CSCI-1680
TLS

Nick DeMarinis

1
Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

* If you haven't scheduled a TCP grading meeting, please do so

« HW4 (short): Out today, due next Friday

* Final project: short proposal due Friday (no late days!)

— Will send team confirmation/repo link today

This is not a security class
(as much as | would like it to be...)

 This isn't intended to be a lecture on all crypto

* | want you to appreciate the important principles, understand what's
important for TLS (and other protocols like it)

Want to know more?
« CS51660 (Spring): Intro to Computer Systems Security

» CS1515 (Spring): Applied cryptography
« CS1510 (Fall): Intro to Cryptography and Computer Security

Internet’s Design: Insecure

« Designed for simplicity in a naive era
* Lots of insecure systems that can be compromised

« No central administration => hard to diagnose, coordinate fixes

What can go wrong?

— EAVR prappinx __ DRUAL OF
_ pawe ALpipB))y

(some) Key security properties

 Confidentiality: prevent adversary from reading the data
=> Protect against eavesdropping, sniffing

 Authentication: verifying the identity of a message or actor
=> Protect against spoofing, impersonation

 Integrity: make sure messages arrive in original form

=> Protect against tampering

[There are more security properties, but we'll stick to these => Focus of TLS }

8

Other important security properties

 Availability: Will the network deliver data?
— Protect?gainst infrastructure compromise, DDoS

* Provenance Who is responsible for this data?

— Prevent forging responses, denying responsibility; prove who created the data

e Authorization: is actor allowed to do this action?

- Appropriate use: is action consistent with policy? (spam, copyright, ...)

* Anonymity: can someone tell what packets | am sending?

NS
a Ny | striels

TLS: Transport layer security —> 4 A7A7S
y S5 §

TLS 1.0 (1999) => TLS 1.3 (2018)

B|d|rect|oF1—an|pe between two parties providing:
— Confidentiality

— Integrity

— Authentication

10

TLS: Transport layer security

Bidirectional pipe between two parties providing:
— Confidentiality
— Integrity
— Authentication

—o_-
- -

[Are these all the security properties we might want? No!

e/

L/

Application

Where does TLS go?

—

Lf
L3

2

L/

Physical

How to support multiple applications? C U /

Moving data between hosts (nodes)

Move data across individual links

Service: move bits to other node across link

12

Throwback: The OSI| model

End host End host

— Application Protocol
Application " Application

Presentation Presentation

b

Session Session
I

A

ilransporcy| ™ W= == == == = Transport

*Networ rOtOCO e cmm—

Network == wre == l== == Network Network ™ = == == Network

+[ink—L yer Protocolmmmes s

Data link == == we == RS Data link ™= == == == Data link

Physical Physical — Physical Physical

One or more nodes
within the network

13

Fundamental crypto properties we need

15

Symmetric cryptography

* A, B share secret key k
« Examples: AES, Serpent, Whirlpool, DES (old, insecure), ...
 Provides: confidentiality (encrypt/decrypt), integrity (MAC)

Symmetric crypto: strong, fast, but parties need to have shared key k
=> Key distribution is hard, why?

16

Brief overview: symmetric crypto
Setup:
- A wants to send message m
- A, B agree on secret key K
=> Must be exchanged beforehand using some other secure method

A = - 3

A encrypts message with key @B decrypts c to recover
k, sends ciphertext c original message
c = Enc(k, m) m = Dec(k, c)

This provides: confidentiality
Attacker can only see ciphertext. If encryption scheme is strong, adversary can’t learn
anything about m

- (Unless they can steal k somehow. . .)

Examples: AES, DES (old, insecure), Serpent, Whirlpool, ...

Key properties
- Symmetric crypto is fast (relative to other crypto in our toolkit). Modern CPUs even have
hardware support for AES, the most common symmetric scheme

=> Most data is protected using symmetric crypto

However: need to exchange a shared key beforehand
How to do this if you 1) can’t send k over the network in the clear, and 2) need keys for
everyone you might talk to?

=> There exist crypto protocols to establish a shared key without sending it over the
network (beyond this course—eg. look up Diffie-Hellman Key Exchange (DHKE) for one)

=> Also need to verify the sender’s identity before you start communicating (ie, how do you
know if they are who they say they are?)

