
TCP Gearup I

I

Overview

• How to think about send/recv
• About buffers
• How to debug/test in wireshark
• Implementation notes
• Any questions you have

Test Pkt.
Handler

IP REPL Commands
send, lr, ...

“Network stack”

“Applications”

IP stack

Test packets
(Protocol 0)

TCP Stack
(Transport layer)

Sockets API

TCP packets
(Protocol 6)

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

Roadmap

Milestone I
• Start of your API and TCP stack
• Listen and establish connections => create sockets/TCB
• TCP handshake
• accept, connect, and start of ls REPL commands

Roadmap

Milestone II
• Basic sending and receiving using your sliding

window/send receive buffers
• Plan for the remaining features

NORETRANSMISSIONS

Relevant materials

• Lecture 14 (10/24): Send/recv basics
• Lecture 15 (10/26): How sliding window works, retransmissions,

zero-window probing

• HW3: Do it sooner rather than later—it will help!

• Testing and tools stuff: ”TCP getting started” in docs
=> More coming soon!

I

VWrite (“s” command in REPL)

 - Input: some normal socket, data you want to send

 => You need to define your send/recv buffer, what variables/state etc you
need to represent them

 - Load data into your send buffer

 - Block if send buffer is full, otherwise return number of bytes send

VRead (“r” command)

 - Input: normal socket, buffer for recevied data

 - Read from recv buffer, write that data to whatever buffer was passed in

 - If recv buffer is empty, block

 - Return: number of bytes read***

Your goals:

 - Definingi data structures (buffers, etc), variables for how you keep track of
things in the buffer

 - Receive packets, load them into recv buffer

 - SEnd packets from send buffer

Sending and receiving: API

VWrite (”s” command)
• Input: normal socket, data to send
• Loads data into send buffer
• Block if send buffer is full

VWrite (“r” command)
• Input: normal socket, buffer for received data
• Read from recv buffer, write to app buffer
• Block if recv buffer empty
• Return: number of bytes read

More info: “Socket API example” in docs

Demo!

Your buffers
• Must use a circular buffer
• You get to decide on mechanics

– How to keep track of read/write pointers
– How to translate between sequence numbers => buffer indices

For detailed info
=> RFC9293 Sec 3.3: what all the variables mean
Þ Lecture 15 (Oct 26): detailed breakdown of how to use buffers

SNSDAUF

RCU BUF

https://en.wikipedia.org/wiki/Circular_buffer

SENDING SIDE KATE
p

Write
SND ADDS

DATA
s e r f f o e e

NXT LBT
TCPSTALL
DECIDESWHEN TO SEND

SENT But NOT ACK'D
IN FLIGHT DATA

IEARY ARRIUse

o o o f f
G a o

READ WIT
REMOVES

Y
G DATA Received

FROM BUFFER NEXT BYTE EXPAT
TO RECEIVE

DATA RECEIVED IN ORD th

Want to see a better version of this? See the notes from lecture 15.

0 I 2 3 Me WIN Y SEQ 100101102103
00 101 102 10

A B C D

ftp
A B

t t t t
UNP LBR NXT

RCU SEND

A Ack

ALK REVD

C D

atUNP
LBW
kwit

SENDMORE
1041051oz is

yE F C D

M
LBW

p
NIT

For more info on this part, we recommend doing HW3–it is designed to help here!

Your buffers
• Must use a circular buffer
• You get to decide on mechanics

– How to keep track of read/write pointers
– How to translate between sequence numbers => buffer indices

• Later: okay to store some data outside send/recv buffer
– Out-of-order segments, unACK’d segments, …

For detailed info
=> RFC9293 Sec 3.3: what all the variables mean
=> Lecture 15 (Oct 26): detailed breakdown of how to use buffers

https://en.wikipedia.org/wiki/Circular_buffer

What happens in the TCP stack?

Your TCP stack will have some threads—you decide what they do

When you get a new packet…
 => Look up 4-tuple in socket table => find socket struct
 => Socket struct => all your per-connection TCP state
 (buffers, sequence numbers, etc….)

What to do with each segment? RFC9293 Sec 3.7.10 is your friend
=> + our modifications in “TCP notes” docs

Implementing VRead/VWrite
Performance requirement: send/recv process MUST be event driven

– No time.Sleep
– No busy-waiting

Where does this apply?
• REPL: s, r, sf, rf
• VRead/VWrite
• Deciding when to send, or check for new data
• Retransmissions

=> Channels, condition variables, etc. are your friends

I AD TICKERS STUFF FINE FOR RETRANSMISSIONS

Channels?

SEE CODE DISCUSSION IN VIDEO
REALLY

CHANNELS DEMO

IN DOCS RESOURCES

How to test TCP

R1 if1H1 if0if0 if0

:5000
10.0.0.1

:5001
10.0.0.2

:5002
10.1.0.1

:5003
10.1.0.2

Note: watching traffic in wireshark works differently in this project!
=> See ”TCP getting started” guide for details

H2

Useful wireshark mechanics
• SEQ/ACK analysis
• Follow TCP stream
• Validating the checksum

More docs coming soon!

The TCP checksum
… is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

Þ See the TCP-in-IP example for a demo of how to compute/verify it

Reference implementation

• Our implementation of TCP
• Try it and compare with your version!

Note: we’re using a new reference this year (after 8+ years!)
• We’ve tested as best we can, but there may be bugs
• See Ed FAQ, docs FAQ for list of known bugs
• Let us know if you have issues!

Þ If the spec disagrees with the reference implementation,
the spec wins-–don’t propagate buggy behavior

(please help us find any discrepancies!)

Roadmap

Milestone II
• Basic sending and receiving using your sliding

window/send receive buffers
• Plan for the remaining features

NORETRANSMISSIONS

Roadmap

Final deadline
• Retransmissions (+ computing RTO from RTT)
• Zero-window probing
• Connection teardown
• Sending and receiving files (sf, rf)

MILESTONEIP

NilestonE

tCPD
I

The features you need after Milestone II are not trivial—there is a lot of testing
and debugging involved, so do not underestimate this part. All of your other
course deadlines are set in order to ensure you have enough time between
Milestone II and the TCP deadline.

What this means now: make sure you use your Milestone II time wisely so that
you can spend the time afterward to focus on the other features!

IP stack

TCP Stack

Sockets API

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

Where to get more info

Our docs: “REPL commands” spec

Our docs: ”Socket API” example

Guidelines: “TCP notes” in our docs
 - Links to relevant RFCs (eg. RFC9293)
 - Our modifications/notes on the RFCs

- TCP-in-IP example (how to make/parse packets)
- IP docs

Closing thoughts

• Use your milestone time wisely!

• Wireshark is the best way to test—use it!

• Stuck? Don’t know what’s required? Just ask!
(And see Ed FAQ)

We are here to help!

TCP Header

Unfilled buffer

Data received,but not acknowledged

Data receive
d, ackn

owledged

and delive
red to applica

tion

Sequence numbers
(Circumference = 0 to 2^32 slots)

Data received, acknowledged,
but not yet delivered to application

Initial
sequence
number

Receiver's window
(Allocation buffer)
Up to 2^16-1 slots

Window
shifts

rw
nd advertisem

ent

CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK
(Step 3 of the 3-way-handshake)

Data exchange occurs
ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-

