CSCI-1680
TLS

Nick DeMarinis

1
Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

* If you haven't scheduled a TCP grading meeting, please do so

* HWA4 (short): Out today, due next Friday

* Final project: short proposal due Friday (no late days!)

— Will send team confirmation/repo link today

This is not a security class
(as much as | would like it to be...)

* Thisisn't intended to be a lecture on all crypto

| want you to appreciate the important principles, understand what's
important for TLS (and other protocols like it)

Want to know more?

« CS51660 (Spring): Intro to Computer Systems Security

« CS1515 (Spring): Applied cryptography

« CS1510 (Fall): Intro to Cryptography and Computer Security

Internet’s Design: Insecure

« Designed for simplicity in a naive era
* Lots of insecure systems that can be compromised

* No central administration => hard to diagnose, coordinate fixes

What can go wrong?

-

Attacker

(some) Key security properties

« Confidentiality

e Authentication

* Integrity

(some) Key security properties

+ Confidentiality: prevent adversary from reading the data
=> Protect against eavesdropping, sniffing

 Authentication: verifying the identity of a message or actor
=> Protect against spoofing, impersonation

* Integrity: make sure messages arrive in original form
=> Protect against tampering

(some) Key security properties

+ Confidentiality: prevent adversary from reading the data
=> Protect against eavesdropping, sniffing

 Authentication: verifying the identity of a message or actor
=> Protect against spoofing, impersonation

* Integrity: make sure messages arrive in original form
=> Protect against tampering

[There are more security properties, but we'll stick to these => Focus of TLS }

8

Other important security properties

* Availability: Will the network deliver data?
— Protect against infrastructure compromise, DDoS

* Provenance Who is responsible for this data?
— Prevent forging responses, denying responsibility; prove who created the data

e Authorization: is actor allowed to do this action?

» Appropriate use: is action consistent with policy? (spam, copyright, ...)

* Anonymity: can someone tell what packets [am sending?

TLS: Transport layer security

TLS 1.0 (1999) => TLS 1.3 (2018)

Bidirectional pipe between two parties providing:
— Confidentiality
— Integrity
— Authentication

10

TLS: Transport layer security

Bidirectional pipe between two parties providing:
— Confidentiality
— Integrity
— Authentication

—o_—-
.

[Are these all the security properties we might want? No!

[Y/

Where does TLS go?

Application

Transport How to support multiple applications?

Network Moving data between hosts (nodes)

Link Move data across individual links

Service: move bits to other node across link

Physical

Throwback: The OSI model

End host

Application Protocol
Application

Presentation Presentation
Session Session

Transport Protocol

™ e - = = - - W W W

*Networ rOtOCQ e cm—

Network == mr == == ==

Network Network ~ == Network

ink-Layer Protocolmmmy amm—

Data link «= w - - SN Data link == == = «= Data link

ii

Physical Physical ~~— Physical Physical

One or more nodes
within the network

13

14

Fundamental crypto properties we neead

15

Symmetric cryptography

* A, B share secret key k
» Examples: AES, Serpent, Whirlpool, DES (old, insecure), ...
* Provides: confidentiality (encrypt/decrypt), integrity (MAC)

Symmetric crypto: strong, fast, but parties need to have shared key k
=> Key distribution is hard, why?

16

Confidentiality: Symmetric encryption

Plaintext Plaintext

Encrypt with
secret key

Decrypt with
secret key

17

Confidentiality: Asymmetric encryption

Everyone has two keys: k_pub, k_priv

18

Confidentiality: Asymmetric encryption

» Everyone has two keys: k_pub, k_priv
— k_pub: Public key, widely-known
— k_priv: Private key, kept secret

« Used for: authentication, signing (and confidentiality, integrity)

19

Public Key / Asymmetric Encryption

 Sender uses receiver’s public key
— Advertised to everyone

* Receiver uses complementary private key
— Must be kept secret

Plaintext Plaintext

Encrypt with Decrypt with

public key private key

20

What can we do with this?

