CSCI-1680 The End (of lectures) Tor, Wrapup

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

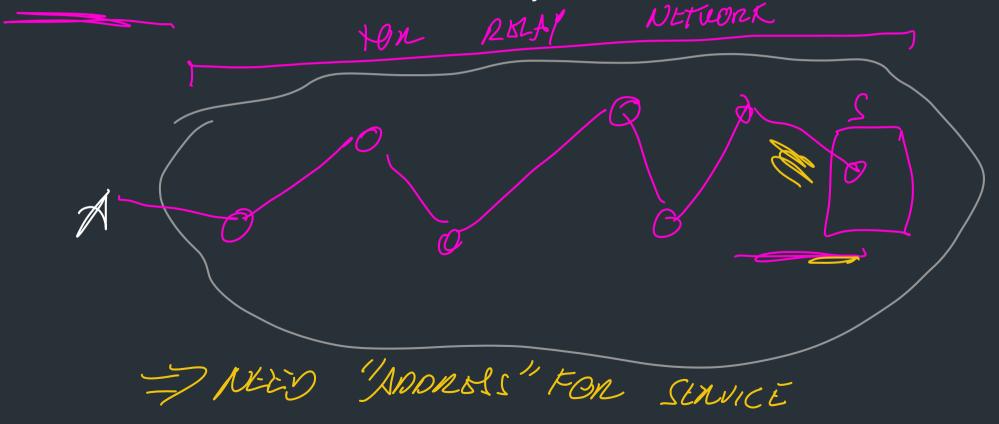
Administrivia

- HW4: Due Friday 12/8
- Final project: Due 12/14
- Office hours: see the calendar
- Course feedback
 - University feedback
 - Critical Review
 - I will send you a form

My (major) TODOs

- 1. I owe you grades on HW2, Snowcast, TCP
- 2. Will send grade report next week -> (ook Fon
- ED ANNOUNCEMENT

3. I will be watching Ed for final project questions


- More about Tor
- Wrapup

More on Tor

NOW YOR LOORKS: RECAP YOR RELAY NETLOORK E411 ()3 T 0 GUARD 2 - ONLY GUARD NODE KDONS A - ONLY EXIT NODE KNOWS S - IDEALLY, RELAYS OWNED BY MANY DIFFLUE PARTY DIFFERENT PARTIES Last hop => traffic is leaving tor network to reach destination server => not protected! - If not using TLS or other protocol-level security, data is in the clear - Depending on the protocol/messages, may leak information that identifies you (eg. cookies, protocol info that contains your IP address) Q: Why does tor require its own browser? (other than because it's easy) => If you used your normal browser, your existing browser state (cookies, etc) can be sent when you visit pages => more likely to identify you

What if the server wants to help?

Onion services: server connects to tor directly => no need for an exit node!

What if the server wants to help?

Onion services: server connects to tor directly => no need for an exit node!

- Accessible via .onion domain: special DNS TLD not in root zone
- Site addresses based on public key of server, client looks up using distributed hash table (DHT)

What if the server wants to help?

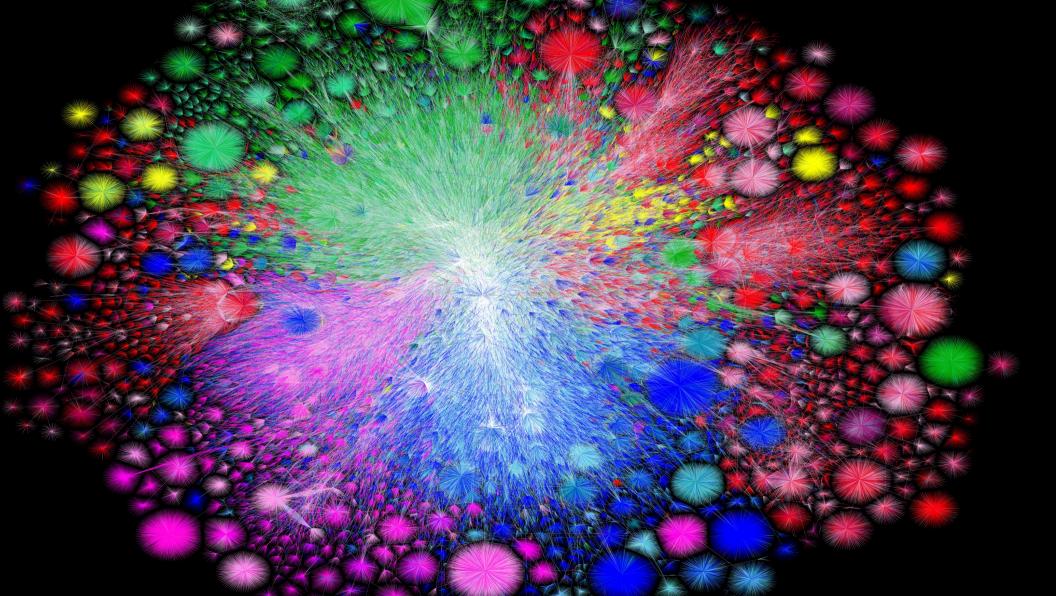
Onion services: server connects to tor directly => no need for an exit node!

