

A mental model

Snowcast: an “Internet radio station”
o« Server: has several “stations” that serve audio data to clients

e Clients: connect to server, ask for a station, receive audio data

— (Actually two programs, more on this later)

“Radio station”

 Server is always “playing” music, even if no one is listening

« Everyone gets the same data at the same time

A mental model

Snowcast: an “Internet radio station”
o« Server: has several “stations” that serve audio data to clients

e Clients: connect to server, ask for a station, receive audio data

— (Actually two programs, more on this later)

“Radio station”

 Server is always “playing” music, even if no one is listening

« Everyon . . : '
Not like Spotify. More like Pagidora or
iHe}ptﬁadio. -17"7,1\/))7@%/

Goals

Intro to socket programming

Chance to become more comfortable with socket
programming, in any language

Learn how to implement a protocol, design a robust

server

7)) , Va1~ ,
[HIWR)WE ABOVT TNE Agcn)T ECTULE
_ oo C Al
oy S
A%
—_ / L S pet
’Lln-fnl\n \\\l/ m cr v 2F 0 / . -ﬁ:. |‘Uff>
— \ _5UBSLL'DD ’I }ﬂﬂ) Flba ‘Cl’l !
. STATio 0" | 7= "
c@'?érs PRREE | > NP2, S €
L IR /44 4 20 _f
éAV’AAMZEPOBﬂM g 1 ME3
— A — ”
ZEPL ,_// ///// Z }"‘P 32 2
Lz @/////j = N !P‘;._‘:
B S om0) el N\ — ’ '
LS ey
foeT " A U 2\ T REEPS TRAck of
DeEWES TUTD / T | ek ceer U8
STATIO DATA Froth COWEETED 70 WA
L 0P i R
/// /6 X/ = [ac Epc STATtor)
AK _ PEALS F/Lel 7 Sovgs
wLTER TO SUT CHimKS of DT
oo’ AT (6 (B
(CAN f’/’/”l-:: v Y, J'\ — WANEDY A FILE
”f"/ﬂ)/ A/’ rosepfe 7HA) Loofs | Sewns
/ - A /
AL KEAD 7He DA | | fuwevwect 7T
7ELL Cougner. CliawsT

e | 9 Il], 6;\)1_;/ VEED
)/V(‘)u’zi As7 . rrorocoL OVERViEwW | Q+@D For
- | Mice<rore!
L[S Tepen Copriel, Sppsen—
XNV) C Ll (’fd,l?_ «
4 s
“UITES on @ 7’\1‘(":7—5— MY s, Stot 5
— 'K ’I)(57 /907127')) //‘\ /”F;o
po | — T | 5,/ }/
il
, ////, LJ-/(?;U
- (OBLLOAE , [N || ~/P:
EFN STATIC ” - Sock
—lf7epen—
(27)/"1:?1' TATI D :}70)2_f~' X
= &/ >rﬁ/u7)(/ - e v,)
~ 1) -
~__</0>"
2| (4DD cLiwT
| _C:mfm;l)]
— J
_—
é/",h ﬂ‘U)UDVMCE’
LTI E >
—
_— ¥~ /O
_— e) &/
/// 4/// é’ﬂ//l.?é @‘N
_— | — S WA VDP o
(// __— //,// il (Cliewr [P, PoT X)
— AT| /6 xBPS
—
o N v & @ e O o
©) »
wehre 7) (oo < TIESl
STpov7 o _— CPnEm 7=
«— _007S |

Lo J20 DN6 A AVTIINKED

AFrelLcA77ow

— QNAT~ ST porl
TRE <twvEr. Siaeel

/
S MILED DATA! /,17
sfow 0 PO T

— oW STOJE 12968

Ve Siuden M
fern cilexr

- Alewo 72 AUWDLE MoLTI?LE
CLiewrs?

£é. For THE
GUESSI6 GANE
EXANPLE .- -

~ WM BEK. LokrE
TR YWE 10 cuef(
- 7074 PyBer— oF
X% AS YA ¢

— &

— CllEWT Soc k& 7~

My BE

—WWIoE /D, Guess
N, -

— CWE GoLovrInE

Gr) SENVEN. [AL
ClENT

~ Strdin_ feEre
LICT o2 c(litnrL

70 woip? (NN
g /d/ﬂ-: Kesert

For yor JES(SV DOCYMEN, TRIMK
ABoyr New Y ood 7o 7RI

. SPopcAST!

