
CSCI-1680
TLS

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti
1

Administrivia

• If you haven’t scheduled a TCP grading meeting, please do so

• HW4 (short): Out today, due next Friday

• Final project: short proposal due Friday (no late days!)
– Will send team confirmation/repo link today

2

This is not a security class
(as much as I would like it to be…)

• This isn’t intended to be a lecture on all crypto

• I want you to appreciate the important principles, understand what’s
important for TLS (and other protocols like it)

Want to know more?
• CS1660 (Spring): Intro to Computer Systems Security
• CS1515 (Spring): Applied cryptography
• CS1510 (Fall): Intro to Cryptography and Computer Security

3

a

Internet’s Design: Insecure

• Designed for simplicity in a naïve era
• Lots of insecure systems that can be compromised

• No central administration => hard to diagnose, coordinate fixes

4

You
yourbank.com

What can go wrong?

Attacker

5

D 0100 X
H YM Yonment

IMPERSONATION

IEtY eN
DENIAL OF
AVAILABILITY

(some) Key security properties

• Confidentiality: prevent adversary from reading the data
=> Protect against eavesdropping, sniffing

• Authentication: verifying the identity of a message or actor
 => Protect against spoofing, impersonation

• Integrity: make sure messages arrive in original form
=> Protect against tampering

There are more security properties, but we’ll stick to these => Focus of TLS

8

Other important security properties

• Availability: Will the network deliver data?
– Protect against infrastructure compromise, DDoS

• Provenance: Who is responsible for this data?
– Prevent forging responses, denying responsibility; prove who created the data

• Authorization: is actor allowed to do this action?
• Appropriate use: is action consistent with policy? (spam, copyright, …)
• Anonymity: can someone tell what packets I am sending?

9

NEXT LECTURE

TLS: Transport layer security

TLS 1.0 (1999) => TLS 1.3 (2018)
Bidirectional pipe between two parties providing:

– Confidentiality
– Integrity
– Authentication

10

SSL
8 HTTPS

5

i

TLS: Transport layer security
Bidirectional pipe between two parties providing:

– Confidentiality
– Integrity
– Authentication

Are these all the security properties we might want? No!

You yourbank.com

11

I

Where does TLS go?

Network

Link

Physical

Transport

Application

Service: move bits to other node across link

Move data across individual links

Moving data between hosts (nodes)

How to support multiple applications?

Service: user-facing application.
Application-defined messages

12

17
to

4
TCI UDT

13

L2

L1

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Application Protocol

Transport Protocol

Network Protocol

Link-Layer Protocol

Throwback: The OSI model

13

I

Fundamental crypto properties we need

15

Symmetric cryptography

• A, B share secret key k
• Examples: AES, Serpent, Whirlpool, DES (old, insecure), …
• Provides: confidentiality (encrypt/decrypt), integrity (MAC)

Symmetric crypto: strong, fast, but parties need to have shared key k
=> Key distribution is hard, why?

16

0 A C
B

This provides: confidentiality

Attacker can only see ciphertext. If encryption scheme is strong, adversary can’t learn
anything about m

 - (Unless they can steal k somehow. . .)

Examples: AES, DES (old, insecure), Serpent, Whirlpool, …

Key properties

 - Symmetric crypto is fast (relative to other crypto in our toolkit). Modern CPUs even have
hardware support for AES, the most common symmetric scheme

 => Most data is protected using symmetric crypto

However: need to exchange a shared key beforehand

 How to do this if you 1) can’t send k over the network in the clear, and 2) need keys for
everyone you might talk to?

 => There exist crypto protocols to establish a shared key without sending it over the
network (beyond this course—eg. look up Diffie-Hellman Key Exchange (DHKE) for one)

 => Also need to verify the sender’s identity before you start communicating (ie, how do you
know if they are who they say they are?)

Brief overview: symmetric crypto

Setup:

 - A wants to send message m

 - A, B agree on secret key K

 => Must be exchanged beforehand using some other secure method

A encrypts message with key
k, sends ciphertext c

c = Enc(k, m)

B decrypts c to recover
original message

m = Dec(k, c)

Confidentiality: Symmetric encryption

Internet
Encrypt with
secret key

Decrypt with
secret key

Plaintext Plaintext

Ciphertext

17

A B
m = Enc(Kpriv_B, c)

Brief overview: asymmetric crypto

Setup:

 - A and B each have a public/private key pair (eg. Kpub_A, Kpriv_A)

 - Kpub is known to everyone, Kpriv is kept secret

From here, there are two fundamental operations we can perform:

 - Encryption/Decryption: like before, but now taking advantage of two keys

 - Signing and verification: used to verify a message came from a specific
party (next page)

c = Enc(Kpub_B, m)

This is pretty powerful: can encrypt a message for B without a shared key!

