CSCI-1680
The End (of lectures)
Tor, Wrapup

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti
• HW4: Due Friday 12/8
• Final project: Due 12/14
• Office hours: see the calendar

• Course feedback
 – University feedback
 – Critical Review
 – I will send you a form
My (major) TODOs

1. I owe you grades on HW2, Snowcast, TCP
2. Will send grade report next week
3. I will be watching Ed for final project questions
Today’s Lecture

• More about Tor
• Wrapup
More on Tor
What if the server wants to help?

Onion services: server connects to tor directly => no need for an exit node!
What if the server wants to help?

Onion services: server connects to tor directly => no need for an exit node!

• Accessible via .onion domain: special DNS TLD not in root zone
• Site addresses based on public key of server, client looks up using distributed hash table (DHT)
What if the server wants to help?

Onion services: server connects to tor directly => no need for an exit node!
- Accessible via .onion domain: special DNS TLD not in root zone
- Site addresses based on public key of server, client looks up using distributed hash table (DHT)

Examples
- New York Times: https://www.nytimesn7cgmtshazwhfgzm37qxb44r64ytbb2dj3x62d2lljsciyyd.onion
- Facebook https://facebookwkhpilnemxj7asaniu7vnjjbiltxjqhye3mhbsghg7kx5tfyd.onion
- Cloudflare public DNS dns4torpn1fs2ifuz2s2yf3fc7rdmsbhmm6rw75euj35pac6ap25zgqad.onion
Wrapping up

• This is our last formal lecture
• From here: work on final project
What I hope you have learned
We can’t cover (or remember) everything

Hope you learn important tools/principles to understand networking challenges you encounter
Protocols Ways to communicate between heterogeneous systems

Network programming

```go
conn, err := net.Dial("tcp", "10.0.0.1:80")
...
someBuf := make([]byte, . . .)
conn.Write(someBuf)
```

From: draft-ietf-tcpm-rfc793bis-28 Internet Standard

Internet Engineering Task Force (IETF)
STD: 7 W. Eddy, Ed
Request for Comments: 9293 MTI System
Obsoletes: 793, 879, 2873, 6093, 6429, 6528, 6691
Updates: 1011, 1122, 5961 August 202
Category: Standards Track
ISSN: 2070-1721

Transmission Control Protocol (TCP)

Abstract

This document specifies the Transmission Control Protocol (TCP). TCP is an important transport-layer protocol in the Internet protocol stack, and it has continuously evolved over decades of use and growth.
Layering / Encapsulation

Building abstractions and interfaces to hide lower-level details from "higher" layers

Abstractions are great!
- Can support huge variety of devices, protocols
- Allows independent evolution => new protocols!
... until they aren’t

Sometimes, need to break them
Naming

Indirection: abstract low-level info with a higher-level name
=> Human-readable DNS names
=> Scalability: redundancy, proxies, load balancing

Can leverage hierarchy of naming => scalability (IP, DNS, …)
How naming, etc. can be controlled...

Changing DNS servers in response to blocking of Twitter in Turkey (2014)

Writeup, with more links: https://www.thousandeyes.com/blog/internet-censorship-around-the-world
Lots of challenges out there

Our Internet architecture was designed in the 1980s, where modern scale and complexity was unimaginable.
Lots of challenges out there

Our Internet architecture was designed in the 1980s, where modern scale and complexity was unimaginable

Now…

• No one knows how big the Internet is
• No one is in charge
• Anyone can add any application
• Packets traverse many paths, countries, regulatory domains
Thank you!
Please stay in touch!
What (I hope) you have learned

• Skill: network programming (and soft. eng)
 Socket programming
 – Server programming/robustness
 – Implementing protocols

• Knowledge: How the Internet Works
 – Internet architecture and design
 – Key Internet protocols
 – Some applications (Web, DNS, …)

My goal: give you tools to understand new networking challenges you encounter
Networking principles

• Some general CS concepts
 – Hierarchy (IP addressing, DNS, PKI, …)
 – Indirection (ARP, DNS, …)
 – Caching

• Some concepts (a bit) networking-specific
 – Layering
 – Multiplexing
 – End-to-end argument
 – Robustness principles

- Physical
- Link
- Network
- Transport
- Application

Service: move bits to other node across physical link.
Service: move frames to other node across link. May add reliability, medium access control.
Service: move packets to any other node in the network. Internet Protocol (IP)
Service: multiplexing applications. Reliable byte stream to other node (TCP), Unreliable datagram (UDP).
Service: user-facing application. Application-defined messages.
Lots of challenges out there

Our Internet architecture was designed in the 1980s, where modern scale and complexity was unimaginable

Now…
- No one knows how big the Internet is
- No one is in charge
- Anyone can add any application
- Packets traverse many paths, countries, regulatory domains