TCP Gearup |
(TAKE Z_>

Overview

How this project fits into IP
What you will build

How to debug/test in wireshark
Implementation notes

Any questions you have

Upper layers

“Link layer”
(Interfaces)

The Big Picture: Last time

lUser commands

’ I P ECRCREEEREE I _______________ . Other commands

‘: (up, down, I*, ..)
TCP

(next project, hosts only)

Where we are now

lUser commands

Other commands
(up, down, I*, ..)

TCP

(hosts only)

[:> A new "higher layer” in your IP stack (on the same level as test packets) 1

Where we are now

lUser commands

Other commands
(up, down, I*, ..)

TCP

(hosts only)

= A new “higher layer” in your IP stack (on the same level as test packets)
= For hosts ONLY
= You are done modifying your router at this point

Remember this picture?

End host End host

Application Protocol
Application Application

Presentation Presentation

Session Session

Transport Protocol

Transport

A Network/ProtOColmmmy cmmmmmmy
Network == wr == (== = Network Network ™ = = == Network

ink-Layer Protocolmmms s

Data link == o == == ' Data link Data link ™= == == «= Data link

A— —

Physical Physical — Physical Physical

Transport

One or more nodes
within the network

JULT EDNK) DI
ENY poryc/

Let’s break it down

v
Sockets API

TCP Stack

(Transport layer)

“Network stack”

TCP packets
(Protocol 6)

Test packets
(Protocol 0)

What goes in your TCP stack?

CoRE N7, " ppc
‘ A
C /0.9.0) 7R Sy USE

Soctezr: Jwo 73068/

“Normal” sockets Listen sockets
- One per active TCP - One per open listen port

S~

connection Has no TCB (can’t sen

- Has TCB (buffers, TCP state, F\ recv

7CP Log/C) ,/ UcKET g€

SHATE AAcywe
I 7/ ocket table

' S
<L DOINVE OIpPOo . Maps packets => sockets based
: on header info

DECIDE WAAT/ HEY ~ Ve
22N\ bt a aa
i NAWDCEI
USE Conn / No70 <
~ 0 crack. | DL Sa0 fron 1p! (707 é/
ol) (VN SenalL faestaAaaa Pr COCOoO.Ll D {Les)
A S O e S s e O O O O O O
1944 ~

AL AR
API for sockets: abstraction for creating and using TCP
connections

Example: Go's socket API
conn, err := net.Dial(“tcp”, “10.0.0.1:80”)

someBuf := make([Jbyte, . . .)
conn.Write(someBuf)

v
Sockets API

TCP k
Example: our socket API (yours can look different) (Tgnsposrjaayg)
conn, err := tcpstack.VConnect(addr, port) ry
someBuf := make([]Jbyte, . . .)

conn.VWrite(someBuf)

VListen(port) // Listen on a port
VConnect(addr, port) // Connect to a socket

VAccept(. . .) // Accept new connections (more on this later)
VWWrite(C. . .) // Send on a socket

VRead(. . .). // Recv on a socket

VClose(. . .) // Close a socket

Focus for VListen(port) // Listen on a port
Milestone 1 VConnect(addr, port) // Connect to a socket

VAccept(. . .) // Accept new connections (more on this later)
VWWrite(C. . .) // Send on a socket

VRead(. . .). // Recv on a socket

VClose(. . .) // Close a socket

TCP stack: logic that happens “under the hood” to
make sockets work (ie, the TCP protocol)

* Should be a separate library you initialize at host
startup (like your IP stack)

« Uses your IP stack to send/recv packets
* |IPSend(destlIP, protocol, bytes) TCP Stack
« New handler for TCP (protocol #6) e

TCP packets
(Protocol 6)

v

REPL commands: how we’ll test your

=> Think of these like "applications” that use your
socket API

// Basic stuff (test your API)

a Listen on a port; accept new connections
c Connect to a TCP socket Eﬁfuifor ,
1s List sockets llestone

s Send on a socket
r Receive on a socket

cl Close socket
// Ultimate goal

sf Send a file
rf Receive a file

Demol!

How to test TCP

:5000 :5001 H :5002 5003

10.0.0.1 10.0.0.2 10.1.0.1 10.1.0.2

Most of the time, use linear-r1h2 network —> Make sure your IP

» Only one router, no need for RIP el g Ul Bt
the reference router!!