However: asymmetric crypto is very slow (orders or magnitude slower than symmetric
crypto)

=> Used for authenticating at connection start (more on this in a moment)

=> Use asymmetric crypto to establish a symmetric key at session start, use for rest of
connection

I) Asymmetric encryption

 1. A encrypts message with B’s public key, Kpub,B

 2. B can decrypt with its private key Kpriv,B

s = Sign(Kriv_A, m) b = Verify(Kpub_A, m, s)

Also pretty powerful: anyone can verify that m was signed by A’s private key
 => Assuming that A’s private key is indeed private (only A has it), this means only A
could have signed the message

Some notes
 - This is also slow, like asymmetric encryption/decryption

 - Could also encrypt the message, but also important to sign public info: for example, an
open-source developer might sign a software update to prove it’s legitimate

 - (not necessary for this class) Signing has another important crypto property: non-
repudiation, meaning A can’t prove it didn’t sign message m

II) Signatures and verification

Idea: want to use public key crypto to verify a message came from a certain
party

A signs message (or hash of message) with its private key
1.
 => Produces a signature: a small value like a hash

2. B can verify the signature using A’s public key

 => Outputs a true if message was signed with Kpriv_A, otherwise false

Public Key / Asymmetric Encryption

• Sender uses receiver’s public key
– Advertised to everyone

• Receiver uses complementary private key
– Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

20

How it works in TLS

• Type in your browser: https://www.amazon.com
• https = “Use HTTP over TLS”

– TLS = Transport Layer Security
– SSL = Secure Socket Layer (older version)
– RFC 4346, and many others

Goal: provide security layer (authentication, encryption) on top of transport layer
=> Fairly transparent to the app (once set up)

23

TLS: setup

• First: TCP handshake
SYN

SYN ACK

ACK

Browser Amazon

24

TLS: setup

• First: TCP handshake
• Client sends over list of crypto

protocols it supports
• Server picks crypto protocols to use

for this session

SYN

SYN ACK

ACK

Browser Amazon

Hello. I support(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~1 KB of data
25

TEE

TLS: setup

• First: TCP handshake
• Client sends over list of crypto

protocols it supports
• Server picks crypto protocols to use

for this session

• Use this to do two things:
– Create shared session key
– Verify server’s identity

SYN

SYN ACK

ACK

Browser Amazon

Hello. I support(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~1 KB of data
26

1
STE I Int tricky

I

27

W SYMMETRIC PART ENC INTEGRITY
AUTHKEYEXCHANGE ASTM

At startup, client/server must agree on what crypto methods to use—these are called ciphersuites

 => These cover what crypto algorithms are used for the different parts (key exchange, what asymmetric
crypto to use, what symmetric crypto to use, hashing functions for integrity, etc.)

28

TLS + Authentication

TLS Goals

Authentication: verifying that the entity on the other end of the connection is
who they claim to be
• Technical aspects: crypto
• Social aspects

– How to distribute keys to entities
– What to do when things go wrong

30

TLS: relies on Public Key Infrastructure (PKI)
via certificates

Everything we’ve talked about so far relies on
each server having a public/private key

The Challenge

31

yourbank.comYou
(...part of handshake...)

Kpub,bank.com

pa

The Challenge

What does this prove?

33

yourbank.comYou
(...part of handshake...)

Kpub,bank.com
Pick challenge x

Enc(Kpub,bank.com, x)
x' = Dec(Kpriv, x)

x'
x ?= x'

a

ENDPOINT YOU ARE TALKING
TO HAS PRIVATE KEY

Authentication challenges

• Challenge proves that the server at yourbank.com holds K_priv
• Does NOT prove belong to the server belongs to your bank, the real-life

bank with your money

"But I'm visiting yourbank.com!"

35

DNS COULD BE SPOOFED
IP TRAFFIC MAY BE REDIRECTED

BGP SPOOFING

Authentication challenges

• Challenge proves that the server at yourbank.com holds K_priv
• Does NOT prove the server belongs to YourBank, the real-life bank that

holds your money

"But I'm visiting yourbank.com!"
• DNS can be spoofed
• Possible active network attacker (redirecting your IP traffic to

malicious server)
• Domain names can expire and be re-registered...

36

Problem: distributing trust

How can we trust Kpub is Your Bank's public key?
Problem: Trust distribution
• Hard to verify real-world identities
• Hard to scale to the whole Internet

Different protocols have different mechanisms
 => TLS (and others): Public Key Infrastructure (PKI) with certificates

37

38

PKI: The main idea
Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

CA

41

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA validates X's identity, then signs X's public key
– Generates certificate

CA

Kpub,X

$$$ (usually)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}

EVERYONE HAS
KPODCA

43

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
• Everyone knows public key for some root CAs

– Pre-installed into browser/OS

• If X wants a public key, request from CA
– CA validates X's identity, then signs X's public key
– Generates certificate

• Client can verify Kpub,X from CA's signature:
 Verify(Kpub,CA Cert) => True/False

CA

Kpub,X

$$$ (usually)

s = Sign(Kpriv,CA, {Kpub,X, ... })

Cert = {Kpub,X, metadata, s}

=> Delegates trust for individual entity to a more trusted authority

TRUSTED
AUTHORITY

I

p
i

44

I

45

1

Q: are there other methods of delegating trust?

