TCP Gearup JL

Overview

How to think about send/recv
About bufters

How to debug/test in wireshark
Implementation notes

Any questions you have

"Applications”

v
Sockets API

TCP Stack

(Transport layer)

“Network stack”

TCP packets
(Protocol 6)

Test packets
(Protocol 0)

Roadmap

Milestone |

@ ° Start of your APl and TCP stack
e Listen and establish connections => create sockets/TCB
 TCP handshake

o . accept, connect, and start of Is REPL commands

O

Roadmap

Milestone |

© ° Basic sending and receiving using your sliding

——

window/send receive buffers 109 &1 RANLAIS sl

 Plan for the remaining features

O

Relevant materials

Lecture 14 (10/24): Send/recv basics

Lecture 15 (10/26): How sliding window works, retransmissions,
zero-window probing

HW3: Do it sooner rather than later—it will help!

e

Testing and tools stuff: “TCP getting started” in docs
=> More coming soon! i

VWrite (Ys” command in REPL)
- Input: some normal socket, data you want to send

=> You need to define your send/recv buffer, what variables/state etc you

need to represent them
- Load data into your send buffer

- Block if send buffer is full, otherwise return number of bytes send

VRead (r” cammand&

- Input: normal socket, buffer for recevied data
Read from recv buffer, write that data to whatever buffer was passed in

Ay ic

rary lack

r it 5 A +\/
IcCV DUIlIcH 1o CIl Ly, 100

If
[
- Return: number of bytes read™”

Your goals:

- Definingi data structures (buffers, etc), variables for how you keep track of
things in the buffer

- Receive packets, load them into recv buffer

CSEnd packet from S nd |r)|| r

|== R | Hu NCULlo

[More info: “Socket APl example” in docs]

Sending and receiving: API

VWrite (“s” command)
* Input: normal socket, data to send

 Loads data into send buffer
 Block if send buffer is full

VWrite (“r” command)

* Input: normal socket, buffer for received data
« Read from recv buffer, write to app buffer
 Block if recv buffer empty

* Return: number of bytes read

Demol!

Your buffers swo pr
zZcl ByF

e Must use a

* You get to decide on mechanics
— How to keep track of read/write pointers
— How to translate between sequence numbers => buffer indices

For detailed info
=> RFC9293 Sec 3.3: what all the variables mean
— Lecture 15 (Oct 26): detailed breakdown of how to use buffers

https://en.wikipedia.org/wiki/Circular_buffer

_ﬁwr:) b SIpK /N ﬁ’V;Ij: e e ll//yvm Ty
CH AD ﬁﬁ* v/ /An[)r'
K [A5

r A

z
/ ,{/ /'/7’ (T AL~
DU LA o 0pam)

]
(\ }/‘L'V /2 ~ /JW ‘/c]b(,‘_D‘
)/ T e AT 2
RN T
~Any, X/ UBLe
A=AV L
v
/P AD LBR- AT
| S Lt
PRoKS [— 152 oA pLcelVad
[itor Lorret— (WedT DV Lyost
10 2eess.
Ui - NUD W) OeDH~
Want to see a better version of this? See the notes from lecture 15.

For more info on this part, we recommend doing HW3-it is designed to help here!

7/ oc D }:”
O/ 7 3 i Loy

(o0 (o) 1ol 10)

ABcD

I\
LB

I

N‘ﬂ
@fmt 227,
¢ D
7
|
LB
N‘H/
@ St Aot e

10 165 102 lo3

£ F ¢ D
Tg:uA
LB

I

Nf)(

c——

S:/O& e Dl

b

A:)D’L- ‘
$ =

wﬁ\}

gL()\: 169 101 0z 123

oy 7 2 3
A B

T 1

L Y

RV Cend
& ACk.

Your buffers

e Must use a

* You get to decide on mechanics

— How to keep track of read/write pointers

— How to translate between sequence numbers => buffer indices
« Later: okay to store some data outside send/recv bufter

— Qut-of-order segments, unACK'd segments, ...

For detailed info
=> RFC9293 Sec 3.3: what all the variables mean
=> |ecture 15 (Oct 26): detailed breakdown of how to use buffers

https://en.wikipedia.org/wiki/Circular_buffer

What happens in the TCP stack?

Your TCP stack will have some threads—you decide what they do

When you get a new packet...
=> Look up 4-tuple in socket table => find socket struct

=> Socket struct => all your per-connection TCP state
(buffers, sequence numbers, etc....)

