
Don’t panic: TCP gearup III

Overview

• Final TCP stuff
• Any questions you have

Roadmap

Milestone I
• Start of your API and TCP stack
• Listen and establish connections => create sockets/TCB
• TCP handshake
• accept, connect, and start of ls REPL commands

Roadmap

Milestone II
• Basic sending and receiving using your sliding

window/send receive buffers
• Plan for the remaining features

Roadmap

Final deadline
• Retransmissions (+ computing RTO from RTT)
• Out-of-order packets
• Sending and receiving files (sf, rf)
• Zero-window probing
• Connection teardown

a

Sendfile/Recvfile
Using your socket API, send/recv a file

Sendfile
• Open a file, VConnect, call VWrite in a loop

Recvfile
• Listen on a port, Open a file, call VRead in a loop

=> This is the ultimate test: your implementation should be
similar to how you’d use a real socket API!

UP to IMB

Demo!

So how do we get there?

Relevant materials

• Lecture 15 (10/26): Sliding window, retransmissions, zero
window probing

• Lecture 16 (10/31): connection teardown

• Testing and tools stuff: ”TCP getting started” in docs
=> New IP reference for testing with packet loss => announcement soon

ROUTER

Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some

metadata
=> What to store? You decide!

More info: Lecture 15, RFC6298

WHENYOU SENT IT

Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some

metadata
=> What to store? You decide!

• Start RTO timer
• When you get an ACK, reset

More info: Lecture 15, RFC6298

ONE THEN PEN SOCKET

Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some

metadata
=> What to store? You decide!

• Start RTO timer, reset on ACK

When RTO timer expires
• Retransmit earliest unACK’d segment
• RTO = 2 * RTO (up to max
• If no data after N retransmits => give up, terminate connection

More info: Lecture 15, RFC6298

Þ RFC6298 is your friend! Use it!
(edge cases, etc.)

It

p

JEARLY Arrived
HIM

Rhino

RTO?

RTO = Retransmission Timeout (RTO)
=> Based on expected RTT: “how long until you SHOULD get an ACK?”

When you get an ACK, update RTO

More info: Lecture 15, RFC6298

Example upper/lower bounds
RTOmin ~= 100ms
RTOmax ~= 5sec

114IRTTT ONE MEASUREMENT

SR TT SMOOTHED RTT

WE bled AN

	

RTO?

RTO = Retransmission Timeout (RTO)
=> Based on expected RTT: “how long until you SHOULD get an ACK?”

When you get an ACK, update RTO
 => Smoothed weighted moving average of recent RTTs

More info: Lecture 15, RFC6298

Example upper/lower bounds
RTOmin ~= 100ms
RTOmax ~= 5sec

RTT a KTTnew t I DSRI
a
p

Computing RTO
Strategy: measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWMA)
• RFC793 version (“smoothed RTT”):

SRTT = (⍺ * SRTTLast) + (1 - ⍺)* RTTMeasured
RTO = max(RTOMin, min(β * SRTT, RTOMax))

⍺ = “Smoothing factor”: .8-.9
β = “Delay variance factor”: 1.3—2.0
RTOMin = 1 second

RFC793, Sec 3.7
RFC6298 (slightly more complicated,

also measures variance)

UPDATE on perf requirement
Performance requirement: send/recv process MUST be event driven

– No busy-waiting
– time.Sleep MUST NOT BLOCK SEND/RECV process

Where does this apply?
• REPL: s, r, sf, rf
• VRead/VWrite
• Deciding when to send, or check for new data
• Retransmissions

=> Channels, condition variables, etc. are your friends

*Okay to use sleep, time.Ticker to have separate
thread trigger an event, like retransmissions

Out of order segments

Usually, make a “early arrival queue”
• When segment arrives, add to queue if it’s not the next segment

=> What to store? You decide!

• As more segments arrive, check the top of the queue to see if it
fills in any gaps

More info: Lecture 15

Zero window probing
When receiver’s window is full, sender enters zero window probing mode
• Stop sending segments
• At a periodic intervals, send 1 byte segments until receiver sends back

window > 0 bytes

More info: Lecture 15

Zap

I
BYTE OF REAL
DATA WHATEVER
IS NEXT IN
SEND BUF

The next page has an example for zero window probing and
retransmissions—it’s a bit more involved than we discussed in
the gearup but should be useful for seeing how it works and
interacts with your buffers.

