CSCI-1680 TLS

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

- If you haven't scheduled a TCP grading meeting, please do so
- HW4 (short): Out today, due next Friday

Final project: <u>short</u> proposal due Friday (no late days!)
 Will send team confirmation/repo link today

This is not a security class (as much as I would like it to be...)

- This isn't intended to be a lecture on all crypto
- I want you to appreciate the important principles, understand what's important for TLS (and other protocols like it)

Want to know more?

- CS1660 (Spring): Intro to Computer Systems Security
- CS1515 (Spring): Applied cryptography
- CS1510 (Fall): Intro to Cryptography and Computer Security

Internet's Design: Insecure

- Designed for simplicity in a naïve era
- Lots of insecure systems that can be compromised
- No central administration => hard to diagnose, coordinate fixes

What can go wrong?

(some) Key security properties

- Confidentiality: prevent adversary from reading the data
 => Protect against eavesdropping, sniffing
- Authentication: verifying the identity of a message or actor
 => Protect against spoofing, impersonation
- Integrity: make sure messages arrive in original form
 => Protect against tampering

There are more security properties, but we'll stick to these => Focus of TLS

Other important security properties

- Availability: Will the network deliver data?
 - Protect against infrastructure compromise, DDoS
- **Provenance**: Who is responsible for this data?
 - Prevent forging responses, denying responsibility; prove who created the data

- Authorization: is actor <u>allowed</u> to do this action?
- Appropriate use: is action *consistent with policy*? (spam, copyright, ...)
- Anonymity: can someone tell what packets I am sending?

NEFT LECTORES.

TLS: Transport layer security SSL TLS 1.0 (1999) => TLS 1.3 (2018) Bidirectional pipe between two parties providing:

- Confidentiality
- Integrity
- Authentication

TLS: Transport layer security

Bidirectional pipe between two parties providing:

- Confidentiality
- Integrity

You

- Authentication

yourbank.com

Where does TLS go?

47	Application	Service: user-facing application. Application-defined messages
		tis
24	Transport	How to support multiple applications? $\gamma \gamma$
7	7	
23 /	Network	Moving data between hosts (nodes)
23	Link	Move data across <u>individual <i>links</i></u>
	Physical	Service: move bits to other node across link

Throwback: The OSI model

Fundamental crypto properties we need

Symmetric cryptography

- A, B share secret key k
- Examples: AES, Serpent, Whirlpool, DES (old, insecure), ...
- Provides: confidentiality (encrypt/decrypt), integrity (MAC)

Symmetric crypto: strong, fast, but parties <u>need to have shared key k</u> => Key distribution is hard, why?

Se	tup:		.												
	- A - A,	wants B ag	ree (on se	messa cret	.ge m kev K									
	=>	Must	be	excha	nged	befor	ehand	l usir	ng sor	ne ot	her s	ecure	e met	hod	
				4			C.								
			2	/ - /								3			
									(7)						
A e	ncry	pts ı	mess	age 1	with	key			U I	3 de	cryp	ts c	to 1	ecov	er
- /	send	s cij	pher	text	С				C	orig	ına⊥	mess	age		
2 =	Enc	(K, 1	m)						r	n = .	Dec (I	¢, C)			
	Thi	prov	idaa	confid	lontial	i4\7									
	Atta	acker d	can or	ilv see	ciphe	rtext.	If enc	rvptio	n sche	me is	stron	a. adve	ersarv	can't	leai
	any	thing	about	m				J				,	,		
	- (Unles	s they	/ can s	teal k	someł	10w)							
	Eva	mplos			(old in	secure	a) Sori	oont V	Vhirlpo						
	LAd	mpies		, DLS	(010, 11	ISECUI	<i>.</i>), Oeij	Jent, v	viinpo	01,					
	Key	prope	erties												
	- S	ymmet	ric cry	pto is f	ast (re	lative to	o other	crypto	in our	toolk	it). Mo	dern C	PUs e	ven ha	ve
	hard	Iware :	suppo	rt for A	ES, the	e most	comm	on syn	imetric	sche	me				
			si uala		ecieu	using s	ymme		ριο						
	Hov	vever:	need	to exc	hange	a shar	ed key	before	ehand						
	H	ow to c	do this	if you	1) can'	t send	k over	the ne	twork i	in the	clear, a	and 2) I	need k	eys for	•
	eve	ryone y	you m	ight tall	k to?										
	_	> Ther	e exis	t crypto	nroto	cols to	establ	ish a s	hared	kev w	thout s	ending	it ove	r the	
	netv	vork (b	evono	this co	ourse-	eg. lo	ok up [Diffie-⊢	lellmar	n Key	Exchar	nge (DI	HKE) f	or one))
		,				Ū						Ŭ,	,	,	
	=	> Also	need	to <u>verif</u>	y the s	ender'	s ident	ity befo	ore you	ı start	comm	unicatii	ng (ie,	how do	р ус
	KNO	w it the	ey are	who th	ey say	tney a	ire?)								
				1.1	1						1	1			