Concretely: how Snowcast works

§/C|ient 1

[snowcast control

i
b
//' S

i [snowcast_listene
r

Song Files
' Client 2
i [snowcast_control [T}
[snowcast Iistene]4-:- ______
r
’
/’

§/C|ient N

[snowcast_control

i Lo
; [snowcast_Iistene]‘(
\ T i

<4————5 Control Protocol (TCP)

<« — — — — Song data (UDP)

What you will implement

You will implement all three programs
— snowcast server: the server

— The client (two programs):
« snowcast control: Control client

« snowcast listener: Listener client

We give you the specification for the protocol, and how the
programs should behave

You decide how to implement them

What you will implement

You will implement all three programs
— snowcast server: the server

— The client (two programs):
« snowcast control: Control client

« snowcast listener: Listener client

We give you the specification for the protocol, and how the
programs should behave

You decide how to implement them

[Need to be able to interoperate with our reference version (and }
tests)!

Roadmap

Setup <--- you are here
Milestone: Sending initial messages (welcome/hello)

Building your server (where to put state, etc.)
— Subscribing to stations

— Listing clients

Listener + streaming =D JMPLENA EWTATTON SUIDEL
Announcements while streaming (w}JEN FILE M@@@

Roadmap

Setup <--- you are here
Milestone: Sending initial messages (welcome/hello)

Building your server (where to put state, etc.)

— Subscribing to stations

— Listing clients
Listener + streaming
Announcements while streaming

Error handling/timeouts/etc

What we will test

Your programs must interoperate with ours (ie, speak the
same protocol)

Don‘t need to stream music—we just measure for a
streaming rate of ~16KiB/s

Some server design guidelines (see spec)
— Must support multiple clients, protect shared data

— Reasonable error handling (+timeouts)

Languages

You can work in any of the following languages:
« Go

Sée
e Rust — G0 BY LxmMipit

We recommend Go, even if it is new to you.

Assignment structure

« Milestone

— Warmup: guide to sending your first few messages and inspecting
them in Wireshark

« Should pass the “milestone tests” in your repository

— Design doc: tell us how you plan to design the rest of the system

 Final submission: your code + a README explaining your major

design decisions

Resources

The Handout

— Protocol specification: what messages should look like

— Implementation specification: how programs should be have (command line
arguments, etc.)

Warmup/Implementation guide

— Implementation-level resources: FAQs, how to run tests, how to use wireshark, etc.

Test suites: you can run our autograder tests!
Lecture examples: don’t copy, but look at them side by side

'_\[\éSee the FAQ/Reading list post on Ed! }

Language resources

« Language resources on website
« Go: will post more on channels

« Some utilities for C (linked list, hash table)

Libraries

« You can use libraries you find online (go packages, rust
crates, etc), as long as it doesn't trivialize the assignment

* You must manually parse packets on your own

« Easy examples: argument parsing, logging, ...

How to get started

Dev environment

« You should be working in the container environment

« Be sure to clone your repo where you can access it from the
container

| ——DEV-ENVIRONMENT
| |-—docker/
| -——home/
| |-—snowcast-yourname/

I
I
| |-—run-container
I

How to start a go project
L Vovr REPO

-snowcast-yourname

|-emd/ &—— ow& FopE - L/ EALN Frogrpm.

| | [9 é‘g/. SMVEIL/ ronrpal

|) - some-program/ RN
| | - main.go

| - another-program

| | - main.go - _
| -pkg/ — For L,,}M/b§ You WKTE
|

|

- somelib/

| = somelib.go:z SD“AAEHQ C20€

The tester

We have provided a test suite with all of our tests
« Check your work as you go, see it in Wireshark

« We'll have the same test suite available in gradescope soon

=> Can use to make sure you don’t have any compatibility issues

« Want to know what a test does? See the list of tests!

If you are failing a test and don’t know why, see the “what to do if
you have a failing test” section of the warmup/implementation
guide

