
Snowcast Warmup

GEARUP

A mental model

Snowcast: an “Internet radio station”

• Server: has several “stations” that serve audio data to clients

• Clients: connect to server, ask for a station, receive audio data
– (Actually two programs, more on this later)

“Radio station”

• Server is always “playing” music, even if no one is listening

• Everyone gets the same data at the same time

A mental model

Snowcast: an “Internet radio station”

• Server: has several “stations” that serve audio data to clients

• Clients: connect to server, ask for a station, receive audio data
– (Actually two programs, more on this later)

“Radio station”

• Server is always “playing” music, even if no one is listening

• Everyone gets the same data at the same time
Not like Spotify. More like Pandora or

iHeartRadio.A TWITCH

Goals

• Intro to socket programming

• Chance to become more comfortable with socket
programming, in any language

• Learn how to implement a protocol, design a robust
server

THINKING ABOUT THE ARCHITECTURE

Ignat

i
h M

MP3

then intern
p KEEPSTRACKOFPORT

RECEIVESDATA WHICH CLIENT IS

FROMSTATION DATA FROM CONNECTED TOWHICH

AT Station

16 FIBS FOREACHSTATION
READS FILES SENDS

WRITES TO OUT CHUNKS OFDATA

STDOUT AT 16 RBIS
CAN PIPETO PU WHEN A FILE
ORANYPROGRAM THAT
CAN READ THE DATA

LOOPS SENDS
ANNOUNCE TO
TELLTNTROLCLIENT

ONLYNEED
SNOWLAST PROTOCOL OVERVIEW t205

MILESTONE
CONTROL GENETLITENER CHET ITLPCLIENT

LISTENS on HELLO MYListener
STORES

Port forth Into

É
LISTENER

TÉy
TO STATION
Decent

SONGDATA
SENT US UDPto
CLIENT IP PORTO
AT 16 KBPS

a a co o

WRITE TO
ANNOUNCE THE

WHENFILESTDOUT
LOOPS

WHENBUILDINGAITWORKED
APPLICANT EG FOR THE

GUESSING GAME
EXAMPLE

WHAT STATE DEFEE
TRYING TO GUESSTHE SERVER

Y

TOTAL NUMBER OF
SHARED DATA GUESSES

CLIENT SOCKETWHAT STATE DOES
MAYBEin que ID GUESS

THE SERVER NEED
PIR CLIETT

HISTORY

HOW TO HANDLEMULTIPLE ONE GOROUTINE
CLIENTS ON SERVER FOR EACH

CLIENT
SERVER KEEPS

LIST OF CLIENTS
TO NOTIFY WHEN

L GAME RESETS

FOR YOUR DESIGN DOCUMENT THINK
ABOUT HOW YOU WOULD DO THIS
FOR SNOWCAST

Concretely: how Snowcast works

 snowcast_server
Song Files

. . .

0
1
2

snowcast_control

snowcast_listene
r

Client 1

snowcast_control

snowcast_listene
r

Client 2

snowcast_control

snowcast_listene
r

Client N

Control Protocol (TCP)

Song data (UDP)

What you will implement

• You will implement all three programs
– snowcast_server: the server

– The client (two programs):
• snowcast_control: Control client

• snowcast_listener: Listener client

• We give you the specification for the protocol, and how the
programs should behave

• You decide how to implement them

What you will implement

• You will implement all three programs
– snowcast_server: the server

– The client (two programs):
• snowcast_control: Control client

• snowcast_listener: Listener client

• We give you the specification for the protocol, and how the
programs should behave

• You decide how to implement them

Need to be able to interoperate with our reference version (and
tests)!

Roadmap

• Setup <--- you are here

• Milestone: Sending initial messages (welcome/hello)

• Building your server (where to put state, etc.)
– Subscribing to stations

– Listing clients

• Listener + streaming

• Announcements while streaming

A
IMPLEMENTATION GUIDE

1 WHEN FILE LOOPS

Roadmap

• Setup <--- you are here

• Milestone: Sending initial messages (welcome/hello)

• Building your server (where to put state, etc.)
– Subscribing to stations

– Listing clients

• Listener + streaming

• Announcements while streaming

• Error handling/timeouts/etc

What we will test

• Your programs must interoperate with ours (ie, speak the
same protocol)

• Don’t need to stream music—we just measure for a
streaming rate of ~16KiB/s

• Some server design guidelines (see spec)
– Must support multiple clients, protect shared data

– Reasonable error handling (+timeouts)

Languages

You can work in any of the following languages:

• Go

• C/C++

• Rust
We recommend Go, even if it is new to you.

The time to learn go will be less than the time you’d otherwise
spend debugging stuff in C.

SEE
A TOUROFGO
GOBYEXAMPLE

Assignment structure

• Milestone
– Warmup: guide to sending your first few messages and inspecting

them in Wireshark

• Should pass the “milestone tests” in your repository

– Design doc: tell us how you plan to design the rest of the system

• Final submission: your code + a README explaining your major
design decisions

Resources

• The Handout
– Protocol specification: what messages should look like
– Implementation specification: how programs should be have (command line

arguments, etc.)

• Warmup/Implementation guide
– Implementation-level resources: FAQs, how to run tests, how to use wireshark, etc.

• Test suites: you can run our autograder tests!
• Lecture examples: don’t copy, but look at them side by side

See the FAQ/Reading list post on Ed!

Language resources

• Language resources on website

• Go: will post more on channels

• Some utilities for C (linked list, hash table)

Libraries

• You can use libraries you find online (go packages, rust
crates, etc), as long as it doesn’t trivialize the assignment

• You must manually parse packets on your own

• Easy examples: argument parsing, logging, …

If you’re unsure (especially networking-related stuff), please ask!

How to get started

Dev environment

• You should be working in the container environment

• Be sure to clone your repo where you can access it from the
container

How to start a go project

-snowcast-yourname
|
|-cmd/
| |
| - some-program/
| | - main.go
| - another-program
| | - main.go
|-pkg/
| - somelib/
| | - somelib.go

YOURREPO

ONE FOLDER W EACH PROGRAM

Eg SERVER CONTROL

i

FOR LIBRARIES
YOUWRITE

SHAREDCODE

The tester

We have provided a test suite with all of our tests

• Check your work as you go, see it in Wireshark

• We’ll have the same test suite available in gradescope soon
⇒ Can use to make sure you don’t have any compatibility issues

• Want to know what a test does? See the list of tests!

If you are failing a test and don’t know why, see the “what to do if
you have a failing test” section of the warmup/implementation

guide