- Accessible via .onion domain: special DNS TLD not in root zone
- Site addresses based on public key of server, client looks up using distributed hash table (DHT)

<u>Examples</u>

- New York Times: https://www.nytimesn7cgmftshazwhfgzm37qxb44r64ytbb2dj3x62d2LLjsciiyd.onion
- Facebook https://facebookwkhpilnemxj7asaniu7vnjjbiltxjqhye3mhbshg7kx5tfyd.onion
- Cloudflare public DNS dns4torpnlfs2ifuz2s2yf3fc7rdmsbhm6rw75euj35pac6ap25zgqad.onion

ADDITTONAL STUFF: CACHING + TZS CLOUD PROVIDER CACHE & The OTHER_ CLIDUT CONNECTIONS ON M BACKEND-MAYDE TIS 7 DEVIES ACTING & PROXY/CACH? SITE How does caching work with TLS? - Client makes a TLS connection to some endpoint at cloud provider (cache, etc), not the backend server - From there, the cache can see the client's request, then respond with cached data or query backend server => Cache needs to have certificate => Traffic is decrypted in the cloud provider (may or may not be what you want)


	Ann	DOLL	4		1.1	110/7	TE A		
7	Pu Cl.	MALIKI	to CATE	Pro	VA X.ST	7	0		
				- L					
way	y. Two way	s to do this						ome	
per	son, etc.		n (less comn					_	
			st common) they are req				s in control	Ot	
		X							
		5/							
			3 X?	a) DI	VS/	~ /.			
		, 4					LADD	X	
	₩ N								
			\square				T SITE	-, com	
		6				X			
		(2)	CHALL	ENGC	X				
How doma			s: om asks C	^ for co	rtificato				
2. CA iss	ues challe	nge with	random va	alue X, a			admin, et	c) to make	
			Examples: d on site.co		aining c	hallenge	e value (T	XT record)	
		-	able on we nge value (\sim) -> find	10	
challer	nge X'								
4. If X ==	X', it mea	ans that th	ne request	or can pi	ove co	ntrol of	the site		
Eg. Let's E extremely						es using	this met	nod => now	
Problem: w						f validat	ion proce	ess with	
spoofed res One solutio				om multi	ple van	tage po	ints (ASe	s) to avoid	
querying fro								,	

	Lar	ger	prot	olem	: ho	ow d	o we	e tru	st th	nat C	As a	are i	ssui	ng c	ertif	icat	es		
		perl																	
	•						(5				A F			· · ·					 -
	<u>Ce</u>	rtific ndar	ate	Iran	ispa itor	renc	<u>у (К</u>	FC9	<u>162</u> ,	202 are is	1) :	Kece	nt e	fort	to pr	OVIC	le op	ben	
										certif			sued	(bui	lt us	ing I	Verk	le	
	tree	es)														Ű			
	-	Brov	vser	s, C/	As, c	ther	inte	reste	ed pa	arties	s car	n ma	intai	n log	S				
	Mo	dern	bro	WSEI	r ver	dors	are	star	tina	to re	auire	e tha	t CA	2112	e Ce	rtific	ate		 -
										as a									
	Exa	ampl	e CT	mo	nitor	: hti	.ps://	/crt.s	sh										
+																			 -
																			 -
																			 -
																			 -
																			ſ
																			 -
																			-
																			F
																			 -