21

Public Key Authentication

Each side need only to know the other side’s public key
— No secret key need be shared

A encrypts a nonce (random number) x using B’s public key

B proves it can recover x
A can authenticate itself to B in the same way A

S Publig,)

22

How it works in TLS

* Type in your browser: https://www.amazon.com

* https = “Use HTTP over TLS”
— TLS = Transport Layer Security

— SSL = Secure Socket Layer (older version)
— RFC 4346, and many others

Goal: provide security layer (authentication, encryption) on top of transport layer
=> Fairly transparent to the app (once set up)

23

e First: TCP handshake

TLS: setup

Browser Amazon

SYN

AC\K
y

ACK

24

TLS: setup

First: TCP handshake

Client sends over list of crypto
protocols it supports

Server picks crypto protocols to use
for this session

Browser

Amazon

25

TLS: setup

First: TCP handshake

Client sends over list of crypto
protocols it supports

Server picks crypto protocols to use
for this session

Use this to do two things:
— Create shared session key
— Verify server’s identity

, Al |
L?si\éssew AEs12858
T L
Here’ S m CeYt

ala

Amazon

26

IX00 , OXAU
0x00,0xAl
0x00,0xA2
0x00,0xA3
0x00,0xA4
0x00,0xA5
0x00,0xA6
0x00,0xA7
0x00,0xA8
0x00,0xA9
0x00,0xAA
0x00,0xAB
0x00,0xAC
0x00,0xAD
0x00,0xAE
0x00,0xAF

DH RSA WITH A 3 VI_SHAZ56
TLS_DH_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
TLS_DH_DSS_WITH_AES_128_GCM_SHA256
TLS_DH_DSS_WITH_AES_256_GCM_SHA384
TLS_DH_anon_WITH_AES_128_GCM_SHA256
TLS_DH_anon_WITH_AES_256_GCM_SHA384
TLS_PSK_WITH_AES_128_GCM_SHA256

TLS_PSK_WITH_AES_256_GCM_SHA384

TLS_DHE_PSK_WITH_AES_128_GCM_SHA256
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384
TLS_RSA_PSK_WITH_AES_128_GCM_SHA256
TLS_RSA_PSK_WITH_AES_256_GCM_SHA384
TLS_PSK_WITH_AES_128_CBC_SHA256

TLS_PSK_WITH_AES_256_CBC_SHA384

< < < < < << <=<=<=<=<=< =< <

|

Z2 22 Z < < zZzzZzzZzzZzzZzzZzZzZZ

[RFC5288]
[RFC5288]
[RFC5288]
[RFC5288]
[RFC5288]
[RFC5288]
[RFC5288]
[RFC5487]
[RFC5487]
[RFC5487]
[RFC5487]
[RFC5487]
[RFC5487]
[RFC5487]
[RFC5487]

TLS + Authentication

28

TLS Goals

Authentication: veritying that the entity on the other end of the connection is
who they claim to be

29

TLS Goals

Authentication: veritying that the entity on the other end of the connection is
who they claim to be

 Technical aspects: crypto
* Social aspects

— How to distribute keys to entities
— What to do when things go wrong

TLS: relies on Public Key Infrastructure (PKI)
via certificates

30

The Challenge

(...part of handshake...)

-
L

Kpub,bank.com

31

Pick challenge x

The Challenge

(...part of handshake...)

-
L

Kpub,bank.com

Enc(Kpub,bank.com, x)

32

The Challenge

(...part of handshake...) .
Kpub,bank.com
Pick challenge x
Enc(Kpub,bank.com, x) J
x' = Dec(Kpriv, x)
Xl
X ?= X' <

What does this prove?