 - Web of trust: small group of parties that sign each other’s
keys

 => Have a threshold on how many signatures you need to be
“trusted”

 => Doesn’t scale to entire internet, but exists for small
communities (esp. open-source software projects)

 - Trust on first use (TOFU)

 - ON first connection, ask user if they trust the public key
(y/n)

 - If user says yes, trust key for all time

 - If public key changes later, something sketchy is
happening => trust error

 => SSH (by default)

Also: PKI comes up in other ways outside of TLS:

 - DNSSEC has a similar hierarchy (root zone ~= trusted CA)

 - Similar certificates used for secure email (S/MIME) or some

 other related authentication standards

What's in a certificate?

• Public key of entity (eg. yourbank.com)
• Common name: DNS name of server (yourbank.com)
• Contact info for organization
• Validity dates (start date, expire date)
• URL of revocation center to check if key has been revoked

47

All of this is part of the data signed by the CA
=> Critical to check all parts during TLS startup!

48

What’s in a certificate?

49

I

Note the dates: this cert is for a root CA, so it’s
valid for a super long time, 15 years!

This is because root CAs are very hard to change.
If a root CA expires, everything signed by it is
invalid

Most server certificates (ie, certs installed on
average webservers) expire after 1 year, or less

50

PKI hierarchy

In reality, PKI creates a hierarchy of trust:
• Root CAs: kpub stored in virtually every browser, OS
– Private keys protected by most stringent security measures

(software, hardware, physical)

• Intermediate CAs: kpub signed by root CA
– Sign certificates for general use (ie, regular websites)
– Doesn't require same protections as root

• General-use certificates: for a specific webserver

52
What happens if a root is compromised?

COULDSIGN

M ANYCERTIFICAT

How the hierarchy works

54

B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

How the hierarchy works

56

B
(yourbank.com)Client

(TLS handshake)

{CertB, CertInt}
Kpub,Root

Ex. Server has certificate from Intermediate CAInt

B has:
• Kpriv,B
• CertB = { Kpub,B, Sign(Kpub,B, Kpriv,Int), ... }

Client's workflow:
• Checks metadata ✅
• Verify(CertB, Kpub,Int) ✅
• Verify(CertInt, Kpub,Root) ✅ => To verify integrity, need to verify certificates back to

(trusted) root certificate
=> OK if verification passes and metadata correct: !

DATESNAMES i

57

Most common TLS errors you might see

• Common name invalid
• Self-signed
• Certificate expired

 When is it okay to click "proceed"? What happens if you do?

59

=> Might occur if webserver configured improperly, or if you're
setting up a system

NAME IN CERT I DOMAIN NAME

BUTNOTFOR YOUR BANK
ORBROWN

Rogue Certificates?

• In 2011, DigiNotar, a Dutch root certificate authority, was
compromised

• The attacker created rogue certificates for popular domains like
google.com and yahoo.com

• DigiNotar was distrusted by browsers and filed for bankruptcy
• See the incident investigation report by Fox-IT

60

http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1.html

• In 2017, Google questioned the certificate issuance policies and
practices of Symantec

• Google’s Chrome would start distrusting Symantec’s certificates
unless certain remediation steps were taken

• See back and forth between Ryan Sleevi (Chromium team) and
Symantec

• The matter was settled with DigiCert acquiring Symantec’s
certificate business

61

https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/

TLS decryption

What happens when an organization wants to view TLS traffic on its network?

62

TLS HANDSHAKE

µ
the interceptor_qBPLAINTEXT DATA

CERTINTERCEPTOR

NEEDS CA FOR INTERCEPTOR
Some corporate networks want to view TLS traffic to ensure compliance with policy

=> Forward all traffic through TLS interceptor: client does TLS handshake with interceptor, then
interceptor connects to actual server, allowing it to see all data

 => When A does the TLS handshake with the interceptor, it gets back a fake certificate from the
interceptor, not B. How does this pass verification? Company needs to install a CA on A

 => This is intentional traffic interception/spoofing—thoughts?

63

Example: https://www.a10networks.com/products/thunder-ssli/

https://www.a10networks.com/products/thunder-ssli/

64

PKIs, TLS, and HTTPS

Server

Wikipedia table, source: https://www.ssllabs.com/ssl-pulse/79

80