Confidentiality: Symmetric encryption

Plaintext Plaintext

Encrypt with
secret key

Decrypt with
secret key

17

Brief overview: asymmetric crypto
Setup:

- A and B each have a public/private key pair (eg. Kpub A, Kpriv_A)
- Kpub is known to everyone, Kpriv is kept secret

From here, there are two fundamental operations we can perform:

- Encryption/Decryption: like before, but now taking advantage of two keys

- Signing and verification: used to verify a message came from a specific
party (next page)

I) Asymmetric encryption
1. A encrypts message with B’s public key, Kpub,B
2. B can decrypt with its private key Kpriv,6B

C

A 7 P

m = Enc(Kpriv B, c)
¢ = Enc(Kpub B, m) —

This is pretty powerful: can encrypt a message for B without a shared key!

However: asymmetric crypto is very slow (orders or magnitude slower than symmetric
crypto)

=> Used for authenticating at connection start (more on this in a moment)

=> Use asymmetric crypto to establish a symmetric key at session start, use for rest of
connection

II) Signatures and verification
Idea: want to use public key crypto to verify a message came from a certain

party

1. A signs message (or hash of message) with its private key
=> Produces a signature: a small value like a hash

2. B can verify the signature using A’s public key
=> Outputs a true if message was signed with Kpriv_ A, otherwise false

74, m S 7$

s = Sign(Kriv_A, m) b = Verify(Kpub_ A, m, s)

Also pretty powerful: anyone can verify that m was signed by A’s private key
=> Assuming that A’s private key is indeed private (only A has it), this means only A
could have signed the message

Some notes

- This is also slow, like asymmetric encryption/decryption

- Could also encrypt the message, but also important to sign public info: for example, an
open-source developer might sign a software update to prove it’s legitimate

- (not necessary for this class) Signing has another important crypto property: non-
repudiation, meaning A can’t prove it didn’t sign message m

Public Key / Asymmetric Encryption

 Sender uses receiver's public key
— Advertised to everyone

* Receiver uses complementary private key
— Must be kept secret

Plaintext Plaintext

Encrypt with
public key

Decrypt with
private key

20

How it works in TLS

* Type in your browser: httpg[://www.amazon.com

‘“ Y —
* https = "Use HTTP over TLS
— TLS = Transport Layer Security

— SSL = Secure Socket Layer (older version)
— RFC 4346, and many others

Goal: provide security layer (authentication, encryption) on top of transport layer
=> Fairly transparent to the app (once set up)

23

e First: TCP handshake

TLS: setup

Browser Amazon

SYN

y

ACK

24

TLS: setup

First: TCP handshake

Client sends over list of crypto
protocols it supports

Server picks crypto protocols to us
for this session

Browser

MM S LA

T6n
74

~q g of d

ala

25

First: TCP handshake

Client sends over list of crypto

protocols it supports

Server picks crypto protocols to use

for this session

Use this to do two things:
— Create shared session key

— Verify server’s identity

Browser

5 Song op i

Amazon

)

N cLEM, <o TRIC)

PAS)

At startup, client/server must agree on what crypto methods to use—these are called ciphersuites

=> These cover what crypto algorithms are used for the different parts (key exchange, what asymmetric
crypto to use, what symmetric crypto to use, hashing functions for integrity, etc.)

JdX0YU, UXRY DH RSA WITH A S VI_SHAZ56 Y \ X ofs

0x00,0xA1l TLS_DH_RSA WITH_AES_256_GCM_SHA384 Y N [RFC5288]
0x00,0xA2 TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 Y N [RFC5288]
0x00,0xA3 TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 Y N [RFC5288]
0x00,0xA4 TLS_DH_DSS_WITH_AES_128_GCM_SHA256 Y N [RFC5288]
0x00,0xA5 TLS_DH_DSS_WITH_AES_256_GCM_SHA384 Y N [RFC5288]
0x00,0xA6 TLS_DH_anon_WITH_AES_128_GCM_SHA256 Y N [RFC5288]
0x00,0xA7 TLS_DH_anon_WITH_AES_256_GCM_SHA384 Y N [RFC5288]
0x00,0xA8 TLS_PSK_WITH_AES_128_GCM_SHA256 Y N [RFC5487]
0x00,0xA9 TLS_PSK_WITH_AES_256_GCM_SHA384 Y N [RFC5487]
0x00,0xAA TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 Y Y [RFC5487]
0x00,0xAB TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 Y Y [RFC5487]
0x00,0xAC TLS_RSA_PSK_WITH_AES_128 GCM_SHA256 Y N [RFC5487]
0x00,0xAD TLS_RSA_PSK_WITH_AES_256_GCM_SHA384 Y N [RFC5487]
0x00,0xAE TLS_PSK_WITH_AES_128_CBC_SHA256 Y N [REC5487]
0x00,0xAF TLS_PSK_WITH_AES_256_CBC_SHA384 Y N [RFC5487]

