
IP Project Gearup II

Overview

• How to think about forwarding/link-layer

• How to debug/view in wireshark

• Implementation notes

• Any questions you have

UDP Socket
. . .

Test
packets

“Link layer”
 (Interfaces)

“Network layer”

Upper layers Routing
(RIP)

(routers only)

IP Forwarding

if0

UDP Socket

if1

TCP
(next project, hosts only)

User command line (REPL)

IP API

Other commands
(up, down, l*, …)

User commands

The Big Picture

Tp

UDP Socket
. . .

Test
packets

“Link layer”
 (Interfaces)

“Network layer”

Upper layers Routing
(RIP)

(routers only)

IP Forwarding

if0

UDP Socket

if1

TCP
(next project, hosts only)

User command line (REPL)

IP API

Other commands
(up, down, l*, …)

User commands

What you should be focusing on first

UDP Socket
. . .

Test
packets

“Link layer”
 (Interfaces)

“Network layer”

Upper layers Routing
(RIP)

(routers only)

IP Forwarding

if0

UDP Socket

if1

TCP
(next project, hosts only)

User command line (REPL)

IP API

Other commands
(up, down, l*, …)

User commands

What you should be focusing on first

How to receive packets on interfaces, send them back out

O

How does the link-layer work?

What does it mean to forward vs. send on an interface?

> lr
T Prefix Next hop Cost
L 10.0.0.0/24 LOCAL:if0 0
S 0.0.0.0/0 10.0.0.2 0

> lr
T Prefix Next hop Cost
R 10.2.0.0/24 10.1.0.2 1
L 10.0.0.0/24 LOCAL:if0 0
L 10.1.0.0/24 LOCAL:if1 0

HOST ROUTER

R1 R2if0 if0H1 if0 if0

H2

if0

H2

if0

if0

doc-example

Node ::= “host” or “router”
All nodes connect via interfaces
⇒ Hosts have exactly one interface
⇒ Routers have multiple interfaces

> lr
T Prefix Next hop Cost
R 10.2.0.0/24 10.1.0.2 1
L 10.0.0.0/24 LOCAL:if0 0
L 10.1.0.0/24 LOCAL:if1 0

to

AAA 13

R1 R2if0 if0H1 if0 if0

H2

if0

H2

if0

if0

doc-example

r1-hosts
10.0.0.0/24

r1-r2
10.0.1.0/24

r2-hosts
10.0.1.0/24

All topologies have multiple subnets
• Each subnet has its own IP prefix
• Each interface is connected to one subnet
• Nodes on the same subnet are neighbors

=> Nodes always know how to send packets to their neighbors

toolzy to 2 BZ Y

0 i

243

R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP: 10.0.0.1
Network: 10.0.0.0/24
UDP: bind on 127.0.0.1:5000

Config for if0

Interface: has a virtual IP, network, “link-layer” UDP port

I LINK 44th
ALL INTERFACES LISTENON
A UDPPORT HERE5000

R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP: 10.0.0.1
Network: 10.0.0.0/24
UDP: bind on 127.0.0.1:5000
neighbors: { 10.0.0.2 => 127.0.0.1:5001 }

Config for if0

neighbors: { 10.0.0.2 => 127.0.0.1:5001 }

:5001:5000

ONE FOR
EACH INTERFACEEACH OTHER

NODE ONTHIS HAS A SE
SUBNET

T OF

CYYsyssend
DIRECTLY TONEIGHBORS

R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP: 10.0.0.1
Network: 10.0.0.0/24
UDP: bind on 127.0.0.1:5000
neighbors: { 10.0.0.2 => 127.0.0.1:5001 }

Config for if0

neighbors: { 10.0.0.2 => 127.0.0.1:5001 }

:5001:5000

Each interface has a list of neighbors: mapping of IPs to UDP ports
 => Like an ARP table, but always known ahead of time

R1H1 if0

h1.lnx
interface if0 10.0.0.1/24 127.0.0.1:5000 # to network r1-hosts
neighbor 10.0.0.2 at 127.0.0.1:5001 via if0 # r1
route 0.0.0.0/0 via 10.0.0.2

Virtual IP: 10.0.0.1
Network: 10.0.0.0/24
UDP: bind on 127.0.0.1:5000
neighbors: { 10.0.0.2 => 127.0.0.1:5001 }

Config for if0

neighbors: { 10.0.0.2 => 127.0.0.1:5001 }

:5001:5000

=> H1 can reach 10.0.0.2
by sending to UDP port 5001

So if we want to send from H1 to R1,
 we need to send something to UDP port 5001 => but what?

How to think about encapsulation

• Each interface: thread/goroutine/etc listening on a UDP
port

• Each packet contains an IP header + whatever message
content

WHAT IS SENT ON UDPSOCKET

MIMI

IP Header

FOR MORE INFO
StELET

1
WAKE PACKET
IS GOING

HOW WE UNWRAP THEPACKET

UDP-in-IP example

• Complete code example for building an IP header,
adding it to a packet, and sending it via UDP
– Also computes/validates checksum!

• Let’s break down how this works…

To send some data

• Build an IP header
– Fill in all header fields as appropriate (source, dest IP, etc.)

