
Snowcast Warmup
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A mental model

Snowcast:  an “Internet radio station” 

• Server:  has several “stations” that serve audio data to clients 

• Clients:  connect to server, ask for a station, receive audio data 
– (Actually two programs, more on this later) 

“Radio station” 

• Server is always “playing” music, even if no one is listening 

• Everyone gets the same data at the same time



A mental model

Snowcast:  an “Internet radio station” 

• Server:  has several “stations” that serve audio data to clients 

• Clients:  connect to server, ask for a station, receive audio data 
– (Actually two programs, more on this later) 

“Radio station” 

• Server is always “playing” music, even if no one is listening 

• Everyone gets the same data at the same time
Not like Spotify.  More like Pandora or 

iHeartRadio.A TWITCH



Goals

• Intro to socket programming 

• Chance to become more comfortable with socket 
programming, in any language 

• Learn how to implement a protocol, design a robust 
server
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Concretely:  how Snowcast works
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What you will implement

• You will implement all three programs 
– snowcast_server:  the server

– The client (two programs): 
• snowcast_control:  Control client

• snowcast_listener:  Listener client

• We give you the specification for the protocol, and how the 
programs should behave 

• You decide how to implement them



What you will implement

• You will implement all three programs 
– snowcast_server:  the server

– The client (two programs): 
• snowcast_control:  Control client

• snowcast_listener:  Listener client

• We give you the specification for the protocol, and how the 
programs should behave 

• You decide how to implement them

Need to be able to interoperate with our reference version (and 
tests)! 



Roadmap

• Setup <--- you are here

• Milestone:  Sending initial messages (welcome/hello)

• Building your server (where to put state, etc.)
– Subscribing to stations

– Listing clients

• Listener + streaming

• Announcements while streaming

A
IMPLEMENTATION GUIDE

1 WHEN FILE LOOPS



Roadmap

• Setup <--- you are here

• Milestone:  Sending initial messages (welcome/hello)

• Building your server (where to put state, etc.)
– Subscribing to stations

– Listing clients

• Listener + streaming

• Announcements while streaming

• Error handling/timeouts/etc



What we will test

• Your programs must interoperate with ours (ie, speak the 
same protocol)

• Don’t need to stream music—we just measure for a 
streaming rate of ~16KiB/s 

• Some server design guidelines (see spec)
– Must support multiple clients, protect shared data

– Reasonable error handling (+timeouts)



Languages

You can work in any of the following languages: 

• Go 

• C/C++  

• Rust 
We recommend Go, even if it is new to you.

The time to learn go will be less than the time you’d otherwise 
spend debugging stuff in C.

SEE
A TOUROFGO
GOBYEXAMPLE



Assignment structure

• Milestone 
– Warmup:  guide to sending your first few messages and inspecting 

them in Wireshark 

• Should pass the “milestone tests” in your repository 

– Design doc: tell us how you plan to design the rest of the system 

• Final submission:  your code + a README explaining your major 
design decisions



Resources

• The Handout 
– Protocol specification:  what messages should look like 
– Implementation specification:  how programs should be have (command line 

arguments, etc.) 

• Warmup/Implementation guide 
– Implementation-level resources:  FAQs, how to run tests, how to use wireshark, etc. 

• Test suites:  you can run our autograder tests! 
• Lecture examples:  don’t copy, but look at them side by side

See the FAQ/Reading list post on Ed!



Language resources

• Language resources on website 

• Go: will post more on channels 

• Some utilities for C (linked list, hash table)



Libraries

• You can use libraries you find online (go packages, rust 
crates, etc), as long as it doesn’t trivialize the assignment 

• You must manually parse packets on your own  

• Easy examples:  argument parsing, logging, …

If you’re unsure (especially networking-related stuff), please ask!



How to get started



Dev environment

• You should be working in the container environment 

• Be sure to clone your repo where you can access it from the 
container



How to start a go project

-snowcast-yourname
|
|-cmd/
|   |
|   - some-program/
|   |    - main.go
|   - another-program
|   |    - main.go
|-pkg/
|   - somelib/
|   |    - somelib.go
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The tester

We have provided a test suite with all of our tests 

• Check your work as you go, see it in Wireshark 

• We’ll have the same test suite available in gradescope soon 
⇒ Can use to make sure you don’t have any compatibility issues 

• Want to know what a test does?  See the list of tests!

If you are failing a test and don’t know why, see the “what to do if 
you have a failing test” section of the warmup/implementation 

guide