« Can mainly use reference router (Test with your host,

— Will release an updated refgrencg router next week our router)
(has extra features for later in project)

Note: watching traffic in wireshark works differently in this project!
=> See "TCP getting started” guide for details

Roadmap

Milestone |

* Initial design for APl and TCP stack

e Listen and establish connections => create sockets/TCB
 TCP handshake

* accept, connect, and start of Is REPL commands

How to think about connections

aka. Most important thing for Milestone 1

> 1s

SID LAddr LPort RAddr RPort Status
] 0.0.0.0 9999 0.0.0.0] LISTEN
1 10.1.0.2 9999 10.0.0.1 580060 ESTABLISHED

How to think about connection setup_

Scenario:

- B listens on port 1234 (ie,

“a 12347)

- A connects to B’s port (ie, “¢ 10.1.0.2 12347)

HNow 7Zn KeEAD:

A

ForLow THE pumpens

/0. 0.0

V,

7/

& Al oo’
S =| VConnect((10.1.0.2|, ==

1234)

A initiates| connection using

VConnect. This creates a new

normal sgcket for thisjconnection

(see table) and sends|a SYN.

When thelsocket is created,|/A's TCP

stack picks afandomy(unused)

sourcesparbfor this connection.

Syn_SENT> ESTAB @

When A receives the SYN+ACK,
the packet is mapped to the
normal socket for this connection.
When a normal socket receives a
packet, we handle it according to
the TCP state machine. Here,

%/

TCP cr(355p ST g23¢
SEG: O AcK. @

/}7 SHC: (0102 DST>10.0.0.)
TCP (RC 23y AT 335K

Sce: o AcK:

-
/F SUC: 10002 DST: 1000, 1

W\
N\

< —

/P S lot0z DST: 1000,
TCP (e 355 INT: 1234

sea:] AcK:]

state == SYN_SENT, so per|the
protocol the action when receiving
a SYN+ACK is to send an ACK
and move|to ESTABLISHED.

—

[0.1.0.2
(D "PAGSIVE OPEN "

B apens a new|listen |port
using VListen. [This
creates g new Listen
socket (see table below)

™ | LS = VListen (1234)
L/ v »
> CS |= LS|VAccept()

B-then-calls-VVAceept-on-this
socket. VAccept blocks until
a client has fully connected

¢ o &

@A@D NormAL /

CocKET CREATED.

Whenthe SYN-isreceived, B
maps it to the open|listen |socket.
When the listen socket receives a
SYN, it creates a new normal
socket for this specific
connection between A and B,
then sends SYN+ACK.

(&) [ACKET vrotres
AVEW SackeT SIATE!

L

S _RECYD =1 ESTAB

C

VAccept| unblocks| here

, (returns socket CS)
¢ TABLE Be roe
4@:«. REMIE LocAL RMAE
1P| For | s | prer | <P 17 | ror | s | per |SPTE
@/N-W s3szp |/0100 “ ?;/7;” O _x 220 | ¥ X s
é @/0-/-0-2 1239 | 70.00 |3357¢ SyngsRecwo
L ESTAR
)

How to know-it goes to-this specific socket,

\&/

and not the listen socket? See next page.

How do we map an incoming_packet to a socket? To take a look at this, let’s examine what
happens to the last packet in the handshake when it's received by B (step 5 above):

s

> T’ﬂ EADEL . INFO
s wtAE

Soood psr o l0.1.0-2
%/ V<P re. 38518 pu7: 73K

S€&: ! rpexe [

The packet’s source/dest 1P-and port numbers act like-a unique-identifier that identifies
this connection => this is called the 4-tuple We map packets to normal sockets based

on the 4-tuple. //ﬂ POLT // Pdrt_f
q-TUILE:; (/0.0-0,// 33876 /0/.0.2,)23))
L’/ o T—— /,

B roce
LOCAC RLMITE SotkET
)9 | poar | e | per |SATE | STEVT (rm)

PAGE
i 1239 ¥* & (IS TV S
" Syn-Recwd
dLo.)02| 123% /0.0-0:] _)33’77‘ CS

To summarize, here’s how the matching process works.
When receiving packet P, check the socket table for a matching socket:
1. Check for a normal socket with a matching 4-tuple (dstIP, dstPort, srcIP, srcPort)
2. If there is no matching normal socket, check for a listen socket where
localPort == P.dstPort
3. If no match, this packet isn’t for any known socket, so drop the packet.