33

Authentication challenges

* Challenge proves that the server at yourbank.com holds K_priv

* Does NOT prove belong to the server belongs to your bank, the real-life
bank with your money

34

Authentication challenges

* Challenge proves that the server at yourbank.com holds K_priv

* Does NOT prove belong to the server belongs to your bank, the real-life
bank with your money

"But I'm visiting yourbank.com!"

35

Authentication challenges

* Challenge proves that the server at yourbank.com holds K_priv

* Does NOT prove the server belongs to YourBank, the real-life bank that
holds your money

"But I'm visiting yourbank.com!"
* DNS can be spoofed

 Possible active network attacker (redirecting your IP traffic to
malicious server)

* Domain names can expire and be re-registered...

36

Problem: distributing trust

How can we trust Kpub is Your Bank's public key?
Problem: Trust distribution

« Hard to verity real-world identities

« Hard to scale to the whole Internet

Different protocols have different mechanisms
=> TLS (and others): Public Key Infrastructure (PKI) with certificates

37

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)

 Everyone knows public key for some root CAs
— Pre-installed into browser/OS

CA

38

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)

 Everyone knows public key for some root CAs
— Pre-installed into browser/OS

* |t X wants a public key, request from CA
— CA validates X's identity, then signs X's public key

Kpub,X

5SS (usually)

CA

39

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)

 Everyone knows public key for some root CAs
— Pre-installed into browser/OS

» If X wants a public key, request from CA
— CA validates X's identity, then signs X's public key
— Generates certificate

Kpub,X

5SS (usually)

CA

40

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)

 Everyone knows public key for some root CAs
— Pre-installed into browser/OS

» If X wants a public key, request from CA
— CA validates X's identity, then signs X's public key
— Generates certificate

Kpub,X

5SS (usually)

CA

|

S= Sign(Kpriv,CAr {Kpub,Xr })

Cert = {K,,, x, metadata, s}

41

PKI: The main idea

Public keys managed by Certificate Authorities (CAs)
 Everyone knows public key for some root CAs

— Pre-installed into browser/QOS

* |t X wants a public key, request from CA
— CA validates X's identity, then signs X's public key
— Generates certificate
» Client can verify K, x from CA's signature:
Verify(Kop ca Cert) => True/False

Kpub,X

5SS (usually)

CA

|

S= Sign(Kpriv,CAr {Kpub,Xr })

Cert = {K,,px, metadata, s}

42

PKI: The main idea

Public keys managed by Certificate Authorities (CAs) Koun x

» Everyone knows public key for some root CAs 555 (usually)
— Pre-installed into browser/OS

» It X wants a public key, request from CA A

— CA validates X's identity, then signs X's public key
— Generates certificate
» Client can verity K, x from CA's signature:
Verify(K,p,ca Cert) => True/False

S= Sign(Kpriv,CAr {Kpub,Xr })

Cert = {K,,p x, metadata, s}

[=> Delegates trust for individual entity to a more trusted authority }

43

DigiCert Assured ID Root CA

DigiCert Assured ID Root CA

Root certificate authority

Expires: Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time
@ This certificate is valid

Trust
Details
Subject Name
Country or Region
Organization
Organizational Unit
Common Name

Issuer Name
Country or Region
Organization
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info
Algorithm
Parameters
Public Key
Exponent

Key Size

Key Usage

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

OC E7 EO E5 17 D8 46 FE 8F E5 60 FC 1B FO 30 39
3

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
None

Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time
Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : AD OE 15 CEE4 4380 5C ...
65537

2,048 bits

Verify

Keychain Access

All Items Passwords Secure Notes My Certificates Keys Certificates

oot

>
(6 Jerlifieate

Amazon Root CA 1
Root certificate authority
Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time

@ This certificate is valid

4
)
3
o

1 5 5

1 7 1 KD

A

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial

AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

What's in a certificate?

« Public key of entity (eg. yourbank.com)
 Common name: DNS name of server (yourbank.com)
« Contact info for organization

46

What's in a certificate?

