",
 "type": "User",
 "site_admin": false,
 "name": "Nick DeMarinis",
 "blog": "https://vty.sh",
 "twitter_username": null,
 "public_repos": 10,
 . . .
}

Why is this useful?

• HTTP is ubiquitous
• Lots of existing tools to scale HTTP
– Cookies etc. for user authentication
– Proxies/load balancers

Why use JSON/etc vs. a binary encoding?

// Here's an example JSON response from the Github API when querying for info
// about a repo (eg. GET https://api.github.com/repositories/org/something
// Q: Why bother using JSON when we could use a binary format? A binary format
// would use so much less space!
// - If we had a binary format, both sides would need to
// know how the data is organized
// => This is a "Self-describing format" (eg. JSON, YAML, XML, ...)
// - need a lot less info up front on each device using it
// - Human-readable
// - Easy to use by web tools (JSON works well with Javascript)
// - Can leverage web caching, proxies, load-balancers, etc.
//
[
{
"id": 1296269,
"node_id": "MDEwOlJlcG9zaXRvcnkxMjk2MjY5",
"name": "Hello-World",
"full_name": "octocat/Hello-World",
"owner": {
"login": "octocat",
"id": 1,
"node_id": "MDQ6VXNlcjE=",
"avatar_url": "https://github.com/images/error/octocat_happy.gif",
"gravatar_id": "",
"url": "https://api.github.com/users/octocat",
"html_url": "https://github.com/octocat",
"followers_url": "https://api.github.com/users/octocat/followers",
"following_url":

"https://api.github.com/users/octocat/following{/other_user}",
"gists_url": "https://api.github.com/users/octocat/gists{/gist_id}",
"starred_url":

"https://api.github.com/users/octocat/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/octocat/subscriptions",
"organizations_url": "https://api.github.com/users/octocat/orgs",
"repos_url": "https://api.github.com/users/octocat/repos",
"events_url": "https://api.github.com/users/octocat/events{/privacy}",
"received_events_url":

"https://api.github.com/users/octocat/received_events",
"type": "User",
"site_admin": false

},
"private": false,
"html_url": "https://github.com/octocat/Hello-World",

Note: these are
other API endpoints!

=> a form of
indirection, refers
to other places we
can query for even
more info!

"labels_url":
"https://api.github.com/repos/octocat/Hello-World/labels{/name}",

"languages_url":
"https://api.github.com/repos/octocat/Hello-World/languages",

"merges_url": "https://api.github.com/repos/octocat/Hello-World/merges",
"milestones_url":

"https://api.github.com/repos/octocat/Hello-World/milestones{/number}",
"notifications_url":

"https://api.github.com/repos/octocat/Hello-World/notifications{?since,all,partic
ipating}",

"pulls_url":
"https://api.github.com/repos/octocat/Hello-World/pulls{/number}",

"releases_url":
"https://api.github.com/repos/octocat/Hello-World/releases{/id}",

"ssh_url": "git@github.com:octocat/Hello-World.git",
"stargazers_url":

"https://api.github.com/repos/octocat/Hello-World/stargazers",
"statuses_url":

"https://api.github.com/repos/octocat/Hello-World/statuses/{sha}",
"subscribers_url":

"https://api.github.com/repos/octocat/Hello-World/subscribers",
"subscription_url":

"https://api.github.com/repos/octocat/Hello-World/subscription",
"tags_url": "https://api.github.com/repos/octocat/Hello-World/tags",
"teams_url": "https://api.github.com/repos/octocat/Hello-World/teams",
"trees_url":

"https://api.github.com/repos/octocat/Hello-World/git/trees{/sha}",
"clone_url": "https://github.com/octocat/Hello-World.git",
"mirror_url": "git:git.example.com/octocat/Hello-World",
"hooks_url": "https://api.github.com/repos/octocat/Hello-World/hooks",
"svn_url": "https://svn.github.com/octocat/Hello-World",
"homepage": "https://github.com",
"language": null,
"forks_count": 9,
"stargazers_count": 80,
"watchers_count": 80,
"size": 108,
"default_branch": "master",
"open_issues_count": 0,
"is_template": false,
"topics": [
"octocat",
"atom",

O o

Noggins

"electron",
"api"

],
"has_issues": true,
"has_projects": true,
"has_wiki": true,
"has_pages": false,
"has_downloads": true,
"has_discussions": false,
"archived": false,
"disabled": false,
"visibility": "public",
"pushed_at": "2011-01-26T19:06:43Z",
"created_at": "2011-01-26T19:01:12Z",
"updated_at": "2011-01-26T19:14:43Z",
"permissions": {
"admin": false,
"push": false,
"pull": true

},
"security_and_analysis": {
"advanced_security": {
"status": "enabled"

},
"secret_scanning": {
"status": "enabled"

},
"secret_scanning_push_protection": {
"status": "disabled"

}
}

}
]

TIMESTAMP

MAY STILL
NEED EXTRA
WORK TODESERIAHZETHIS

What if you need more flexibility?

Fun
w SERVER

ENDPOINTFUNCI

IT
RESPONSE

RPC (Remote procedure call)

 - Basically, make a function call
happen over the network in some way

— Defining how the data should be
formatted

 => Could be a custom binary format,
could still be JSON, …

 - Semantics for messages

 - What happens when there’s an
error? (timeout, retry, etc.)

