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Administrivia

• HW4:  Due Friday 12/8
• Final project:  Due 12/14
• Office hours:  see the calendar

• Course feedback
– University feedback
– Critical Review
– I will send you a form



My (major) TODOs

1. I owe you grades on HW2, Snowcast, TCP
2. Will send grade report next week
3. I will be watching Ed for final project questions



Today’s Lecture

• More about Tor
• Wrapup



More on Tor



What if the server wants to help?

Onion services:  server connects to tor directly => no need for an exit node!
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What if the server wants to help?

Onion services:  server connects to tor directly => no need for an exit node!
• Accessible via .onion domain:  special DNS TLD not in root zone
• Site addresses based on public key of server, client looks up using 

distributed hash table (DHT)

Examples
• New York Times: 

https://www.nytimesn7cgmftshazwhfgzm37qxb44r64ytbb2dj3x62d2lljsciiyd.onion
• Facebook

https://facebookwkhpilnemxj7asaniu7vnjjbiltxjqhye3mhbshg7kx5tfyd.onion
• Cloudflare public DNS

dns4torpnlfs2ifuz2s2yf3fc7rdmsbhm6rw75euj35pac6ap25zgqad.onion 



Wrapping up 

• This is our last formal lecture
• From here:  work on final project



What I hope you have learned





We can’t cover (or remember) everything

Hope you learn important tools/principles to
 understand networking challenges you encounter



Protocols Ways to communicate between heterogeneous systems

Network programming

CLOSED(Start)
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CLOSE/-

LISTEN

SYN
RECEIVED

SYN
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CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
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RST/-
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SYN+ACK/ACK
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Data exchange occurs
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FIN/ACK
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CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT
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conn, err :=  net.Dial(“tcp”, “10.0.0.1:80”)
. . .

someBuf := make([]byte, . . .)
conn.Write(someBuf)



Layering / Encapsulation

Building abstractions and interfaces to hide lower-level details from “higher” layers

Ethernet Frame IP Packet TCP Segment Application data

Abstractions are great!
- Can support huge variety of devices, protocols 
- Allows independent evolution => new protocols!

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP



… until they aren’t
Sometimes, need to break them 



Naming

Indirection:  abstract low-level info with a higher-level name
 => Human-readable DNS names
 => Scalability: redundancy, proxies, load balancing

Can leverage hierarchy of naming => scalability (IP, DNS, …)

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr



Changing DNS servers in response to blocking of Twitter in Turkey (2014) 

Writeup, with more links: https://www.thousandeyes.com/blog/internet-censorship-around-the-world 

How naming, etc. can be controlled…

https://www.thousandeyes.com/blog/internet-censorship-around-the-world


Lots of challenges out there

Our Internet architecture was designed in the 1980s, where modern scale and 
complexity was unimaginable
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Now…
• No one knows how big the Internet is
• No one is in charge
• Anyone can add any application
• Packets traverse many paths, countries, regulatory domains



Thank you!  
Please stay in touch!



What (I hope) you have learned

• Skill:  network programming (and soft. eng)
Socket programming
– Server programming/robustness
– Implementing protocols

• Knowledge:  How the Internet Works
– Internet architecture and design
– Key Internet protocols
– Some applications (Web, DNS, …)

My goal:  give you tools to understand new 
networking challenges you encounter



Networking principles

• Some general CS concepts
– Hierarchy (IP addressing, DNS, PKI, …)
– Indirection (ARP, DNS, …)
– Caching

• Some concepts (a bit) networking-specific
– Layering 
– Multiplexing
– End-to-end argument
– Robustness principles

Network

Link

Physical

Transport

Application

Service: move bits to other node across link 

Service: move frames to other node across link.
May add reliability, medium access control

Service: move packets to any other node in the network
Internet Protocol (IP)

Service: multiplexing applications
Reliable byte stream to other node (TCP), 
Unreliable datagram (UDP)

Service: user-facing application.
Application-defined messages



Lots of challenges out there

Our Internet architecture was designed in the 1980s, where modern scale and 
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