
CSCI-1680
The End (of lectures)

Tor, Wrapup

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Scott Shenker and John Jannotti

Administrivia

• HW4: Due Friday 12/8
• Final project: Due 12/14
• Office hours: see the calendar

• Course feedback
– University feedback
– Critical Review
– I will send you a form

My (major) TODOs

1. I owe you grades on HW2, Snowcast, TCP
2. Will send grade report next week
3. I will be watching Ed for final project questions

Today’s Lecture

• More about Tor
• Wrapup

More on Tor

What if the server wants to help?

Onion services: server connects to tor directly => no need for an exit node!

What if the server wants to help?

Onion services: server connects to tor directly => no need for an exit node!
• Accessible via .onion domain: special DNS TLD not in root zone
• Site addresses based on public key of server, client looks up using

distributed hash table (DHT)

What if the server wants to help?

Onion services: server connects to tor directly => no need for an exit node!
• Accessible via .onion domain: special DNS TLD not in root zone
• Site addresses based on public key of server, client looks up using

distributed hash table (DHT)

Examples
• New York Times:

https://www.nytimesn7cgmftshazwhfgzm37qxb44r64ytbb2dj3x62d2lljsciiyd.onion
• Facebook

https://facebookwkhpilnemxj7asaniu7vnjjbiltxjqhye3mhbshg7kx5tfyd.onion
• Cloudflare public DNS

dns4torpnlfs2ifuz2s2yf3fc7rdmsbhm6rw75euj35pac6ap25zgqad.onion

Wrapping up

• This is our last formal lecture
• From here: work on final project

What I hope you have learned

We can’t cover (or remember) everything

Hope you learn important tools/principles to
 understand networking challenges you encounter

Protocols Ways to communicate between heterogeneous systems

Network programming

CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK
(Step 3 of the 3-way-handshake)

Data exchange occurs

ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-

conn, err := net.Dial(“tcp”, “10.0.0.1:80”)
. . .

someBuf := make([]byte, . . .)
conn.Write(someBuf)

Layering / Encapsulation

Building abstractions and interfaces to hide lower-level details from “higher” layers

Ethernet Frame IP Packet TCP Segment Application data

Abstractions are great!
- Can support huge variety of devices, protocols
- Allows independent evolution => new protocols!

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

… until they aren’t
Sometimes, need to break them

Naming

Indirection: abstract low-level info with a higher-level name
 => Human-readable DNS names
 => Scalability: redundancy, proxies, load balancing

Can leverage hierarchy of naming => scalability (IP, DNS, …)

edu com

princeton … mit

cs ee

ux01 ux04

physics

cisco … yahoo nasa … nsf arpa … navy acm … ieee

gov mil org net uk fr

Changing DNS servers in response to blocking of Twitter in Turkey (2014)

Writeup, with more links: https://www.thousandeyes.com/blog/internet-censorship-around-the-world

How naming, etc. can be controlled…

https://www.thousandeyes.com/blog/internet-censorship-around-the-world

Lots of challenges out there

Our Internet architecture was designed in the 1980s, where modern scale and
complexity was unimaginable

Lots of challenges out there

Our Internet architecture was designed in the 1980s, where modern scale and
complexity was unimaginable

Now…
• No one knows how big the Internet is
• No one is in charge
• Anyone can add any application
• Packets traverse many paths, countries, regulatory domains

Thank you!
Please stay in touch!

What (I hope) you have learned

• Skill: network programming (and soft. eng)
Socket programming
– Server programming/robustness
– Implementing protocols

• Knowledge: How the Internet Works
– Internet architecture and design
– Key Internet protocols
– Some applications (Web, DNS, …)

My goal: give you tools to understand new
networking challenges you encounter

Networking principles

• Some general CS concepts
– Hierarchy (IP addressing, DNS, PKI, …)
– Indirection (ARP, DNS, …)
– Caching

• Some concepts (a bit) networking-specific
– Layering
– Multiplexing
– End-to-end argument
– Robustness principles

Network

Link

Physical

Transport

Application

Service: move bits to other node across link

Service: move frames to other node across link.
May add reliability, medium access control

Service: move packets to any other node in the network
Internet Protocol (IP)

Service: multiplexing applications
Reliable byte stream to other node (TCP),
Unreliable datagram (UDP)

Service: user-facing application.
Application-defined messages

Lots of challenges out there

Our Internet architecture was designed in the 1980s, where modern scale and
complexity was unimaginable

Now…
• No one knows how big the Internet is
• No one is in charge
• Anyone can add any application
• Packets traverse many paths, countries, regulatory domains