Confidentiality: Symmetric encryption

Public Key / Asymmetric Encryption

- Sender uses receiver's public key
 - Advertised to everyone
- Receiver uses complementary private key
 - Must be kept secret

How it works in TLS

- Type in your browser: https://www.amazon.com
- https = "Use HTTP over TLS"
 - TLS = Transport Layer Security
 - SSL = Secure Socket Layer (older version)
 - RFC 4346, and many others

Goal: provide security layer (authentication, encryption) on top of transport layer => Fairly transparent to the app (once set up)

TLS: setup

• First: TCP handshake

TLS: setup

TLS: setup Some OF THICKY

- First: TCP handshake
- Client sends over list of crypto protocols it supports
- Server picks crypto protocols to use for this session

- Use this to do two things:
 - Create shared session key
 - Verify server's identity

At startup, client/server must agree on what crypto methods to use—these are called ciphersuites => These cover what crypto algorithms are used for the different parts (key exchange, what asymmetric crypto to use, what symmetric crypto to use, hashing functions for integrity, etc.)

υχου, υχ αυ	ILS_DH_RSA_WITH_AES_128_GCM_SHA256	Y	N	<u>[RFC5288]</u>
0x00,0xA1	TLS_DH_R <mark>SA_</mark> WITH_AES_256_GCM_SHA384	Y	Ν	[RFC5288]
0x00,0xA2	TLS_DHE_DSS_WITH_AES_128_GCM_SHA256	Y	Ν	[RFC5288]
0x00,0xA3	TLS_ <mark>DHE_DSS_W</mark> ITH_AES_256_GCM_SHA384	Y	Ν	[RFC5288]
0x00,0xA4	TLS_DH_ <mark>DSS_WI</mark> TH_AES_128_GCM_SHA256	Y	Ν	[RFC5288]
0x00,0xA5	TLS_DH_D <mark>SS_W</mark> ITH_AES_256_GCM_SHA384	Y	Ν	[RFC5288]
0x00,0xA6	TLS_DH_anon_WITH_AES_128_GCM_SHA256	Y	Ν	[RFC5288]
0×00,0×A7	TLS_DH_anon_WITH_AES_256_GCM_SHA384	Y	Ν	[RFC5288]
0x00,0xA8	TLS_PSK_WITH_AES_128_GCM_SHA256	Y	Ν	[RFC5487]
0x00,0xA9	TLS_ <mark>PSK_WITH_</mark> AES_256_GCM_SHA384	Y	Ν	[RFC5487]
0×00,0×AA	TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	Y	Y	[RFC5487]
0x00,0xAB	TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	Y	Y	[RFC5487]
0x00,0xAC	TLS_ <mark>RSA_</mark> PSK_WITH_AES_128_GCM_SHA256	Y	Ν	[RFC5487]
0×00,0×AD	TLS <mark>_RSA_PSK_</mark> WITH_AES_256_GCM_SHA384	Y	Ν	[RFC5487]
0x00,0xAE	TLS_PSK_WITH_AES_128_CBC_SHA256	Y	Ν	[RFC5487]
0x00,0xAF	TLS_PSK_WITH_AES_256_CBC_SHA384	Y	Ν	[RFC5487]

TLS + Authentication

TLS Goals

Authentication: verifying that the entity on the other end of the connection is who they claim to be

- Technical aspects: crypto
- Social aspects
 - How to distribute keys to entities
 - What to do when things go wrong

Everything we've talked about so far relies on each server having a public/private key

The Challenge

The Challenge

Authentication challenges

- Challenge proves that the server at yourbank.com holds K_priv
- Does NOT prove belong to the server belongs to your bank, the real-life bank with your money

"But I'm visiting yourbank.com!"

