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Administrivia

• If you haven’t scheduled a TCP grading meeting, please do so

• HW4 (short):  Out today, due next Friday

• Final project:  short proposal due Friday (no late days!)
– Will send team confirmation/repo link today
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This is not a security class 
(as much as I would like it to be…)

• This isn’t intended to be a lecture on all crypto

• I want you to appreciate the important principles, understand what’s 
important for TLS (and other protocols like it)

Want to know more?
• CS1660 (Spring):  Intro to Computer Systems Security
• CS1515 (Spring):  Applied cryptography
• CS1510 (Fall):  Intro to Cryptography and Computer Security
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Internet’s Design: Insecure

• Designed for simplicity in a naïve era
• Lots of insecure systems that can be compromised

• No central administration => hard to diagnose, coordinate fixes
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You
yourbank.com

What can go wrong?

Attacker

5








































D 0100 X
H YM Yonment

IMPERSONATION

IEtY eN
DENIAL OF
AVAILABILITY



(some) Key security properties

• Confidentiality:  prevent adversary from reading the data
=> Protect against eavesdropping, sniffing

• Authentication: verifying the identity of a message or actor
 => Protect against spoofing, impersonation

• Integrity:  make sure messages arrive in original form
=> Protect against tampering

There are more security properties, but we’ll stick to these => Focus of TLS
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Other important security properties

• Availability: Will the network deliver data?
– Protect against infrastructure compromise, DDoS

• Provenance: Who is responsible for this data?
– Prevent forging responses, denying responsibility; prove who created the data

• Authorization: is actor allowed to do this action?
• Appropriate use: is action consistent with policy? (spam, copyright, …)
• Anonymity: can someone tell what packets I am sending?
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NEXT LECTURE



TLS:  Transport layer security

TLS 1.0 (1999) => TLS 1.3 (2018)
Bidirectional pipe between two parties providing:

– Confidentiality
– Integrity
– Authentication
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TLS:  Transport layer security
Bidirectional pipe between two parties providing:

– Confidentiality
– Integrity
– Authentication

Are these all the security properties we might want?  No!

You yourbank.com
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Where does TLS go?

Network

Link

Physical

Transport

Application

Service: move bits to other node across link 

Move data across individual links

Moving data between hosts (nodes)

How to support multiple applications?

Service: user-facing application.
Application-defined messages
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One or more nodes
within the network

End host

Application
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Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical
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Application

Presentation

Session

Transport

Network

Data link

Physical

Application Protocol

Transport Protocol

Network Protocol

Link-Layer Protocol

Throwback:  The OSI model
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Fundamental crypto properties we need
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Symmetric cryptography

• A, B share secret key k
• Examples:  AES, Serpent, Whirlpool, DES (old, insecure), …
• Provides:  confidentiality (encrypt/decrypt), integrity (MAC)

Symmetric crypto:  strong, fast, but parties need to have shared key k
=> Key distribution is hard, why?
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0 A C
B

This provides:  confidentiality

Attacker can only see ciphertext.  If encryption scheme is strong, adversary can’t learn 
anything about m

   - (Unless they can steal k somehow. . .)



Examples:  AES, DES (old, insecure), Serpent, Whirlpool, …



Key properties

 - Symmetric crypto is fast (relative to other crypto in our toolkit).  Modern CPUs even have 
hardware support for AES, the most common symmetric scheme

     => Most data is protected using symmetric crypto

  

However:  need to exchange a shared key beforehand

   How to do this if you 1) can’t send k over the network in the clear, and 2) need keys for 
everyone you might talk to?



    => There exist crypto protocols to establish a shared key without sending it over the 
network (beyond this course—eg. look up Diffie-Hellman Key Exchange (DHKE) for one)



    => Also need to verify the sender’s identity before you start communicating (ie, how do you 
know if they are who they say they are?)

Brief overview:  symmetric crypto

Setup: 

   - A wants to send message m 

   - A, B agree on secret key K

     => Must be exchanged beforehand using some other secure method

A encrypts message with key 
k, sends ciphertext c

c = Enc(k, m)

B decrypts c to recover 
original message

m = Dec(k, c)



Confidentiality:  Symmetric encryption

Internet
Encrypt with
secret key

Decrypt with
secret key

Plaintext Plaintext

Ciphertext
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A B
m = Enc(Kpriv_B, c)

Brief overview:  asymmetric crypto

Setup: 

 - A and B each have a public/private key pair (eg. Kpub_A, Kpriv_A)

 - Kpub is known to everyone, Kpriv is kept secret

From here, there are two fundamental operations we can perform:

  - Encryption/Decryption:  like before, but now taking advantage of two keys

  - Signing and verification: used to verify a message came from a specific 
party (next page) 

c = Enc(Kpub_B, m)

This is pretty powerful: can encrypt a message for B without a shared key!