What to do with each segment? RFC9293 Sec 3.7.10 is your friend
=> + our modifications in “TCP notes” docs

Implementing VRead/VWrite

Performance requirement: send/recv process MUST be event driven
— No time.Sleep

— No busy-waiting

Where does this apply?

e REPL: s,r, sf, rf

 VRead/VWrite

« Deciding when to send, or check for new data

SEISSONS [Tithent + Croer FINS Fot pErafAMEM CCoons

[=>%bcondition variables, etc. are your friends }

\

Channels?

_ p =0
See CoDE Dicosied W e (REALLY)

:}” (WAVPELS Do 7
/ﬂ/ QOC’[% /QE‘KW,ZCL{J

How to test TCP | Moredocscomingsoon |

— 20— .
,1) 00

Useful wireshark mechanics
« SEQ/ACK analysis

* Follow TCP stream

* Validating the checksum

=> See "TCP getting started” guide for details

[Note: watching traffic in wireshark works-differently in this project! }

16

The TCP checksum

. is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

TCP pseudo-header for checksum computation (IPv4)
Bit offset 4-7 8-15
0 Source address
32 Destination address
64 Protocol TCP length
96 Source port Destination port
128 Sequence number
160 Acknowledgement number
192 Data offset | Reserved Flags Window
224 Checksum Urgent pointer
256 Options (optional)

‘ 256/288+ Data

[:> See the TCP-in-IP example for a demo of how to compute/verify it }

Reterence implementation

* Our implementation of TCP
 Try it and compare with your version!

Note: we're using a new reference this year (after 8+ years!)
« We've tested as best we can, but there may be bugs
* See Ed FAQ, docs FAQ for list of known bugs

* Let us know if you have issues!

the spec wins-——don't propagate buggy behavior

[= If the spec disagrees with the reference implementation, }
(please help us find any discrepancies!)

Roadmap

Milestone |

© ° Basic sending and receiving using your sliding

'

window/send receive buffers 109 &1 RANLAIS sl

 Plan for the remaining features

O

Roadmap

Final deadline

Retransmissions (+ computing RTO from RTT)
Zero-window probing

Connection teardown

Sending and receiving files (sf, rf)

18:10 Thu Nov 2 eoo = L 87% @)

@ = -+ Day Week Month Year Q Search Ul
November 2023 Today
Sun Mon Tue Wed Thu Fri Sat
1 (2] 4

3
Day of the Dead
MiLeSTonELS

5 6 7 8

Daylight Saving Time End Election Day

Diwali

19 20 21 22 23 24 25
P pUE Thanksgiving
- — |

26 27 28 29 30

The features you need after Milestone Il are not trivial—there is a lot of testing
and debugging involved, so do not underestimate this part. All of your other
course deadlines are set in order to ensure you have enough time between
Milestone Il and the TCP deadline.

What this means now: make sure you use your Milestone Il time wisely so that
you can spend the time afterward to focus on the other features!

Where to get more info

F { Our docs: “REPL commands” spec }

Sockets AP { Our docs: “Socket API” example]
<
< a TCP-in-IP example (how to make/parse packets)
L- IP docs

Closing thoughts

« Use your milestone time wisely!

* Wireshark is the best way to test—use it!

* Stuck? Don’t know what's required? Just ask!
(And see Ed FAQ)

[We are here to help!]

TCP Header

0 31

Sequence Number

Acknowledgement Number

Data RIS
Oiay | Reserved [BIEEEYIE windowsize

Initial
sequence

Sequence numbers
(Circumference = 0 to 232 slots)

Data received, acknowledged,
but not yet delivered to application

Window
shifts

Receiver's window
(Allocation buffer)
Up to 2*16-1 slots

CONNECT/SYN (Step 1 of the 3-way-handshake)

> unusual event
———3 client/receiver path (Start)

——3 server/sender path LISTEN/- A
¢ i CLOSE/-
(Step 2 of the 3-way-handshake) SYN/SYN+ACK ;

LISTEN
A s
Y 5

SYN :
RECEIVED SYN/SYN+ACK (simultaneous open)

SEND/SYN

Data exchange occurs

- -
i o (Step 3 of the 3-way-handshake)

{ CLOSE/FIN
: CLOSE/FIN FINJACK

| Active CLOSE| |Passive CLOSE|

Y

CLOSE/FIN

FIN/ACK
FIN+ACK/ACK :

{ ACK/-

FIN WAIT 2 Feeiineennaenanae : TIME WAIT

FIN/ACK

Timeout

(Go back to start)

