
CSCI-1680
The End (of lectures)

Tor, Wrapup

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

• HW4: Due Friday 12/8
• Final project: Due 12/14
• Office hours: see the calendar

• Course feedback
– University feedback
– Critical Review
– I will send you a form

My (major) TODOs

1. I owe you grades on HW2, Snowcast, TCP
2. Will send grade report next week
3. I will be watching Ed for final project questions

LOOKFOR ED ANNOUNCEMENT

Today’s Lecture

• More about Tor
• Wrapup

More on Tor

NOW TOR WORKS RECAP

TORRELAYNETWORK
EXIT

2

ONLY GUARD NODE KNOWS A
ONLY EXIT NODE KNOWS S

IDEALLY RELAYS OWNED BY MANY
DIFFERENT PARTIES

Last hop => traffic is leaving tor network to reach destination
server => not protected!

 - If not using TLS or other protocol-level security, data is in
the clear

 - Depending on the protocol/messages, may leak information that
identifies you (eg. cookies, protocol info that contains your IP
address)

 Q: Why does tor require its own browser? (other than because it’s

easy)

 => If you used your normal browser, your existing browser state
(cookies, etc) can be sent when you visit pages => more likely to
identify you

What if the server wants to help?

Onion services: server connects to tor directly => no need for an exit node!

as

o

NEED ADDRESS FOR service

What if the server wants to help?

Onion services: server connects to tor directly => no need for an exit node!
• Accessible via .onion domain: special DNS TLD not in root zone
• Site addresses based on public key of server, client looks up using

distributed hash table (DHT)

What if the server wants to help?

Onion services: server connects to tor directly => no need for an exit node!
• Accessible via .onion domain: special DNS TLD not in root zone
• Site addresses based on public key of server, client looks up using

distributed hash table (DHT)

Examples
• New York Times:

https://www.nytimesn7cgmftshazwhfgzm37qxb44r64ytbb2dj3x62d2lljsciiyd.onion
• Facebook

https://facebookwkhpilnemxj7asaniu7vnjjbiltxjqhye3mhbshg7kx5tfyd.onion
• Cloudflare public DNS

dns4torpnlfs2ifuz2s2yf3fc7rdmsbhm6rw75euj35pac6ap25zgqad.onion

ADDITIONAL STUFF CACHING TLS

CLOUD PROVIDER

cant

DEVICH ACTING A
SITEIPROXY CACHE

How does caching work with TLS?

 - Client makes a TLS connection to some endpoint at
cloud provider (cache, etc), not the backend server

 - From there, the cache can see the client’s request,
then respond with cached data or query backend
server

 => Cache needs to have certificate

 => Traffic is decrypted in the cloud provider (may or
may not be what you want)

HOW DOES A CA VALIDATE A
CERTIFICATE REQUEST

If
CHALLENGE

Before signing a certificate, a CA should check the requestor’s identity in some
way. Two ways to do this:

 - Organization validation (less common): manually verify contact info, in-
person, etc.

 - Domain validation (most common): verify that the requestor is in control of
the domain name where they are requesting the certificate

Problem: what if attacker can hijack DNS? Could spoof validation process with
spoofed responses, BGP hijacking, …

One solution: need to verify challenge from multiple vantage points (ASes) to avoid
querying from one bad server/path

How domain validation works:

Admin of some site site.com asks CA for certificate
1.
CA issues challenge with random value X, asks requestor (admin, etc) to make 2.
it viewable on their site. Examples:

eg. Add a DNS record on site.com containing challenge value (TXT record)
A.
Make challenge available on website (ACME protocol)
B.

The CA checks for challenge value (DNS lookup for site, etc.) => finds 3.
challenge X’

If X == X’, it means that the requestor can prove control of the site
4.

Eg. Let’s Encrypt (2014): Free CA that issues certificates using this method => now
extremely common, issues >1M certificates per day

Larger problem: how do we trust that CAs are issuing certificates
properly?

Certificate Transparency (RFC9162, 2021): Recent effort to provide open
standard to monitor how certificates are issued

 - Verifiable, append-only logs of all certificates issued (built using Merkle
trees)

 - Browsers, CAs, other interested parties can maintain logs

Modern browser vendors are starting to require that CAs use Certificate
Transparency in order to be included as a trusted CA

Example CT monitor: https://crt.sh

Wrapping up

• This is our last formal lecture
• From here: work on final project

What I hope you have learned

We can’t cover (or remember) everything

Hope you learn important tools/principles to
 understand networking challenges you encounter

Protocols Ways to communicate between heterogeneous systems

Network programming

CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK
(Step 3 of the 3-way-handshake)

Data exchange occurs
ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-

conn, err := net.Dial(“tcp”, “10.0.0.1:80”)
. . .

someBuf := make([]byte, . . .)
conn.Write(someBuf)

Layering / Encapsulation

Building abstractions and interfaces to hide lower-level details from “higher” layers

Ethernet Frame IP Packet TCP Segment Application data

Abstractions are great!
- Can support huge variety of devices, protocols
- Allows independent evolution => new protocols!

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

LT

ETA WIFI

… until they aren’t
Sometimes, need to break them

USUALY PERFORMANCE

If
I

Naming

Indirection: abstract low-level info with a higher-level name
 => Human-readable DNS names
 => Scalability: redundancy, proxies, load balancing

Can leverage hierarchy of naming => scalability (IP, DNS, …)

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

CNA

CDNs
CAHV6

Changing DNS servers in response to blocking of Twitter in Turkey (2014)

Writeup, with more links: https://www.thousandeyes.com/blog/internet-censorship-around-the-world

How naming, etc. can be controlled…

https://www.thousandeyes.com/blog/internet-censorship-around-the-world

Lots of challenges out there

Our Internet architecture was designed in the 1980s, where modern scale and
complexity was unimaginable

Lots of challenges out there

Our Internet architecture was designed in the 1980s, where modern scale and
complexity was unimaginable

Now…
• No one knows how big the Internet is
• No one is in charge
• Anyone can add any application
• Packets traverse many paths, countries, regulatory domains

Thank you!
Please stay in touch!

0
EE HTTP 6006110

APP
GOOGLE.com GET

Of

5.617.8T
ID Dstilil.li

DN6 on

LINK LAYER
NEED MAC ADDRESS 56ARP

É

ftp.YS.fi
DNS

net.Dial(“tcp”, google.com:80”)

Consult forwarding table, find outgoing interface
for 1.1.1.1

=> Default gateway is 5.6.7.1, this is next hop

Is this cached in OS DNS resolver

Otherwise: DNS server on current network

(Your OS has a default DNS server)

DNS: 1.1.1.1

5.6.71

r

T.io i
START TCP CONNECTION w GOOGLE

7

a

HAITI
HI