However:  asymmetric crypto is very slow (orders or magnitude slower than symmetric 
crypto)



=> Used for authenticating at connection start (more on this in a moment)

=> Use asymmetric crypto to establish a symmetric key at session start, use for rest of 
connection 

I) Asymmetric encryption

 1. A encrypts message with B’s public key, Kpub,B

 2. B can decrypt with its private key Kpriv,B

















































































s = Sign(Kriv_A, m) b = Verify(Kpub_A, m, s)

Also pretty powerful:  anyone can verify that m was signed by A’s private key  
  => Assuming that A’s private key is indeed private (only A has it), this means only A 
could have signed the message 


Some notes 
 - This is also slow, like asymmetric encryption/decryption

 - Could also encrypt the message, but also important to sign public info:  for example, an 
open-source developer might sign a software update to prove it’s legitimate



 - (not necessary for this class) Signing has another important crypto property:  non-
repudiation, meaning A can’t prove it didn’t sign message m

II) Signatures and verification

Idea:  want to use public key crypto to verify a message came from a certain 
party




A signs message (or hash of message) with its private key
1.
       => Produces a signature:  a small value like a hash



2. B can verify the signature using A’s public key

    => Outputs a true if message was signed with Kpriv_A, otherwise false 



Public Key / Asymmetric Encryption

• Sender uses receiver’s public key
– Advertised to everyone

• Receiver uses complementary private key
– Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext
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How it works in TLS

• Type in your browser:  https://www.amazon.com
• https = “Use HTTP over TLS”

– TLS = Transport Layer Security
– SSL = Secure Socket Layer (older version)
– RFC 4346, and many others

Goal:  provide security layer (authentication, encryption) on top of  transport layer
=> Fairly transparent to the app (once set up)
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TLS:  setup

• First:  TCP handshake
SYN

SYN ACK

ACK

Browser Amazon
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TLS:  setup

• First:  TCP handshake
• Client sends over list of crypto 

protocols it supports
• Server picks crypto protocols to use 

for this session

SYN

SYN ACK

ACK

Browser Amazon

Hello.  I support(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or  …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~1 KB of data
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TLS:  setup

• First:  TCP handshake
• Client sends over list of crypto 

protocols it supports
• Server picks crypto protocols to use 

for this session

• Use this to do two things:
– Create shared session key
– Verify server’s identity

SYN

SYN ACK

ACK

Browser Amazon

Hello.  I support(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or  …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~1 KB of data
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W SYMMETRIC PART ENC INTEGRITY
AUTHKEYEXCHANGE ASTM

At startup, client/server must agree on what crypto methods to use—these are called ciphersuites

 => These cover what crypto algorithms are used for the different parts (key exchange, what asymmetric 
crypto to use, what symmetric crypto to use, hashing functions for integrity, etc.) 
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TLS + Authentication










































TLS Goals

Authentication:  verifying that the entity on the other end of the connection is 
who they claim to be
• Technical aspects:  crypto
• Social aspects

– How to distribute keys to entities
– What to do when things go wrong
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TLS:  relies on Public Key Infrastructure (PKI) 
via certificates








































Everything we’ve talked about so far relies on 
each server having a public/private key






The Challenge
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yourbank.comYou
(...part of handshake...)

Kpub,bank.com
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The Challenge

What does this prove?
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yourbank.comYou
(...part of handshake...)

Kpub,bank.com
Pick challenge x

Enc(Kpub,bank.com, x)
x' = Dec(Kpriv, x)

x'
x ?= x'
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ENDPOINT YOU ARE TALKING
TO HAS PRIVATE KEY



Authentication challenges

• Challenge proves that the server at yourbank.com holds K_priv
• Does NOT prove belong to the server belongs to your bank, the real-life 

bank with your money

"But I'm visiting yourbank.com!"
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DNS COULD BE SPOOFED
IP TRAFFIC MAY BE REDIRECTED

BGP SPOOFING



Authentication challenges

• Challenge proves that the server at yourbank.com holds K_priv
• Does NOT prove the server belongs to YourBank, the real-life bank that 

holds your money

"But I'm visiting yourbank.com!"
• DNS can be spoofed
• Possible active network attacker (redirecting your IP traffic to 

malicious server)
• Domain names can expire and be re-registered...
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Problem:  distributing trust

How can we trust Kpub is Your Bank's public key?
Problem:  Trust distribution
• Hard to verify real-world identities
• Hard to scale to the whole Internet

Different protocols have different mechanisms
 => TLS (and others):  Public Key Infrastructure (PKI) with certificates

37










































38

PKI:  The main idea
Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

CA
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PKI:  The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA validates X's identity, then signs X's public key
– Generates certificate

CA

Kpub,X

$$$ (usually)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}








































EVERYONE HAS
KPODCA
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PKI:  The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA validates X's identity, then signs X's public key
– Generates certificate

• Client can verify Kpub,X from CA's signature:
 Verify(Kpub,CA Cert) => True/False

CA

Kpub,X

$$$ (usually)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}

=> Delegates trust for individual entity to a more trusted authority
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Q:  are there other methods of delegating trust?