- DNS COULD BE SPOORED - IP TRAFFIL MAY BE REDIRECTED (BGP SPOORING)

Authentication challenges

- Challenge proves that the server at yourbank.com holds K_priv
- Does NOT prove the server belongs to YourBank, the real-life bank that holds your money
- "But I'm visiting yourbank.com!"
- DNS can be spoofed
- Possible active network attacker (redirecting your IP traffic to malicious server)
- Domain names can expire and be re-registered...

Problem: distributing trust

How can we trust Kpub is Your Bank's public key? Problem: Trust distribution

- Hard to verify real-world identities
- Hard to scale to the whole Internet

Different protocols have different mechanisms => TLS (and others): Public Key Infrastructure (PKI) with certificates

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)

- Everyone knows public key for some <u>root CAs</u>
 - Pre-installed into browser/OS

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)

- Everyone knows public key for some root CAs
 - Pre-installed into browser/OS
- If X wants a public key, request from CA
 - CA validates X's identity, then signs X's public key
 - Generates certificate

XAS

PKI: The main idea TRUSTED ANTI MAY

Public keys managed by Certificate Authorities (CAs)

- Everyone knows public key for some root CAs
 - Pre-installed into browser/OS
- If X wants a public key, request from CA
 - CA validates X's identity, then signs X's public key
 - Generates certificate
- Client can verify $K_{pub,X}$ from CA's signature: Verify($K_{pub,CA}$ Cert) => True/False

=> Delegates trust for individual entity to a more trusted authority

DigiCert Assured ID Root CA

DigiCert Assured ID Root CA

Root certificate authority Expires: Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time This certificate is valid

- > Trust
- ✓ Details

Subject Name	
Country or Region	US
Organization	DigiCert Inc
Organizational Unit	www.digicert.com
Common Name	DigiCert Assured ID Root CA

Issuer Name

Country or Region	US
Organization	DigiCert Inc
Organizational Unit	www.digicert.com
Common Name	DigiCert Assured ID Root CA
Serial Number	0C E7 E0 E5 17 D8 46 FE 8F E5 60 FC 1B F0 30 39
Version	3
	QUA 1 with DOA Examination (10040440446)

Signature Algorithm SHA-1 with RSA Encryption (1.2.840.113549.1.1.5) Parameters None

Not Valid BeforeThursday, November 9, 2006 at 19:00:00 Eastern Standard TimeNot Valid AfterSunday, November 9, 2031 at 19:00:00 Eastern Standard Time

Public Key Info

 Algorithm
 RSA Encryption (1.2.840.113549.1.1.1)

 Parameters
 None

 Public Key
 256 bytes : AD 0E 15 CE E4 43 80 5C ...

 Exponent
 65537

 Key Size
 2,048 bits

 Key Usage
 Verify

Keychain Access

All Items Passwords Secure Notes My Certificates Keys Certificates

Amazon Root CA 1

Root certificate authority Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time This certificate is valid

