IP gearup notes

This PDF contains my whiteboard notes from the gearup—for full details on

how we used these, see the video. I've also added some diagrams from

lecture 7 which talk about the same concepts, which are relevant here.

If you are reading this and have not watched lecture 7 already, | HIGHLY

recommend doing so before starting this project, as it sets up the conceptual

background you need to think about IP forwarding and networking stacks.
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A "networking stack”

User space

We are here
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Forwarding IP packets

\

|

To more networks (ie, Internet)
.-
1.2.2.100

1.2.2.105

/2.2.0/zf

18



[wl  Coupie  Flt e Noe/
Ner )X o VR

- Network definition file: (some-net.json)
- How stuff is connected (adjacency list)
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For every interface

Every node in the network starts up -IPaddress

with a configuration file that tells it - Netmask (prefix size)

how to set up its interfaces - Know how to reach neighbor nodes
=> Inx file

(We give you a parser)
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- Network definition file: (some-net.json)
- How stuff is connected (adjacency list)
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For every interface

- IP address

- Netmask (prefix size)

- Know how to reach neighbor nodes

—UpP Poer |/

Every node in the network starts up
with a configuration file that tells it
how to set up its interfaces
=> Inx file
(We give you a parser)
One Inx file defines what that node knows about at startup. A
node always knows:
- Your own IP on each interface
- For each interface, which neighbors you can reach



How do the hosts networks work?

- All nodes can always communicate wit
each other (unless we take down links)

- For networks with hosts, you can pretend
that there’s a switch that connects all things
in that subnet

- Hosts will only ever have one router in
their subnet

- Hosts do not do RIP, they only have one
(pre-configured route) that sends traffic to
their one router

Routers will always be connected to each
other in “point to point” networks (r1-r2, r2-
r3, ...)



Should be thinking about what kinds of functions you want to expose to
higher layer stuff

- Initialize(config structure from Inx file)

- Send(dest ip, uint8 protocolNum, byte array) -~

- Reg|sterRechandIer(umt8 protocoINum callbackFunc) // Call this
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Two implementation notes

1. Most languages have types of ip addresses, they have good methods and stuff
you can use

- For go, the type you want is netip.Addr (net.IP :()
- We have provided a library that uses this because Go hasn’t caught up yet

=> Totally okay to use libraries that have data structures for IPs and such

2. Talking about encapsulation
= > You are sending UDP packets on UDP sockets
The thing you send IS AN IP PACKET