Public key of entity (eg. yourbank.com)

Common name: DNS name of server (yourbank.com)
Contact info for organization

Validity dates (start date, expire date)

URL of revocation center to check if key has been revoked

All of this is part of the data signed by the CA
=> Critical to check all parts during TLS startup!

a7

Certificate Viewer: www.cs.brown.edu

General | Details
Certificate Hierarchy

v USERTrust RSA Certification Authority
¥ InCommon RSA Server CA

www.cs.brown.edu

Certificate Fields

Issuer
v Validity
Not Before
Not After

Subject

v Subject Public Key Info

Subject Public Key Algorithm

Subject's Public Key

Field Value

CN = www.cs.brown.edu
O = Brown University
ST = Rhode Island
CcC=Us

48

DigiCert Assured ID Root CA

DigiCert Assured ID Root CA

Root certificate authority

Expires: Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time
@ This certificate is valid

Trust
Details
Subject Name
Country or Region
Organization
Organizational Unit
Common Name

Issuer Name
Country or Region
Organization
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info
Algorithm
Parameters
Public Key
Exponent

Key Size

Key Usage

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

OC E7 EO E5 17 D8 46 FE 8F E5 60 FC 1B FO 30 39
3

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
None

Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time
Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : AD OE 15 CEE4 4380 5C ...
65537

2,048 bits

Verify

Keychain Access

All Items Passwords Secure Notes My Certificates Keys Certificates

oot

>
(6 Jerlifieate

Amazon Root CA 1
Root certificate authority
Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time

@ This certificate is valid

4
)
3
o

1 5 5

1 7 1 KD

A

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial

AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

PKI hierarchy

In reality, PKI creates a hierarchy of trust:

* Root CAs: k,, stored in virtually every browser, OS

— Private keys protected by most stringent security measures
(software, hardware, physical)

* Intermediate CAs: k,, signed by root CA

— Sign certificates for general use (ie, regular websites)
— Doesn't require same protections as root

* General-use certificates: for a specific webserver

51

PKI hierarchy

In reality, PKI creates a hierarchy of trust:

* Root CAs: k,, stored in virtually every browser, OS

— Private keys protected by most stringent security measures
(software, hardware, physical)

* Intermediate CAs: k,, signed by root CA

— Sign certificates for general use (ie, regular websites)
— Doesn't require same protections as root

* General-use certificates: for a specific webserver

[What happens it a root is compromised?

How the hierarchy works

Ex. Server has certificate from Intermediate CA,;

B has:

Kpub,Root .
- * Kpriv,B

* CertB= { Kpub,Br Sign(Kpub’B, Kpriv,lnt)l e }

53

How the hierarchy works

Ex. Server has certificate from Intermediate CA,;

| (TLS handshake) o Bhas:

* Kpriv,B
* CertB= { Kpub,Br Sign(Kpub’B, Kpriv,lnt)i e }

Kpub,Root
{Certg, Cert;:}

54

How the hierarchy works

Ex. Server has certificate from Intermediate CA,;

| (TLS handshake)

» B has:

Kpub,Root

_

fCIient's workflow:)
* Checks metadata 4
* Verify(Certg, K,up int) v
. Vel’ifY(Certlntr Kpub,ROOt)
)

{Certg, Cert;:}

* Kpriv,B
* CertB= { Kpub,Br Sign(Kpub’B, Kpriv,lnt)i e }

55

How the hierarchy works

Ex. Server has certificate from Intermediate CA,;

| (TLS handshake))
Kpub,Root 2 B hI?s.- .
{Certg, Cert;:} Priv, ,
* CertB ={K,pp SIigN(Koup s Korivint)s -+ }
/CIient's workflow: I
e Checks metadata v

* Verify(Certg, K,,p nt) v
i Verify(certmtr Kpub,ROOt)

_ Y

=> To verify integrity, need to verify certificates back to
(trusted) root certificate

=> OK if verification passes and metadata correct: £

56

A Not Secure | https://nd.Isacc.net

Your connection is not private

Attackers might be trying to steal your information from nd.lsacc.net (for example,
passwords, messages, or credit cards). Learn more

NET::ERR_CERT_COMMON_NAME_INVALID

Advanced Back to safety

Most common TLS errors you might see

« Common name (eg. yourbank.com) invalid
 Self-signed
* Certificate expired

When is it okay to click "proceed"? What happens if you do?