Name	Kind	Date Modified	Expires	Keychain
🔄 AAA Certificate Services	certificate		Dec 31, 2028 at 18:59:59	System Roots
CRAIZ FNMT-RCM	certificate		Dec 31, 2029 at 19:00:00	System Roots
📴 Actalis Authentication Root CA	certificate		Sep 22, 2030 at 07:22:02	System Roots
📴 AffirmTrust Commercial	certificate		Dec 31, 2030 at 09:06:06	System Roots
📴 AffirmTrust Networking	certificate		Dec 31, 2030 at 09:08:24	System Roots
📴 AffirmTrust Premium	certificate		Dec 31, 2040 at 09:10:36	System Roots
📴 AffirmTrust Premium ECC	certificate		Dec 31, 2040 at 09:20:24	System Roots
📷 Amazon Root CA 1	certificate		Jan 16, 2038 at 19:00:00	System Roots
🛅 Amazon Root CA 2	certificate		May 25, 2040 at 20:00:00	System Roots
📷 Amazon Root CA 3	certificate		May 25, 2040 at 20:00:00	System Roots
📴 Amazon Root CA 4	certificate		May 25, 2040 at 20:00:00	System Roots
📴 ANF Global Root CA	certificate		Jun 5, 2033 at 13:45:38	System Roots
📴 Apple Root CA	certificate		Feb 9, 2035 at 16:40:36	System Roots
📴 Apple Root CA - G2	certificate		Apr 30, 2039 at 14:10:09	System Roots
📴 Apple Root CA - G3	certificate		Apr 30, 2039 at 14:19:06	System Roots
📷 Apple Root Certificate Authority	certificate		Feb 9, 2025 at 19:18:14	System Roots
🔁 Atos TrustedRoot 2011	certificate		Dec 31, 2030 at 18:59:59	System Roots
📷 Autoridad de Certificacion Firmaprofesional CIF A62634068	certificate		Dec 31, 2030 at 03:38:15	System Roots
🛅 Autoridad de Certificacion Raiz del Estado Venezolano	certificate		Dec 17, 2030 at 18:59:59	System Roots
📴 Baltimore CyberTrust Root	certificate		May 12, 2025 at 19:59:00	System Roots
🛅 Buypass Class 2 Root CA	certificate		Oct 26, 2040 at 04:38:03	System Roots
📴 Buypass Class 3 Root CA	certificate		Oct 26, 2040 at 04:28:58	System Roots
🛅 CA Disig Root R1	certificate		Jul 19, 2042 at 05:06:56	System Roots
🔁 CA Disig Root R2	certificate		Jul 19, 2042 at 05:15:30	System Roots
📷 Certigna	certificate		Jun 29, 2027 at 11:13:05	System Roots
🛅 Certinomis - Autorité Racine	certificate		Sep 17, 2028 at 04:28:59	System Roots
📷 Certinomis - Root CA	certificate		Oct 21, 2033 at 05:17:18	System Roots
📴 Certplus Root CA G1	certificate		Jan 14, 2038 at 19:00:00	System Roots
📴 Certplus Root CA G2	certificate		Jan 14, 2038 at 19:00:00	System Roots
📴 certSIGN ROOT CA	certificate		Jul 4, 2031 at 13:20:04	System Roots
Certum CA	certificate		Jun 11, 2027 at 06:46:39	System Roots
📴 Certum Trusted Network CA	certificate		Dec 31, 2029 at 07:07:37	System Roots

(i) Q Search

Q: are there other methods of delegating trust? - Web of trust: small group of parties that sign each other's keys => Have a threshold on how many signatures you need to be "trusted" => Doesn't scale to entire internet, but exists for small communities (esp. open-source software projects) - Trust on first use (TOFU) - ON first connection, ask user if they trust the public key (y/n) - If user says yes, trust key for all time - If public key changes later, something sketchy is happening => trust error => SSH (by default) Also: PKI comes up in other ways outside of TLS: - DNSSEC has a similar hierarchy (root zone ~= trusted CA) - Similar certificates used for secure email (S/MIME) or some other related authentication standards

What's in a certificate?

- Public key of entity (eg. yourbank.com)
- Common name: DNS name of server (yourbank.com)
- Contact info for organization
- Validity dates (start date, expire date)
- URL of revocation center to check if key has been revoked

All of this is part of the data signed by the CA => Critical to check all parts during TLS startup!

Cer	tifica	ite Viewe	r: www.c	s.browr	n.edu			×
Gen	eral	Details						
Cert	ificat	e Hierarchy	,					
- L	JSERT	rust RSA C	ertification	Authority	41	00 7		
	≂ InC	ommon RS	A Server C	A	MT			
		www.cs.br	own.edu	25	LAUM	/		
Cert	ificat	e Fields						
		Issuer						
	\bigtriangledown	Validity						
		Not Be	fore					
		Not Af	er					
		Subject						
	\bigtriangledown	Subject Pu	ıblic Key In	fo				
		Subjec	t Public Ke	y Algorithı	m			
		Subjec	t's Public k	Key 🧲				
Field	d Valu	е						
	:N = w) = Bro T = R : = US	ww.cs.bro own Univer hode Island	wn.edu sity 1					

DigiCert Assured ID Root CA

DigiCert Assured ID Root CA

Expires: Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

🗸 This certificate is valid

Root certificate authority

> Trust

Details

Subject Name Country or Region US Organization DigiCert Inc Organizational Unit www.digicert.com Common Name DigiCert Assured ID

Issuer Name

Country or RegionUSOrganizationDigiCert IncOrganizational Unitwww.digicert.comCommon NameDigiCert Assured ID

Note the dates: this cert is for a root CA, so it's valid for a super long time, 15 years!