– Compute the checksum

• UDP Packet: IP header + data you want to send

• Send packet via socket for that interface

 FIN

R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

doc-example

r1-hosts
10.0.0.0/24

r1-r2
10.0.1.0/24

r2-hosts
10.0.1.0/24

:5002
10.1.0.1

:5001
10.0.0.2

:5000
10.0.0.1

:5003
10.1.0.2

:5004
10.2.0.1

:5005
10.2.0.2

:5006
10.2.0.3

10.10003000001 10.2.0.0De00oooozy

R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

r1-hosts
10.0.0.0/24

r1-r2
10.0.1.0/24

r2-hosts
10.0.1.0/24

:5002
10.1.0.1

:5001
10.0.0.2

:5000
10.0.0.1

:5003
10.1.0.2

:5004
10.2.0.1

:5005
10.2.0.2

:5006
10.2.0.3

What would it look like to send from h1 -> h3?

tooooo moats4

10 8,2 7 LOCAL 7 5005

0 O O I 57 NA 10.2.01 7 i5004

R1 R2if1 if0H1 if0 if1

H2

if0

H3

if0

if0

doc-example

r1-hosts
10.0.0.0/24

r1-r2
10.0.1.0/24

r2-hosts
10.0.1.0/24

:5002
10.1.0.1

:5001
10.0.0.2

:5000
10.0.0.1

:5003
10.1.0.2

:5004
10.2.0.1

:5005
10.2.0.2

:5006
10.2.0.3

What happens if h2 sends to h3?

4.00806044 iere4

IF SENDING FROM V3

10 2 O Z 1
d
4

Z O 2

is SoLEISEYHost

Receiving packets

• Receive packet from link layer

• Parse IP header and determine if packet is valid
– TTL, checksum, etc…

• Check destination IP
– If destination is your IP: deliver locally

– If not, consult forwarding table

I I

3 NEXT PAGE

FORWARDING STEPS

CONSIDER PACKET WITHDESTINATION IP D

SENDDIRECTLY

GATEWAY

CHOOSING NEXTHOP
DESTINATIONT

If destination IP D matches one of this node’s
assigned IPs

 => Packet is for this node => Send “up” (more on this later)

Otherwise, check forwarding table to look for a match

 (If multiple matches, take the most specific prefix (lecture 7, 9)

If the result is a local route (ie, maps to some ifX)

 => Look up UDP port for D in neighbors table for ifX

 Send packet to this port

If the result is not a local route (ie, has next hop IP G)

 => Need to send packet to G instead:

 Look up G in forwarding table

 => maps to some local route on some interface ifY

 Look up UDP port for G in ifY’s neighbor’s table

 Send packet to this port

How to send up

OUR NODES DO DIFFERENT THINGS
WI PACKETS

y
ProtocolNUM

Hosts
TESTPACKETS O RITTITI PACKER o

TCP G RIP PACKETS 1200

Look UP A HANDLER FON THE
PACKET BASED ON PROTOCOL NUM

REGISTERHANDLER NVM SOMEFUN

T
DO THIS AT STARTUP TELL

IP STACK TO CALL SOMEFUNC

WHEN RECEIVING A PACKET W
THIS PROTOCOL

How to table lookup?

• You can decide how to store the table
• Need to find the most specific matching prefix
• Use built-in datatypes to help you!

Go: prefix.Contains() (netip.Prefix)

r1:

> lr
T Prefix Next hop Cost
L 10.0.0.0/24 LOCAL:if0 0
L 10.1.0.0/24 LOCAL:if1 0
R 10.2.0.0/24 10.1.0.2 1

Dest IP == 10.0.0.5, where to send packet?
h1:
 > lr
T Prefix Next hop Cost
L 10.0.0.0/24 LOCAL:if0 0
S 0.0.0.0/0 10.0.0.2 0

You do NOT need to be particularly efficient about this step!

I t ii
C

2 5.7

Implementation: key resources

• Use an external library for parsing IP header (don’t do this yourself)
– For Go/C, see UDP-in-IP examples
– Rust: etherparse library

• We provide parsers for the lnx files—don’t bother writing these
yourself

• You’re welcome to use third-party libraries, so long as they don’t
trivialize the assignment (ask if you’re concerned)
– Data structures, argument parsing, are fine

IP types and go

Go has two IP types, net.IP and (newer) netip.Addr
– netip.Addr and netip.Prefix the one you want

⇒ These libraries have useful helper functions, use them!

Testing your IP

vnet_run: Run all nodes in a network automatically

• Can run on your node, or the reference

• Uses tmux: see getting started guide for details

• Can run some nodes as reference, some nodes as yours

⇒ See getting started guide for details, more soon!

Viewing packets in wireshark

Sample Topologies

Some example networks you can test with…

See “sample networks” page for more info, including what
kinds of things you can test with each network

Roadmap

Once you can send across one router, start thinking about RIP

3. Make sure you can share routes and update the forwarding table
– Eg. linear-r2h2: H1 -> R1 -> R2 -> H2

4. Try disabling/enabling links, make routes expire

5. Loop network: finding best path, updating routes as topology
changes