Another example: What if we received a different packet

that looked like this? [P SKC: 1000 ST 10.1.0.2.
This packet has a different source port, so it has a different TCP .{Z('. m o 7. (237

4-tuple! Therefore, it must be for another connection (or it’s

an-attempt to start a new one. SEG“: / ACK. /

=> Thus, this packet should map to the listen socket

Connection setup API: recap

VConnect

« “Active OPEN" in RFC

* |nitiates new connection, returns normal socket

* Blocks until connection is established, or times out

Connection setup API: recap

VConnect

e “Active OPEN" in RFC

* |nitiates new connection, returns normal socket

* Blocks until connection is established, or times out

VLlisten

« “Passive OPEN" in RFC

* Returns new

VAccept

* Input: a

* Blocks until a client connection is established
e Returns new normal socket

Connection setup API: recap

VConnect

e “Active OPEN" in RFC

* Initiates new connection, returns normal socket

e Blocks until connection is established, or times out

VLlisten

« “Passive OPEN" in RFC

* Returns new

VAccept

* Input: a

* Blocks until a client connection is established
e Returns new normal socket

[How exactly you implement this is up to you, but your API should have calls like this }
(This isn't arbitrary—it matches what the kernel APl looks like)

Think back to your Snowcast server...

// Create listen socket (bind)
listenConn, err := net.ListenTCP("tcp4", addr)

for {
// Wait for a client to connect
clientConn, err := listenConn.Accept()
if err = nil {
// .
}
// .

go handleClient(clientConn)

¥

func handleClient (conn net.Conn) {
conn.Read(. . .)
}

Think back to your Snowcast server...

// Create listen socket (bind)

listenConn, err := net.ListenTCP("tcp4"”, addr)

for { . , = Listen socket
// Wait for a client to connect
clientConn, err := listenConn.Accept()

if err !'= ni
// -

}

// -

go handleClient(clientConn)

¥

func handleClient (conn net.Conn)
conn.Read(. . .)
}

Why separate listen and accept?
=> Need to be able to handle multiple client connections!

Your "a” command will look similar...

func ACommandREPL() { // Runs as separate thread/goroutine

// Create listen socket (bind)

listenConn, err := tcpstack.VListen(port)
for {
// Wait for a client to connect
clientConn, err := listenConn.VAccept()
if err = nil {
// .
}

// Store clientConn to use by other REPL commands

Summary: two types of sockets

Type | Whencreated | What it does | What's in it?*

Listen “a" command (VListen) “| want to receive new List of sockets for
sockets connections on this port” new/pending

-> VTCPListener in APl example Always in state LISTEN connections
Not connected to another

endpoint! (can’t send/recv

on it, has no TCB

“Normal” “c” command (VConnect) Used for “normal” TCP « TCB (send/recv buffers,
sockets “a” command (VAccept) connections between all other TCP protocol

: endpoints state)
=> VCTPConn in APl example

*. At minimum, for now

Implementation stuff

Ways to build the API | Moreinfo: “Socket APl example” in docs |

conn, err := tcpstack.VConnect(addr, port)

éoﬁn:VWrite(someBuf)
Go-style
« VConnect/VCccept/VListen return structs for normal/listen sockets
* Other functions (VAccept, VWrite, ...) are methods on these structs

Ways to build the API | Moreinfo: “Socket APl example” in docs |

conn, err := tcpstack.VConnect(addr, port)

éoﬁn:VWrite(someBuF)
Go-style
« VConnect/VCccept/VListen return structs for normal/listen sockets
* Other functions (VAccept, VWrite, ...) are methods on these structs

int sock_fd = VConnect(Caddr, port)

VWFi%e(sock_Fd, some_buffer)

C-style
« VConnect/VCccept/VListen return numbers (like file descriptors)
 Other functions (VAccept, VRead, ...) take socket number as argument

Ways to build the API | Moreinfo: “Socket APl example” in docs |

conn, err := tcpstack.VConnect(addr, port)