This is because root CAs are very hard to change. If a root CA expires, everything signed by it is invalid

Most server certificates (ie, certs installed on average webservers) expire after 1 year, or less

Serial Number OC E7 E0 E5 17 D8 Version 3 Signature Algorithm SHA-1 with RSA Encryption (1.2.840.113549.1.1.5) Parameters None

Not Valid Before Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time Not Valid After Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

Public Key Info

 Algorithm
 RSA Encryption (1.2.840.113549.1.1.1)

 Parameters
 None

 Public Key
 256 bytes : AD 0E 15 CE E4 43 80 5C ...

 Exponent
 65537

 Key Size
 2,048 bits

Key Usage Verify

Keychain Access

All Items Passwords Secure Notes My Certificates Keys Certificates

Amazon Root CA 1

Root certificate authority Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time This certificate is valid

Name	Kind	Date Modified	Expires	Keychain
🔄 AAA Certificate Services	certificate		Dec 31, 2028 at 18:59:59	System Roots
CRAIZ FNMT-RCM	certificate		Dec 31, 2029 at 19:00:00	System Roots
📴 Actalis Authentication Root CA	certificate		Sep 22, 2030 at 07:22:02	System Roots
📴 AffirmTrust Commercial	certificate		Dec 31, 2030 at 09:06:06	System Roots
📴 AffirmTrust Networking	certificate		Dec 31, 2030 at 09:08:24	System Roots
📴 AffirmTrust Premium	certificate		Dec 31, 2040 at 09:10:36	System Roots
📴 AffirmTrust Premium ECC	certificate		Dec 31, 2040 at 09:20:24	System Roots
📷 Amazon Root CA 1	certificate		Jan 16, 2038 at 19:00:00	System Roots
🛅 Amazon Root CA 2	certificate		May 25, 2040 at 20:00:00	System Roots
📷 Amazon Root CA 3	certificate		May 25, 2040 at 20:00:00	System Roots
📷 Amazon Root CA 4	certificate		May 25, 2040 at 20:00:00	System Roots
📴 ANF Global Root CA	certificate		Jun 5, 2033 at 13:45:38	System Roots
📷 Apple Root CA	certificate		Feb 9, 2035 at 16:40:36	System Roots
🛅 Apple Root CA - G2	certificate		Apr 30, 2039 at 14:10:09	System Roots
📴 Apple Root CA - G3	certificate		Apr 30, 2039 at 14:19:06	System Roots
📷 Apple Root Certificate Authority	certificate		Feb 9, 2025 at 19:18:14	System Roots
📴 Atos TrustedRoot 2011	certificate		Dec 31, 2030 at 18:59:59	System Roots
📷 Autoridad de Certificacion Firmaprofesional CIF A62634068	certificate		Dec 31, 2030 at 03:38:15	System Roots
🛅 Autoridad de Certificacion Raiz del Estado Venezolano	certificate		Dec 17, 2030 at 18:59:59	System Roots
📴 Baltimore CyberTrust Root	certificate		May 12, 2025 at 19:59:00	System Roots
🛅 Buypass Class 2 Root CA	certificate		Oct 26, 2040 at 04:38:03	System Roots
📴 Buypass Class 3 Root CA	certificate		Oct 26, 2040 at 04:28:58	System Roots
🛅 CA Disig Root R1	certificate		Jul 19, 2042 at 05:06:56	System Roots
🔁 CA Disig Root R2	certificate		Jul 19, 2042 at 05:15:30	System Roots
📴 Certigna	certificate		Jun 29, 2027 at 11:13:05	System Roots
🛅 Certinomis - Autorité Racine	certificate		Sep 17, 2028 at 04:28:59	System Roots
🛅 Certinomis - Root CA	certificate		Oct 21, 2033 at 05:17:18	System Roots
📴 Certplus Root CA G1	certificate		Jan 14, 2038 at 19:00:00	System Roots
📴 Certplus Root CA G2	certificate		Jan 14, 2038 at 19:00:00	System Roots
📴 certSIGN ROOT CA	certificate		Jul 4, 2031 at 13:20:04	System Roots
Certum CA	certificate		Jun 11, 2027 at 06:46:39	System Roots
📴 Certum Trusted Network CA	certificate		Dec 31, 2029 at 07:07:37	System Roots