L_]

@AWW/KA]/ & XAYWGE

TLS + Authentication

28

TLS Goals

Authentication: verifying that the entity on the other end of the connection is
who they claim to be

e Technical aspects: crypto Everything we’ve talked about so far relies on

) each server having a public/private ke
* Social aspects = g P y

— How to distribute keys to entities
— What to do wherthings go wrong

via certificates

[TLS: relies on Public Kez Infrastructure (PKI)}

30

The Challenge

(...part of handshake...)

Kpub,bank.com

31

The Challenge

(...part of handshake...)

Kpub,bank.com

Enc(Kpub,bank.com, x)

XI

x' = Dec(Kpriv, x)
=

e
Pick challenge x
X ?= X' <
—

What does this prove?

== NP InT yw ALE 7ALKIWE

70 AAS

PRLUATE K&

33

Authentication challenges

 Challenge proves that the server at yourbank.com holds K_priv

* Does NOT prove belong to the server belongs to your bank, the real-life
bank with your money

"But I'm visiting yourbank.com!"

—UC Cooo B Chpppp

— P gmprmie AN BE puyeserty
CBLP w87k

35

Authentication challenges

 Challenge proves that the server at yourbank.com holds K_priv

* Does NOT prove the server belongs to YourBank, the real-life bank that
holds your money

"But I'm visiting yourbank.com!"
* DNS can be spoofed

 Possible active network attacker (redirecting your IP traffic to
malicious server)

* Domain names can expire and be re-registered...

36

Problem: distributing trust

How can we trust Kpub is Your Bank's public key?
Problem: Trust distribution

« Hard to verify real-world identities

 Hard to scale to the whole Internet

Different protocols have different mechanisms
=> TLS (and otths): Public Key Infrastructure (PKI) with certificates

—

37

PKl: The main idea

Public keys managed by Certificate Authorities (CAs)

 Everyone knows public key for some root CAs
— Pre-installed into browser/OS

CA

38

PKl: The main idea

Public keys managed by Certificate Authorities (CAs)
 Everyone knows public key for some root CAs

— Pre-installed into browser/OS _:) AWL/‘L/ﬂlDﬁ %//ﬁf

» If X wants a public key, request from CA Kpﬂﬂ/ CA
— CA validates X's identity, then signs X's public key

— Generates certificate

Kpub,X

5SS (usually)

CA

|

‘S =.Si-%n(Kpriv,CAl {Kpub,Xl })

—

Cert = {K,,» x, metadata, s}

—

R—

41

PKI: The main idea 7y asm"/

Public keys managed by Certificate Authorities (CAs) Kp”b'f,
J 5SS (usually)

« Everyone knows public key for some root CAs
— Pre-installed into browser/OS

= L ——

 If X wants a public key, request from CA A

— CA validates X's identity, then signs X's public key ﬂ J

— Generates certificate
» Client can verify K, x from CA's signature: o = Sign(K e 1K '
Verify(Kop,ca Cert) => True/False o Py CAr Hlpub s =

Cert = {K,,» x, metadata, s}

=> Delegates trust for individual entity to a more trusted authority]
— 43

DigiCert Assured ID Root CA

DigiCert Assured ID Root CA

Root certificate authority

Expires: Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time
@ This certificate is valid

Trust
Details
Subject Name
Country or Region
Organization
Organizational Unit
Common Name

Issuer Name
Country or Region
Organization
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info
Algorithm
Parameters
Public Key
Exponent

Key Size

Key Usage

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

OC E7 EO E517 D8 46 FE 8F E5 60 FC 1B FO 30 39
3

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
None

Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time
Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : AD OE 15 CE E4 43 80 5C ...
65537

2,048 bits

Verify

Keychain Access

All tems Passwords Secure Notes My Certificates Keys Certificates

Amazon Root CA 1

Root certificate authority

Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time
@ This certificate is valid

=
@ //*/’///f(w//'

Neet

Name

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial
AffirmTrust Networking

A

AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate

certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

0 5 v o o o v o o

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

Q: are there other methods of delegating_ trust?