58

Most common TLS errors you might see

« Common name invalid
 Self-signed
* Certificate expired

When is it okay to click "proceed"? What happens if you do?

-
=> Might occur it webserver configured improperly, or if you're

setting up a system

-

59

Rogue Certificates?

In 2011, DigiNotar, a Dutch root certificate authority, was
compromised

The attacker created rogue certificates for popular domains like
google.com and yahoo.com

DigiNotar was distrusted by browsers and filed for bankruptcy
See the by Fox-IT

60

http://www.rijksoverheid.nl/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1.html

In 2017, Google questioned the certificate issuance policies and
practices of Symantec

Google’'s Chrome would start distrusting Symantec'’s certificates
unless certain remediation steps were taken

See between Ryan Sleevi (Chromium team) and
Symantec

The matter was settled with

61

https://arstechnica.com/information-technology/2017/03/google-takes-symantec-to-the-woodshed-for-mis-issuing-30000-https-certs/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/
https://www.digicert.com/news/digicert-to-acquire-symantec-website-security-business/

TLS decryption

What happens when an organization wants to view TLS traffic on its network?

62

Example: https://www.alOnetworks.com/products/thunder-ssli/

---Decrypt Zone--;

Security Device

—J

Client A10 Thunder SSLi

®

Internet Remote Server

Encrypted traffic from the client is intercepted
by Thunder SSLi and decrypted.

Thunder SSLi sends the decrypted traffic to a
security device, which inspects it in clear-text.

The security device, after inspection, sends the
traffic back to Thunder SSLi, which intercepts
and re-encrypts it.

Thunder SSLi sends the re-encrypted traffic to
the server.

The server processes the request and sends
an encrypted response to Thunder SSLi.

Thunder SSLi decrypts the response traffic and
forwards it to the same security device for
inspection.

Thunder SSLi receives the traffic from the
security device, re-encrypts it and sends it to
the client.

https://www.a10networks.com/products/thunder-ssli/

PKls, TLS, and HTTPS

64

The story so far

« Asymmetric crypto: each entity gets a key in two parts
— Ko Private key, kept secret
— Kou: Public key, shared with everyone

 Can provide important security properties

— Authentication/Integrity: A signs message with K, 5, anyone with K, o can verify
message came from A

— Confidentiality: A encrypts message to B with Ky, 5, B can decrypt with K, 5

« But: how do we know if we can trust a public key?

65

Public Key Infrastructure (PKI)

Public key crypto is very powertful ...
* ... but the realities of tying public keys to real world identities turn out to be

quite hard

e PKI: Trust distribution mechanism
— Authentication via

* Note: Trust doesn’t mean someone is honest, just that they are who they
say they are...

66

Managing Trust

* The most solid level of trust is rooted in our direct personal experience
— E.g., Alice’s trust that Bob is who they say they are
— Clearly doesn’t scale to a global network!

* In its absence, we rely on delegation
— Alice trusts Bob's identity because Charlie attests to it
— and Alice trusts Charlie

67

Managing Trust, con't

* Trust is not particularly transitive
— Should Alice trust Bob because she trusts Charlie ...
— ... and Charlie vouches for Donna ...
— ... and Donna says Eve is trustworthy ...
— ... and Eve vouches for Bob's identity?