(i) Q Search

PKI hierarchy

In reality, PKI creates a hierarchy of trust:

- <u>Root CAs</u>: k_{pub} stored in virtually every browser, OS

 Private keys protected by most stringent security measures (software, hardware, physical)
- Intermediate CAs: k_{pub} signed by root CA
 - Sign certificates for general use (ie, regular websites)
 - Doesn't require same protections as root
- General-use certificates: for a specific webserver

What happens if a root is compromised?

COULD SIGN 7 LNY CENTIFICATE!

How the hierarchy works

How the hierarchy works

=> OK if verification passes and metadata correct:

Your connection is not private

Attackers might be trying to steal your information from **nd.lsacc.net** (for example, passwords, messages, or credit cards). Learn more

NET::ERR_CERT_COMMON_NAME_INVALID

Advanced

Back to safety

Most common TLS errors you might see

- · Common name invalid (NAME IN CERT 7 DOMAIN NAME)
- Self-signed
- Certificate expired

When is it okay to click "proceed"? What happens if you do?

=> Might occur if webserver configured improperly, or if you're setting up a system
BUT NOT FOR YOVE BUK, (OR BODWN)

Rogue Certificates?

- In 2011, DigiNotar, a Dutch root certificate authority, was compromised
- The attacker created rogue certificates for popular domains like google.com and yahoo.com
- DigiNotar was distrusted by browsers and filed for bankruptcy
- See the incident investigation report by Fox-IT

- In 2017, Google questioned the certificate issuance policies and practices of Symantec
- Google's Chrome would start distrusting Symantec's certificates unless certain remediation steps were taken
- See <u>back and forth</u> between Ryan Sleevi (Chromium team) and Symantec
- The matter was settled with <u>DigiCert acquiring Symantec's</u> <u>certificate business</u>

TLS decryption

What happens when an organization wants to view TLS traffic on its network?

Some corporate networks want to view TLS traffic to ensure compliance with policy => Forward all traffic through TLS interceptor: client does TLS handshake with interceptor, then interceptor connects to actual server, allowing it to see all data

=> When A does the TLS handshake with the interceptor, it gets back a fake certificate from the interceptor, not B. How does this pass verification? Company needs to install a CA on A

=> This is intentional traffic interception/spoofing-thoughts?

- Encrypted traffic from the client is intercepted by Thunder SSLi and decrypted.
- (2) Thunder SSLi sends the decrypted traffic to a security device, which inspects it in clear-text.
- The security device, after inspection, sends the traffic back to Thunder SSLi, which intercepts and re-encrypts it.
- 4 Thunder SSLi sends the re-encrypted traffic to the server.

- 5 The server processes the request and sends an encrypted response to Thunder SSLi.
- 6 Thunder SSLi decrypts the response traffic and forwards it to the same security device for inspection.
- Thunder SSLi receives the traffic from the security device, re-encrypts it and sends it to the client.

PKIs, TLS, and HTTPS

As of July 2021, the Trustworthy Internet Movement estimated the ratio of websites that are vulnerable to TLS attacks.^[71]

Survey of the TLS vulnerabilities of the most popular websites								
Attocko		Security						
Allacks	Insecure	Depends	Secure	Other				
Renegotiation attack	0.1% support insecure renegotiation	<0.1% support both	99.2% support secure renegotiation	0.7% no support				
RC4 attacks	0.4% support RC4 suites used with modern browsers	6.5% support some RC4 suites	93.1% no support	N/A				
TLS Compression (CRIME attack)	ression (CRIME attack) >0.0% vulnerable		N/A	N/A				
Heartbleed	>0.0% vulnerable	N/A	N/A	N/A				
ChangeCipherSpec injection attack	0.1% vulnerable and exploitable	0.2% vulnerable, not exploitable	98.5% not vulnerable	1.2% unknown				
POODLE attack against TLS (Original POODLE against SSL 3.0 is not included)	0.1% vulnerable and exploitable	0.1% vulnerable, not exploitable	99.8% not vulnerable	0.2% unknown				
Protocol downgrade	6.6% Downgrade defence not supported	N/A	72.3% Downgrade defence supported	21.0% unknown				