- Web of trust: small group of parties that sign each other’s
keys
=> Have a threshold on how many signatures you need to be
“trusted”
=> Doesn’t scale to entire internet, but exists for small
communities (esp. open-source software projects)

- Trust on first use (TOFU)
- ON first connection, ask user if they trust the public key
(y/n)
- If user says yes, trust key for all time
- If public key changes later, something sketchy is
happening => trust error
=> SSH (by default)

Also: PKI comes up in other ways outside of TLS:
- DNSSEC has a similar hierarchy (root zone ~= trusted CA)
- Similar certificates used for secure email (S/MIME) or some
other related authentication standards

What's in a certificate?

Public key of entity (eg. yourbank.com)

Common name: DNS name of server ank.com)

Contact info for organization

Validity dates (stﬂdﬁ,&p@aﬁne)

URL of revocation center to check if key has been revoked

All of this is part of the data signed by the CA
=> Critical to check all parts during TLS startup!

47

Certificate Viewer: www.cs.brown.edu
General Details
Certificate Hierarchy

» USERTrust RSA Certification Authority
¥ InCommon RSA Server CA

www.cs.brown.edu

Certificate Fields

Issuer
« Validity
Not Before

Not After

Subject

v Subject Public Key Info
Subject Public Key Algorithm

Subject's Public Key

Field Value

CN = www.cs.brown.edu
O = Brown University
ST = Rhode Island
Cc=US

48

2

®

(G Jerlificale

Trust
Details
Subject Name
Country or Region
Organization
Organizational Unit
Common Name

Issuer Name
Country or Region
Organization
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info
Algorithm
Parameters
Public Key
Exponent

Key Size

Key Usage

DigiCert Assured ID Root CA

Root certificate authority

Expires: Sunday, November 9, 2031 at 19:00:00-Ecstern Standard Time
@ This certificate is valid

DigiCert Assured ID Root CA

Note the dates: this cert is for a root CA, so it’s
valid for a super long time, 15 years!

us
DigiCert Inc

- This is because root CAs are very hard to change.
www.digicert.com . i . .
pigicert assured 1o [f @ root CA expires, everything signed by it is

invalid

us
DigiCert Inc . g . .
wdigcercom VIOST SEIVEY Certificates (|§, certs installed on
pigicert Assured I @VErage webservers) expire after 1 year, or less

OCE7EOE517 D8 .

3

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
None

Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time
Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : AD OE 15 CE E4 43 80 5C ...
65537

2,048 bits

Verify

Keychain Access

All tems Passwords Secure Notes My Certificates Keys Certificates

= Amazon Root CA 1
‘//’"":/’/”'"/" Root certificate authority
. | Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time
— @ This certificate is valid
Name
2] AAA Certificate Services
2] AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial
AffirmTrust Networking

7 67 K1 EX

AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate

certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

A 5 v o v o

E

il

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

PKI hierarchy

In reality, PKI creates a hierarchy of trust:

* Root CAs: k,, stored in virtually every browser, OS

— Private keys protected by most stringent security measures
(software, hardware, physical)

* Intermediate CAs: k,, signed by root CA
— Sign certificates for general use (ie, regular websites)
— Doesn't require same protections as root

cooltD S16NV
 General-use certificates: for a specitic webserverﬂ Awy CL%f/ﬁ/WLf{

[What happens if a root is compromised?' } -

How the hierarchy works

Ex. Server has certificate from Intermediate CA.;

B has:
* Kpriv,B
* CertB={K,ypp SigN(Ksuppr Koriyint)s - }

(TLS handshake)

A 4

Kpub,Root |e
{Certg, Cert)+}
h

54

How the hierarchy works

Ex. Server has certificate from Intermediate CA.;

»l B has:
* Kpriv,B
* CertB={K,ypp SigN(Ksuppr Koriyint)s - }

(TLS handshake)

Kpub,Root |e
{Certg, Cert)+}

/Client's workflow:

\
* Checks metadata v e R D,AT&Q/ /UA/“S Lo
° Verify(CertB, I<pub,lnt) 7
° Verify(certlnt; Kpub,Root)

o i

=> To verify integrity, need to verify certificates back to
(trusted) root certificate

=> OK if verification passes and metadata correct: £

56

A Not Secure | hitps://nd.Isacc.net

Your connection is not private

Attackers might be trying to steal your information from nd.lsacc.net (for example,
passwords, messages, or credit cards). Learn more

NET::ERR_CERT_COMMON_NAME_INVALID

Advanced Back to safety

Most common TLS errors you might see

» Common name invalid (WAME /15 et % Dotpw pPARE)
 Self-signed

Certificate expired

When is it okay to click "proceed"? What happens if you do?