« Two models of delegating trust
— Rely on your set of friends and their friends
« “Web of trust” -- e.g., PGP

— Rely on trusted, well-known authorities (and those they trust...)
* “Trusted root” -- e.g., HTTPS

68

PKI Conceptual framework

Public keys managed by Certificate Authorities (CAs)
 Everyone knows public key for some root CAs

 To publish a public key for entity X, root CA R signs X's public key
— What this means: CA agrees that this is X's public key
— Creates a Certificate: {K,,x, signature, metadata}

 Given signature, anyone who knows the root can verify

— Delegates trust of Kpub,X to CA
— If you trust the CA, you now trust X

* Root CAs: pre-installed in your system/browser

69

DigiCert Assured ID Root CA

DigiCert Assured ID Root CA

Root certificate authority

Expires: Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time
@ This certificate is valid

Trust
Details
Subject Name
Country or Region
Organization
Organizational Unit
Common Name

Issuer Name
Country or Region
Organization
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info
Algorithm
Parameters
Public Key
Exponent

Key Size

Key Usage

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

us

DigiCert Inc
www.digicert.com

DigiCert Assured ID Root CA

OC E7 EO E5 17 D8 46 FE 8F E5 60 FC 1B FO 30 39
3

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
None

Thursday, November 9, 2006 at 19:00:00 Eastern Standard Time
Sunday, November 9, 2031 at 19:00:00 Eastern Standard Time

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : AD OE 15 CEE4 4380 5C ...
65537

2,048 bits

Verify

Keychain Access

All Items Passwords Secure Notes My Certificates Keys Certificates

oot

>
(6 Jerlifieate

Amazon Root CA 1
Root certificate authority
Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time

@ This certificate is valid

4
)
3
o

1 5 5

1 7 1 KD

A

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial

AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

PKI hierarchy

* In reality, hierarchy of trust
* Root CAs sign certificates for Intermediate CAs
 Intermediate CAs sign certificates for general users/sites

The further up the hierarchy, the more protections it needs

« CA's often use Hardware Security Modules (HSMs), other physical
protections...

* What happens it a CA is compromised?

72

PKI Example

73

Inside the Server's Certificate

Common name: Domain name for cert (e.g., amazon.com)
Amazon's public key

A bunch of auxiliary info (physical address, type of cert, expiration time)
URL to revocation center to check for revoked keys
Name of certificate’s signatory (who signed it)

A public-key signature of a hash of all this
— Constructed using the signatory’s private RSA key

74

Validating Amazon'’s |dentity

Browser retrieves cert belonging to the signatory

If it can't find the cert, then warns the user that site has not been verified
— And may ask whether to continue
— Could still proceed, just without authentication

Browser uses public key in signatory’s cert to decrypt signature
— Compares with its own hash of Amazon’s cert

Assuming signature matches, now have high confidence it's indeed Amazon
— ... assuming signatory is trustworthy

VAS)

HTTPS Connection (SSL/TLS), con't

Browser constructs a random
session key K

Browser encrypts K using Amazon's

public key
Browser sends E(K, KA,) to server
Browser displays &

All subsequent communication
encrypted w/ symmetric cipher
using key K
— E.g., client can authenticate using a
password

Amazon

yK

K)

77

When does this break down?

* TLS is hard to implement
* Need to trust the CAs
« Users need to understand warnings

78

As of July 2021, the Trustworthy Internet Movement estimated the ratio of websites that are vulnerable to TLS attacks.[”]

Survey of the TLS vulnerabilities of the most popular websites

Security
Attacks
Insecure Depends

0.1% <0.1%

Renegotiation attack) -
support insecure renegotiation support both

0.4%

6.5%
RC4 attacks support RC4 suites used with modern ° .
support some RC4 suites

browsers

. >0.0%
TLS Compression (CRIME attack) N/A
vulnerable

>0.0%
Heartbleed N/A
vulnerable

0.2%
0.1%

ChangeCipherSpec injection attack) vulnerable, not
vulnerable and exploitable ,
exploitable