éoﬁn:VWrite(someBuF)
Go-style
« VConnect/VCccept/VListen return structs for normal/listen sockets
* Other functions (VAccept, VWrite, ...) are methods on these structs
* In REPL: map socket ID => struct

int sock_fd = VConnect(Caddr, port)

VWFi%e(sock_Fd, some_buffer)

C-style
« VConnect/VCccept/VListen return numbers (like file descriptors)
 Other functions (VAccept, VRead, ...) take socket number as argument

 In TCP stack: map socket ID => struct

Ways to build the API | Moreinfo: “Socket APl example” in docs |

conn, err := tcpstack.VConnect(addr, port)

éoﬁn:VWrite(someBuF)
Go-style
« VConnect/VCccept/VListen return structs for normal/listen sockets
* Other functions (VAccept, VWrite, ...) are methods on these structs
* In REPL: map socket ID => struct

int sock_fd = VConnect(Caddr, port)

VWFi%e(sock_Fd, some_buffer)

C-style
« VConnect/VCccept/VListen return numbers (like file descriptors)
 Other functions (VAccept, VRead, ...) take socket number as argument

 In TCP stack: map socket ID => struct

£=> How you implement this is up to you (don't even need to pick one of these)! }

Building TCP packets

0 31

Sequence Number

Acknowledgement Number 20 Bytes

Data RIS
Guay| Reserved R EEET windowsize |

Checksum Urgent Pointer

e MUST use standard TCP header

« Encapsulation: TCP packet => payload of virtual IP packet
* Once again, you don’t need to build/parse this yourself

= See the for a demo on how to build/parse a TCP header
(mostly uses same libraries as before)

https://github.com/brown-csci1680/lecture-examples/tree/main/tcp-demo

The TCP checksum

0

. . 4 8 16 4
. Is pretty weird N i T Destinaton Port
| Sdentifcation ___[Feos] _Fromentofisst__| Sedquence Number

20 Byt
Acknowledgement Number e
Olieey | Reserved HEEENN windowsize |

Checksum Urgent Pointer

Computing the TCP checksum involves making a “pesudo-header”
out of some IP and TCP header fields:

The TCP checksum

: : 4 8 16 0 1
. Is pretty weird Totat Tength Destinaton Port
@ Sequence Number

20B
Acknowledgement Number e
Olieey | Reserved HEEENN windowsize | \

Checksum Urgent Pointer

Options

Computing the TCP checksum involves making a “pesudo-header”
out of some IP and TCP header fields:

TCP pseudo-header for checksum computation (IPv4)
Bit offset 4-7 8-15

0 Source address

32 Destination address

64 Protocol TCP length

= You don’t need this working for milestone 1 é——'
= See the TCP-in-IP example for a demo of how to compute/verify it

Reterence implementation

* Our implementation of TCP
 Try it and compare with your version!

Reterence implementation

* Our implementation of TCP
 Try it and compare with your version!

Note: we're using a new reference this year (after 8+ years!)
« We've tested as best we can, but there may be bugs
* See Ed FAQ, docs FAQ for list of known bugs

* Let us know if you have issues!

the spec wins-——don't propagate buggy behavior

[= If the spec disagrees with the reference implementation, }
(please help us find any discrepancies!)

Roadmap

Milestone |

@ ° Start of your APl and TCP stack
e Listen and establish connections => create sockets/TCB
 TCP handshake

o . accept, connect, and start of Is REPL commands

Be prepared to talk about what goes in your data structures, design plan, etc, similar to }

O [your IP milestone

Roadmap

Milestone |

© ° Basic sending and receiving using your sliding
window/send receive buffers

 Plan for the remaining features

O

Roadmap

Final deadline

Retransmissions (+ computing RTO from RTT)
Zero-window probing

Connection teardown

Sending and receiving files (sf, rf)

Where to get more info

F { Our docs: “REPL commands” spec }

I Sockets AP l [Our docs: “Socket API” example J

Where to get more info

F { Our docs: “REPL commands” spec }

Sockets AP { Our docs: “Socket API” example]
<
< a TCP-in-IP example (how to make/parse packets)
L- IP docs

Closing thoughts

Use your milestone time wisely!

Wireshark is the best way to test—use it!

As you work with your IP code, consider refactoring!
— You're going to be working with this code for >= 3 weeks

Stuck? Don’t know what's required? Just ask!
(And see Ed FAQ)

[We are here to help!]