Wikipedia table, source: https://www.ssllabs.com/ssl-pulse/

Keychain Access

All Items Passwords Secure Notes My Certificates Keys Certificates

Amazon Root CA 1

Root certificate authority Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time This certificate is valid

Name	Kind	Date Modified	Expires	Keychain
Cartificate Services	certificate		Dec 31, 2028 at 18:59:59	System Roots
CRAIZ FNMT-RCM	certificate		Dec 31, 2029 at 19:00:00	System Roots
🛅 Actalis Authentication Root CA	certificate		Sep 22, 2030 at 07:22:02	System Roots
📴 AffirmTrust Commercial	certificate		Dec 31, 2030 at 09:06:06	System Roots
📴 AffirmTrust Networking	certificate		Dec 31, 2030 at 09:08:24	System Roots
📴 AffirmTrust Premium	certificate		Dec 31, 2040 at 09:10:36	System Roots
📴 AffirmTrust Premium ECC	certificate		Dec 31, 2040 at 09:20:24	System Roots
📴 Amazon Root CA 1	certificate		Jan 16, 2038 at 19:00:00	System Roots
🛅 Amazon Root CA 2	certificate		May 25, 2040 at 20:00:00	System Roots
📷 Amazon Root CA 3	certificate		May 25, 2040 at 20:00:00	System Roots
📷 Amazon Root CA 4	certificate		May 25, 2040 at 20:00:00	System Roots
📴 ANF Global Root CA	certificate		Jun 5, 2033 at 13:45:38	System Roots
📷 Apple Root CA	certificate		Feb 9, 2035 at 16:40:36	System Roots
📷 Apple Root CA - G2	certificate		Apr 30, 2039 at 14:10:09	System Roots
📴 Apple Root CA - G3	certificate		Apr 30, 2039 at 14:19:06	System Roots
📷 Apple Root Certificate Authority	certificate		Feb 9, 2025 at 19:18:14	System Roots
🛅 Atos TrustedRoot 2011	certificate		Dec 31, 2030 at 18:59:59	System Roots
📷 Autoridad de Certificacion Firmaprofesional CIF A62634068	certificate		Dec 31, 2030 at 03:38:15	System Roots
📷 Autoridad de Certificacion Raiz del Estado Venezolano	certificate		Dec 17, 2030 at 18:59:59	System Roots
📴 Baltimore CyberTrust Root	certificate		May 12, 2025 at 19:59:00	System Roots
🛅 Buypass Class 2 Root CA	certificate		Oct 26, 2040 at 04:38:03	System Roots
📴 Buypass Class 3 Root CA	certificate		Oct 26, 2040 at 04:28:58	System Roots
🔁 CA Disig Root R1	certificate		Jul 19, 2042 at 05:06:56	System Roots
🔁 CA Disig Root R2	certificate		Jul 19, 2042 at 05:15:30	System Roots
📴 Certigna	certificate		Jun 29, 2027 at 11:13:05	System Roots
🔁 Certinomis - Autorité Racine	certificate		Sep 17, 2028 at 04:28:59	System Roots
🛅 Certinomis - Root CA	certificate		Oct 21, 2033 at 05:17:18	System Roots
📴 Certplus Root CA G1	certificate		Jan 14, 2038 at 19:00:00	System Roots
📴 Certplus Root CA G2	certificate		Jan 14, 2038 at 19:00:00	System Roots
📴 certSIGN ROOT CA	certificate		Jul 4, 2031 at 13:20:04	System Roots
📴 Certum CA	certificate		Jun 11, 2027 at 06:46:39	System Roots
📴 Certum Trusted Network CA	certificate		Dec 31, 2029 at 07:07:37	System Roots

(i) Q Search