Wrapping up

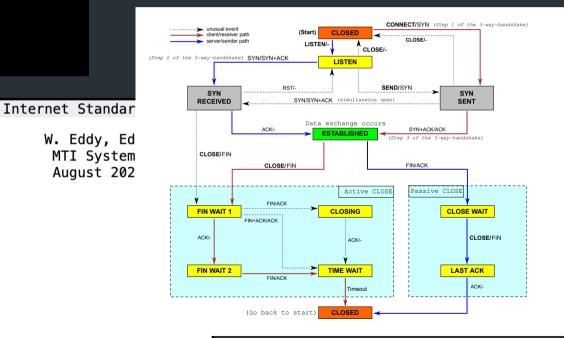
- This is our last formal lecture
- From here: work on final project

What I hope you have learned

We can't cover (or remember) everything

Hope you learn important tools/principles to understand networking challenges you encounter

<u>Protocols</u> Ways to communicate between *heterogeneous* systems <u>Network programming</u>

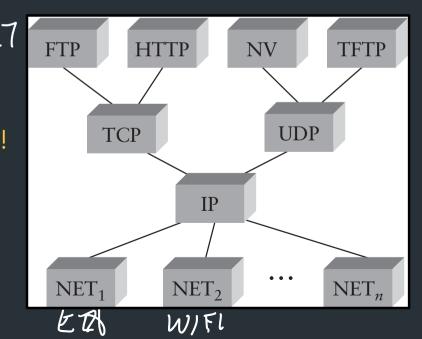

```
conn, err := net.Dial("tcp", "10.0.0.1:80")
. . .
someBuf := make([]byte, . . .)
conn.Write(someBuf)
```

```
From: draft-ietf-tcpm-rfc793bis-28
```

Transmission Control Protocol (TCP)

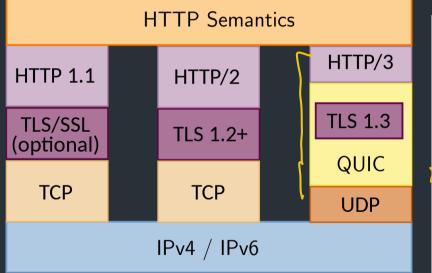
Abstract

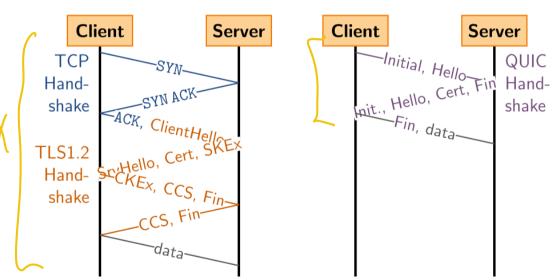
This document specifies the Transmission Control Protocol (TCP). TCP is an important transport-layer protocol in the Internet protocol stack and it has continuously evolved over decades of use and growth


Layering / Encapsulation

Building abstractions and interfaces to hide lower-level details from "higher" layers

<u>Abstractions are great!</u>

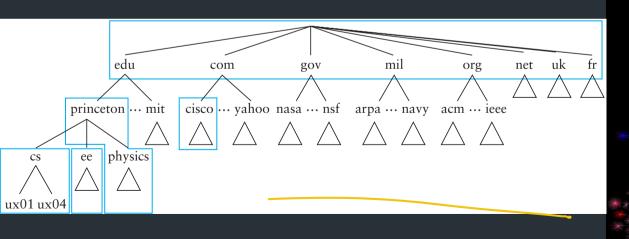

- Can support huge variety of devices, protocols
- Allows independent evolution => new protocols!