 - one request => multiple responses,
or vice versa

 - Could be blocking/non-blocking

=> More flexibility vs. HTTP since not
constrained to HTTP’s request/response
semantics

Imagine Snowcast but after abstracting
away abstracting away the logic for when
to send and how to wait for snowcast
message, handle timeouts

Lots of examples of RPC frameworks:

 - RPC (Network file system (NFS)

 - gRPC: Google’s RPC framework

 - Apache thrift

 - Java remote methods

In general, an RPC framework provides the following:

 - A way to define messages you want to send/receive

 - Semantics for how they work (sync/async, one-to-many, etc)

 - A way to describe the data format

=> Provides library to use in your implementation:

 => Client: generates “stubs” where you can call functions in
your code, serializes request + args, which go to network

 =>

406 5 End-to-End Protocols

! The network between the calling process and the called process has much

more complex properties than the backplane of a computer. For example, it is

likely to limit message sizes and has a tendency to lose and reorder messages.

! The computers on which the calling and called processes run may have sig-

nificantly different architectures and data representation formats.

Thus, a complete RPC mechanism actually involves two major components:

1 A protocol that manages the messages sent between the client and the server pro-

cesses and that deals with the potentially undesirable properties of the underlying

network

2 Programming language and compiler support to package the arguments into a

request message on the client machine and then to translate this message back

into the arguments on the server machine, and likewise with the return value

(this piece of the RPC mechanism is usually called a stub compiler)

Figure 5.12 schematically depicts what happens when a client invokes a remote

procedure. First, the client calls a local stub for the procedure, passing it the arguments

required by the procedure. This stub hides the fact that the procedure is remote by

Caller
(client)

Client
stub

RPC
protocol

Return
value

Arguments

ReplyRequest

Callee
(server)

Server
stub

RPC
protocol

Return
value

Arguments

ReplyRequest

Figure 5.12 Complete RPC mechanism.

p
HIIIIIJ

J

Stub Functions

• Local stub functions at client and server give appearance of a local function
call

• client stub
– marshalls parameters -> sends to server -> waits
– unmarshalls results -> returns to client

• server stub
– creates socket/ports and accepts connections
– receives message from client stub -> unmarshalls parameters -> calls server function
– marshalls results -> sends results to client stub

Some examples

• gRPC
• Apache Thrift
• JSON-RPC
• XML-RPC, SOAP
• . . .

Alternative to self-describing data
(JSON, XML, YAML, etc.) is to pre-
define the schema for the data in a way
that the framework can use

IDL (Interface Description Language):

 => Specify precisely what you want
the data format to look like

 => Framework generates code that
does the serialization (think: header
files, class/struct defs)

Gives you: basic integer types,
arrays, maps, enums, string, etc.

IDL provides:

 => Serialization for these basic
types, code generation to stitch this
together to serialize data structures

Example: gRPC

• IDL-based, defined by Google
– Protocol Buffers as IDL

• User specifies services, calls
– Single and streaming calls
– Support for timeouts,

cancellations, etc

• Transport: based on HTTP/2

service HelloService {
 rpc SayHello (HelloRequest)
 returns (HelloResponse);
}

message HelloRequest {
 string greeting = 1;
}
message HelloResponse {
 string reply = 1;
}

Input

IPL

gRPC

• Generates stubs in many languages
– C/C++, C#, Node.js, PHP, Ruby, Python, Go, Java
– These are interoperable

• Transport is http/2

Protocol Buffers

• Defined by Google, released to the public
– Widely used internally and externally
– Supports common types, service definitions
– Natively generates C++/Java/Python/Go code

• Over 20 other supported by third parties

– Efficient binary encoding, readable text encoding

• Performance
– 3 to 10 times smaller than XML
– 20 to 100 times faster to process

EGProtoBUF

Protocol Buffers Example (for a file)
message Student {
 required String name = 1;
 required int32 credits = 2;
}

Student s;
s.set_name(“Jane”);
s.set_credits(20);
fstream output(“students.txt” , ios:out | ios:binary);
s.SerializeToOstream(&output);

Student s;
fstream input(“students.txt” , ios:in | ios:binary

);
s.ParseFromIstream();

Reader

students.txt

Writer

Conclusions

• Unless you really want to optimize your protocol for performance, use an IDL

• Parsing code is easy to get (slightly) wrong, hard to make fast—only want to
do this once!

• Which one should you use?

EXTRA CONTENT

IF YOU WANT

TO READ FURTHER

Which data types?

• Basic types
– Integers, floating point, characters
– Some issues: endianness (ntohs, htons), character encoding, IEEE 754

• Flat types
– Strings, structures, arrays
– Some issues: packing of structures, order, variable length

• Complex types
– Pointers! Must flatten, or serialize data structures

protobuf: Binary Encoding

• Variable-length integers
– 7 bits out of 8 to encode integers
– Msb: more bits to come
– Multi-byte integers: least significant group first

• Signed integers: zig-zag encoding, then varint
– 0:0, -1:1, 1:2, -2:3, 2:4, …
– Advantage: smaller when encoded with varint

• General:
– Field number, field type (tag), value

• Strings:
– Varint length, unicode representation

Apache Thrift

• Originally developed by Facebook
• Used heavily internally
• Supports (at least): C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#,

Cocoa, Smalltalk, and Ocaml
• Types: basic types, list, set, map, exceptions
• Versioning support
• Many encodings (protocols) supported

– Efficient binary, json encodings

