IP gearup notes

This PDF contains my whiteboard notes from the gearup—for full details on

how we used these, see the video. I've also added some diagrams from

lecture 7 which talk about the same concepts, which are relevant here.

If you are reading this and have not watched lecture 7 already, | HIGHLY

recommend doing so before starting this project, as it sets up the conceptual

background you need to think about IP forwarding and networking stacks.

\\'/

J
[T
) \
7@ " MAITIW A 3 , uv
L%Nh. ,WL / / J Uk \ > r\HV
3 ﬂ) T
0 w w V) f N\ /K., / \ T
NEREE Vi SRR B (R W e
NE IS = ?
S | < 7 ¢ :
NN 2 s . i ,
r oy mES |
~ > 3 - | S
N S : N / s
8 R\ S NS : ,w
SE —3 \ l/ _ =)
| =T : 1 W,
i L]
N N
SE Sl 2| %
N (] = 3 3 y
N d =\ \ = N =
N D T s T
, /w Ml_ = ’ uUA
33 A ~ \ 3
L X

A "networking stack”

User space

We are here

46

~__
AN
—
)
S
(e Y
a> -
T /
S~~~
TR i
Aﬂyw Q >\ T)R 3
2 =1 = | =R
15
NS
—
> C W, i
v |] %
l}l ll
/,
PR
<
M._
Y 2
Y =
:X
L <O

2 ¥
A
S ,,‘
S S y
< NS 3
MW ~ =
\« va le n;
. N/ S R
3)
..Im“rIJ ﬂnw o »/\ <~
S Q
o S 9
.)I AW_ '\ L
,MW V.M N/
Yy — 3
< W »Mur WW
< A M8
- \/ \\ 2.
3
R
p e
NEABN I ,
$<
\
Ny
N

Forwarding IP packets

\

|

To more networks (ie, Internet)
.-
1.2.2.100

1.2.2.105

/2.2.0/zf

18

[wl Coupie Flt e Noe/
Ner)X o VR

- Network definition file: (some-net.json)
- How stuff is connected (adjacency list)

...........
-
...........
_——
.
’

#}) L bawd

Vew
- -
SN N —
-
~———

’

For every interface

Every node in the network starts up -IPaddress

with a configuration file that tells it - Netmask (prefix size)

how to set up its interfaces - Know how to reach neighbor nodes
=> Inx file

(We give you a parser)

[wl Coupie Flt e Noe
Ner)X o VR

- Network definition file: (some-net.json)
- How stuff is connected (adjacency list)

: [0Lo.y.0/z) VIA)0.1.6.]
| [0-20.0/21 |F|
10,60/ KD

For every interface

- IP address

- Netmask (prefix size)

- Know how to reach neighbor nodes

—UpP Poer |/

Every node in the network starts up
with a configuration file that tells it
how to set up its interfaces
=> Inx file
(We give you a parser)
One Inx file defines what that node knows about at startup. A
node always knows:
- Your own IP on each interface
- For each interface, which neighbors you can reach

How do the hosts networks work?

- All nodes can always communicate wit
each other (unless we take down links)

- For networks with hosts, you can pretend
that there’s a switch that connects all things
in that subnet

- Hosts will only ever have one router in
their subnet

- Hosts do not do RIP, they only have one
(pre-configured route) that sends traffic to
their one router

Routers will always be connected to each
other in “point to point” networks (r1-r2, r2-
r3, ...)

Should be thinking about what kinds of functions you want to expose to
higher layer stuff

- Initialize(config structure from Inx file)

- Send(dest ip, uint8 protocolNum, byte array) -~

- Reg|sterRechandIer(umt8 protocoINum callbackFunc) // Call this

s)
m’)/ Fore Njoprt AYBEE]

e
L//V i/ ij E\J

Two implementation notes

1. Most languages have types of ip addresses, they have good methods and stuff
you can use

- For go, the type you want is netip.Addr (net.IP :()
- We have provided a library that uses this because Go hasn’t caught up yet

=> Totally okay to use libraries that have data structures for IPs and such

2. Talking about encapsulation
= > You are sending UDP packets on UDP sockets
The thing you send IS AN IP PACKET