=> Might occur if webserver configured improperly, or if you're

setting up a system BVT Jor Fol >/WL ﬁd,{//(,// (0)1,),

59

Rogue Certificates?

In 2011, DigiNotar, a Dutch root certificate authority, was
compromised

The attacker created rogue certificates for popular domains like
google.com and yahoo.com

DigiNotar was distrusted by browsers and filed for bankruptcy
See the by Fox-IT

60

http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1.html

In 2017, Google questioned the certificate issuance policies and
practices of Symantec

Google’s Chrome would start distrusting Symantec’s certificates
unless certain remediation steps were taken

See between Ryan Sleevi (Chromium team) anad
Symantec

The matter was settled with

61

https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/

TLS decryption

What happens when an organization wants to view TLS traffic on its network?

718 NMDSIKE
7{ SR > L5 INTEQ oL =

&
I

7 fLA}/WE%T]2/173(,/ b’ZEE,;\—

CM‘%TEM Coror_

JUEEDS CA L JurElcerrol

Some corporate networks want to view TLS traffic to ensure compliance with policy
=> Forward all traffic through TLS interceptor: client does TLS handshake with interceptor, then
interceptor connects to actual server, allowing it to see all data
=> When A does the TLS handshake with the interceptor, it gets back a fake certificate from the
interceptor, not B. How does this pass verification? Company needs to install a CA on A

=> This is intentional traffic interception/spoofing—thoughts? 62

Example: https://www.alOnetweorks.com/products/thunder-ssli/

---Decrypt Zone:- -

Security Device

Client A10 Thunder SSLi

®

Internet Remote Server

Encrypted traffic from the client is intercepted
by Thunder SSLi and decrypted.

Thunder SSLi sends the decrypted traffic to a
security device, which inspects it in clear-text.

The security device, after inspection, sends the
traffic back to Thunder SSLi, which intercepts
and re-encrypts it.

Thunder SSLi sends the re-encrypted traffic to
the server.

The server processes the request and sends
an encrypted response to Thunder SSLi.

Thunder SSLi decrypts the response traffic and
forwards it to the same security device for
inspection.

Thunder SSLi receives the traffic from the
security device, re-encrypts it and sends it to
the client.

https://www.a10networks.com/products/thunder-ssli/

PKls, TLS, and HTTPS

64

As of July 2021, the Trustworthy Internet Movement estimated the ratio of websites that are vulnerable to TLS attacks.[71]

Survey of the TLS vulnerabilities of the most popular websites

Security
Attacks
Insecure Depends

0.1% <0.1%

Renegotiation attack . L
support insecure renegotiation support both

0.4%
RC4 attacks support RC4 suites used with modern

6.5%

support some RC4 suites
browsers

. >0.0%
TLS Compression (CRIME attack) | bi N/A
vulnerable

>0.0%
Heartbleed N/A
vulnerable

0.2%
0.1%

ChangeCipherSpec injection attack . vulnerable, not
vulnerable and exploitable .
exploitable

POODLE attack against TLS 0.1% 0.1%
(Original POODLE against SSL 3.0 is not P . vulnerable, not
vulnerable and exploitable .
included) exploitable

6.6%
Protocol downgrade ° N/A
Downgrade defence not supported

Secure

99.2%
support secure renegotiation

93.1%
no support

N/A

98.5%
not vulnerable

99.8%
not vulnerable

72.3%
Downgrade defence
supported

1.2%
unknown

0.2%
unknown

21.0%
unknown

Wikipedia table, source: https://www.ssllabs.com/ss|-ptlse/

Keychain Access

All tems Passwords Secure Notes My Certificates Keys Certificates

= Amazon Root CA 1
‘//’"":/’/”'"/" Root certificate authority
. | Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time
— @ This certificate is valid
Name
2] AAA Certificate Services
2] AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial
AffirmTrust Networking

7 67 K1 EX

AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate

certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

A 5 v o v o

E

il

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