  - Web of trust:  small group of parties that sign each other’s 
keys

     => Have a threshold on how many signatures you need to be 
“trusted”

      => Doesn’t scale to entire internet, but exists for small 
communities (esp. open-source software projects)





   - Trust on first use (TOFU)

       - ON first connection, ask user if they trust the public key 
(y/n)

        - If user says yes, trust key for all time

        - If public key changes later, something sketchy is 
happening => trust error

        => SSH (by default)





Also:  PKI comes up in other ways outside of TLS:

  - DNSSEC has a similar hierarchy (root zone ~= trusted CA)

  - Similar certificates used for secure email (S/MIME) or some

    other related authentication standards



What's in a certificate?

• Public key of entity (eg. yourbank.com)
• Common name:  DNS name of server (yourbank.com)
• Contact info for organization
• Validity dates (start date, expire date)
• URL of revocation center to check if key has been revoked
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All of this is part of the data signed by the CA
=> Critical to check all parts during TLS startup!
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What’s in a certificate?
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Note the dates:  this cert is for a root CA, so it’s 
valid for a super long time, 15 years!  



This is because root CAs are very hard to change.  
If a root CA expires, everything signed by it is 
invalid



Most server certificates (ie, certs installed on 
average webservers) expire after 1 year, or less
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PKI hierarchy

In reality, PKI creates a hierarchy of trust:
• Root CAs: kpub stored in virtually every browser, OS
– Private keys protected by most stringent security measures 

(software, hardware, physical)

• Intermediate CAs: kpub signed by root CA
– Sign certificates for general use (ie, regular websites)
– Doesn't require same protections as root

• General-use certificates:  for a specific webserver
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What happens if a root is compromised?








































COULDSIGN

M ANYCERTIFICAT



How the hierarchy works
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B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }










































How the hierarchy works
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B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

Client's workflow:
• Checks metadata           ✅
• Verify(CertB, Kpub,Int)      ✅
• Verify(CertInt, Kpub,Root)  ✅ => To verify integrity, need to verify certificates back to 

(trusted) root certificate
=> OK if verification passes and metadata correct: !
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Most common TLS errors you might see

• Common name invalid
• Self-signed
• Certificate expired

 When is it okay to click "proceed"?  What happens if you do?
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=> Might occur if webserver configured improperly, or if you're 
setting up a system








































NAME IN CERT I DOMAIN NAME

BUTNOTFOR YOUR BANK
ORBROWN



Rogue Certificates?

• In 2011, DigiNotar, a Dutch root certificate authority, was 
compromised

• The attacker created rogue certificates for popular domains like 
google.com and yahoo.com

• DigiNotar was distrusted by browsers and filed for bankruptcy
• See the incident investigation report by Fox-IT

60








































http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1.html


• In 2017, Google questioned the certificate issuance policies and 
practices of Symantec

• Google’s Chrome would start distrusting Symantec’s certificates 
unless certain remediation steps were taken

• See back and forth between Ryan Sleevi (Chromium team) and 
Symantec

• The matter was settled with DigiCert acquiring Symantec’s 
certificate business
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https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/


TLS decryption

What happens when an organization wants to view TLS traffic on its network?
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TLS HANDSHAKE

µ
the interceptor_qBPLAINTEXT DATA

CERTINTERCEPTOR

NEEDS CA FOR INTERCEPTOR
Some corporate networks want to view TLS traffic to ensure compliance with policy

=> Forward all traffic through TLS interceptor:  client does TLS handshake with interceptor, then 
interceptor connects to actual server, allowing it to see all data

 => When A does the TLS handshake with the interceptor, it gets back a fake certificate from the 
interceptor, not B.  How does this pass verification?  Company needs to install a CA on A  

      => This is intentional traffic interception/spoofing—thoughts? 
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Example:  https://www.a10networks.com/products/thunder-ssli/ 







































https://www.a10networks.com/products/thunder-ssli/
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PKIs, TLS, and HTTPS










































Server 

Wikipedia table, source:  https://www.ssllabs.com/ssl-pulse/79
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