POODLE attack against TLS 0.1% 0.1%
(Original POODLE against SSL 3.0 is not e vulnerable, not
vulnerable and exploitable ,
included) exploitable

6.6%
Protocol downgrade ° N/A
Downgrade defence not supported

Secure

99.2%
support secure renegotiation

98.1%
no support

N/A

N/A

98.5%
not vulnerable

99.8%
not vulnerable

72.3%
Downgrade defence
supported

1.2%
unknown

0.2%
unknown

21.0%
unknown

Wikipedia table, source: https://www.ssllabs.com/ss|-gulse/

Keychain Access

All Items Passwords Secure Notes My Certificates Keys Certificates

oot

>
(6 Jerlifieate

Amazon Root CA 1
Root certificate authority
Expires: Saturday, January 16, 2038 at 19:00:00 Eastern Standard Time

@ This certificate is valid

4
)
3
o

1 5 5

1 7 1 KD

A

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
AffirmTrust Commercial

AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Certum CA

Certum Trusted Network CA

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Date Modified

Expires

Dec 31, 2028 at 18:59:59
Dec 31, 2029 at 19:00:00
Sep 22, 2030 at 07:22:02
Dec 31, 2030 at 09:06:06
Dec 31, 2030 at 09:08:24
Dec 31, 2040 at 09:10:36
Dec 31, 2040 at 09:20:24
Jan 16, 2038 at 19:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
May 25, 2040 at 20:00:00
Jun 5, 2033 at 13:45:38
Feb 9, 2035 at 16:40:36
Apr 30, 2039 at 14:10:09
Apr 30, 2039 at 14:19:06
Feb 9, 2025 at 19:18:14
Dec 31, 2030 at 18:59:59
Dec 31, 2030 at 03:38:15
Dec 17, 2030 at 18:59:59
May 12, 2025 at 19:59:00
Oct 26, 2040 at 04:38:03
Oct 26, 2040 at 04:28:58
Jul 19, 2042 at 05:06:56
Jul 19, 2042 at 05:15:30
Jun 29, 2027 at 11:13:05
Sep 17, 2028 at 04:28:59
Oct 21, 2033 at 05:17:18
Jan 14, 2038 at 19:00:00
Jan 14, 2038 at 19:00:00
Jul 4, 2031 at 13:20:04
Jun 11, 2027 at 06:46:39
Dec 31, 2029 at 07:07:37

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

Digital Signatures

» Suppose Alice has published public key K
* |f she wishes to prove who she is, she can send a
message x encrypted with her key Kg

— Therefore: anyone w/ public key K¢ can recover x, verity that
Alice must have sent the message

— |t provides a
— Alice can't deny later deny it =

81

RSA Crypto & Signatures, con't

Bob

| will
pay $500

. e 3

Alice's
private key
DFCD3454
BBEA788A

Verify

(Decrypt) Alice's
public key

82

Summary of Our Crypto Toolkit

* If we can securely distribute a key, then

— Symmetric ciphers (e.g., AES) offer fast, presumably strong
confidentiality

» Public key cryptography can make this easier (can share
public keys anywhere)
— But not as computationally efficient

— Use public key crypto to exchange , which is used
for symmetric encryption

— And not guaranteed secure
* but major result if not

83

Summary of Our Crypto Toolkit, con’t

 Cryptographically strong hash functions provide major building block for
integrity (e.g., SHA-256)
— As well as providing concise digests
— And providing a way to prove you know something (e.g., passwords) without revealing it

(
— But: worrisome recent results regarding their strength (MD5, SHA1)

« Public key also gives us
— Including sender non-repudiation

 Turns out there’s a crypto trick based on similar algorithms that allows two
parties who don’t know each other’s public key to securely negotiate a
secret key even in the presence of eavesdroppers
— Look up: Diffie-Hellman Key Exchange

84