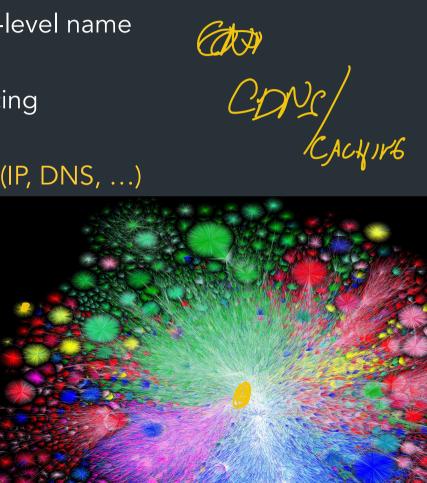


... until they aren't

Sometimes, need to break them

(USVALY PEFORMANCE)





<u>Indirection</u>: abstract low-level info with a higher-level name => Human-readable DNS names

=> Scalability: redundancy, proxies, load balancing

Can leverage <u>hierarchy of naming</u> => scalability (IP, DNS, ...)

How naming, etc. can be controlled...

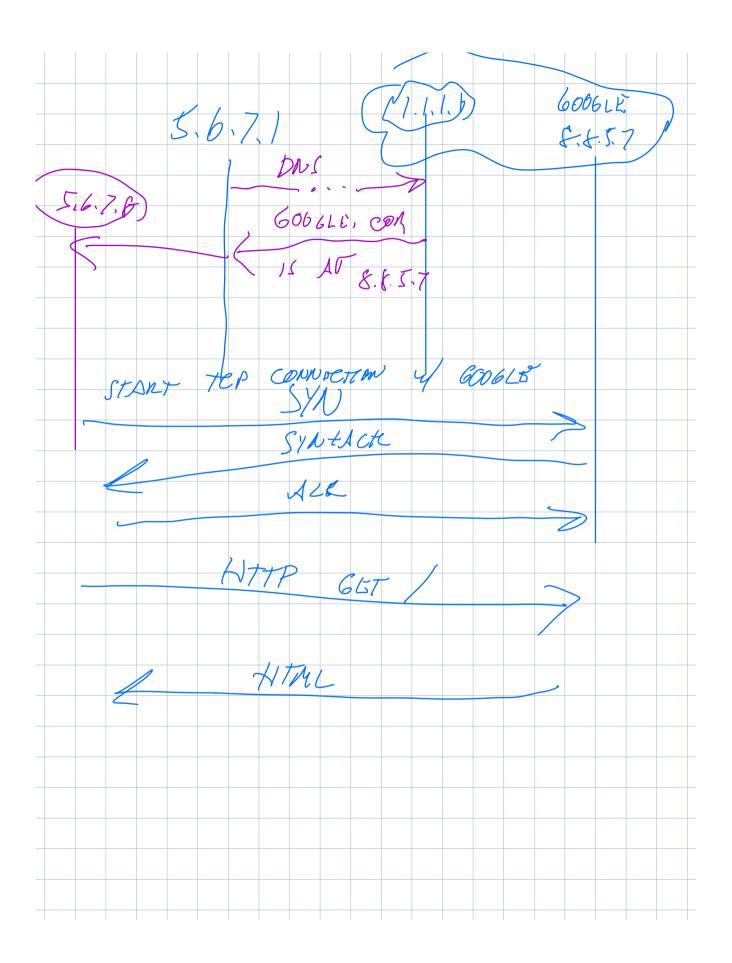
Changing DNS servers in response to blocking of Twitter in Turkey (2014)

Writeup, with more links: https://www.thousandeyes.com/blog/internet-censorship-around-the-world

Lots of challenges out there

Our Internet architecture was designed in the 1980s, where modern scale and complexity was unimaginable

Lots of challenges out there


Our Internet architecture was designed in the 1980s, where modern scale and complexity was unimaginable

Now...

- No one knows how big the Internet is
- No one is in charge
- Anyone can add any application
- Packets traverse many paths, countries, regulatory domains

Thank you! Please stay in touch!

IWIFI (SG (HROME) GOOGLE GOGGLE, Com net.Dial("tcp", google.com:80") BC Is this cached in OS DNS resolver Otherwise: DNS server on current network (Your OS has a default DNS server) DNS: 1.1.1.1 SRC: 5.6.7.8 DST: 1,1,1,1 DNS GOOGLE. CON Consult forwarding table, find outgoing interface for 1.1.1.1 => Default gateway is 5.6.7.1, this is next hop 5.6.7.1 ~