S ASSUME SEGMENT SIZE I 2
ZWP EXAMPLE

Msiiitt ER
PÉÉÉ EMPTY
NO DATAREADBY
APP YET

SEE 3 Act I L

Oic
NXT

É

A ÉARYARRIVALS

X y

É I
s

LBR
DogsgotAFFEC

t
filing 4g

I 2 3 45
WIN H E L L

E
Hr

sÉ i no

SEgl ACkiSw
BUFFERSTILLFULL
PROBEDISCARDED RECEIVER
SENDSANACK NXTWINUNCHANGED

APP CALLS
N CONNREAD I

READS 2 BYTES

NINE
t

seq 3 4 5 6I

M

sÉ i no not

t

É1E
3 4 56
L L O

M
LBR

HIII ZEROWINDOWPROBES ARE ALWAYS ONE
BYTEREGARDLESS OFTHESEGMENT SIZE IN THIS EXAMPLE

WE HAVE BEEN USING IBYTESEGMENTTHROUGHOUT THIS Is COINCIDENCE

Zero window probing
When receiver’s window is full, sender enters zero window probing mode
• Stop sending segments
• At a periodic intervals, send 1 byte segments until receiver sends back

window > 0 bytes

How to test?
• On one side, listen on a port: a 9999
• On other side, send a file

More info: Lecture 15

Connection teardown
4-way connection close process => see the lecture for details

• VClose just starts the connection close process
 => TCB not deleted until connection goes to CLOSED state

More info: Lecture 16

Testing with packet loss
New REPL command in vrouter reference (out soon):

> drop 0.01 // Drop 1% of packets
> drop 0.5 // Drop 50% of packets (way too aggressive)

> drop 1 // Drop ALL packets (equivalent to “down”)

> drop 0 // Drop no packets

Also: can set by running vrouter with --drop

i

Custom vnet_run configurations

How to test TCP

R1 if1H1 if0if0 if0

:5000
10.0.0.1

:5001
10.0.0.2

:5002
10.1.0.1

:5003
10.1.0.2

Note: watching traffic in wireshark works differently in this project!
=> See Gearup II, ”TCP getting started” guide for details

H2

Useful wireshark mechanics
• SEQ/ACK analysis
• Follow TCP stream
• Validating the checksum

More docs coming soon!

x x

Reference implementation

• Our implementation of TCP
• Try it and compare with your version!

Note: we’re using a new reference this year (after 8+ years!)
• We’ve tested as best we can, but there may be bugs
• See Ed FAQ, docs FAQ for list of known bugs
• Let us know if you have issues!

Þ If the spec disagrees with the reference implementation,
the spec wins-–don’t propagate buggy behavior

(please help us find any discrepancies!)

Do not underestimate these last parts--it will take time to
debug and test them.

When stuck, take a break and come back to it. It will help.
 => Do NOT wait until the last minute.

Closing thoughts

Don’t panic.

TCP due

You are
here

Breathe

The TCP checksum
… is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

Þ See the TCP-in-IP example for a demo of how to compute/verify it

IP stack

TCP Stack

Sockets API

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

Where to get more info

Our docs: “REPL commands” spec

Our docs: ”Socket API” example

Guidelines: “TCP notes” in our docs
 - Links to relevant RFCs (eg. RFC9293)
 - Our modifications/notes on the RFCs

- TCP-in-IP example (how to make/parse packets)
- IP docs

Unfilled buffer

Data received,but not acknowledged

Data receive
d, ackn

owledged

and delive
red to applica

tion

Sequence numbers
(Circumference = 0 to 2^32 slots)

Data received, acknowledged,
but not yet delivered to application

Initial
sequence
number

Receiver's window
(Allocation buffer)
Up to 2^16-1 slots

Window
shifts

rw
nd advertisem

ent

CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK
(Step 3 of the 3-way-handshake)

Data exchange occurs
ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-

