Don't panic: TCP gearup

Overview

* Final TCP stuff
* Any questions you have

Roadmap

Milestone |

@ ° Start of your APl and TCP stack
e Listen and establish connections => create sockets/TCB
 TCP handshake

o . accept, connect, and start of Is REPL commands

O

Roadmap

Milestone |

© ° Basic sending and receiving using your sliding
window/send receive buffers

 Plan for the remaining features

O

Roadmap

Final deadline
* Retransmissions (+ computing RTO from RTT)

» Out-of-order packets

« Sending and receiving files (sf, rf)
» Zero-window probing

« Connection teardown [CL>

Sendfile/Recviile

Using your socket API, send/recv a file

Sendfile
« Open a file, VConnect, call VWrite in a loop

P ro up

* Listen on a port, Open a file, call VRead in a loop

Recvfile

=> This is the ultimate test: your implementation should be
ritaTto ow you'd use a real socket API!

Demol!

So how do we get there?

Relevant materials

Lecture 15 (10/26): Sliding window, retransmissions, zero
window probing
Legture 16 (10/31): connection teardown

Testing and tools stuff: “TCP getting started” in docs
=> Newgseference for testing with packet loss => announcement soon

VtEovrere.

st [Moreinfo: Lecture 15, RFC6298 |
Retransmissions

Usually, make a “retransmission queue”

* When segment sent, add segment to queue with some
metadata
=> What to store? You decide!

Ly okt oy stve (T

et [Moreinfo: Lecture 15, RFC6298 |
Retransmissions

Usually, make a “retransmission queue”

* When segment sent, add segment to queue with some
metadata

=> \What to store? You decide!

* Start RTO timer =2 OWE Tkt PFEyv [OckEET.
* When you get an ACK, reset

et [Moreinfo: Lecture 15, RFC6298 |
Retransmissions

Usually, make a “retransmission queue”

* When segment sent, add segment to queue with some
metadata
=> \What to store? You decide!

e Start RTO timer, reset on ACK

)
When RTO timer expires)| z/ 7@:‘
» Retransmit earliest unACK'd segment |
+ RTO =2 * RTO (up to max)
 |f no data after N retransmits => give up, terminate connection

— RFC6298 is your friend! Use it!
(edge cases, etc.)

A\

9 _ X
22 N\ (N

MV N (//L/k \ \
)Y \

N oL

=% = |
~) V\I«

(>

R

Id

——
//

(‘?\
A W)
=L

@ T

-

Ack v
A

’ — 7
Akl "I [y |
e

(2

e

L

T——\\| o000
l

T~

%

i

») A\

RTO? | Moreinfo: Locre 15Jfrceass|

7

RTO = Retransmission Timeout (RTO) A WHsv 70
=> Based on expected RTT: “how long until you SHOULD get an ACK?" Q;diz;’//
7oV

/ (
When you get an ACK, update RTO m(\

|~

Example upper/lower bounds }

4) Lt emed "QVG ERTOmin ~=100ms

T = OWE NEASUMsrnT

~~

RTOmax ~= 5sec

RTO? [Moreinfo: Lecture 15, RFC6298]

RTO = Retransmission Timeout (RTQO)
=> Based on expected RTT: “how long until you SHOULD get an ACK?"

When you get an ACK, update RTO
=> Smoothed weighted moving average of recent RTTs

eI AL(Z?”?‘A/]M) + (1= X)SPTT

K/ Example upper/lower bounds
ﬁ RTOmin ~= 100ms

RTOmax ~= 5sec

Computing RTO

Strategy: measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWMA)

« RFC793 version (“smoothed RTT"):
SRTT = (o * SRTT o) + (1 - &)* RTTpteasured
RTO = max(RTOpwin, min(B * SRTT, RTOpay)
_ -_—
a = “Smoothing factor”: .8-.9
B = "Delay variance factor”: 1.3—2.0

RTOy:, = 1 second
RFC793, Sec 3.7

RFC6298 (slightly more complicated,
also measures variance)

UPDATE on perf requirement

Performance requirement: send/recv process MUST be event driven

— No busy-waiting
— time.Sleep MUST NOT BLOCK SEND/RECV process

*Okay to use sleep, time.Ticker to have separate

Wh d thi 72 thread trigger an event, like retransmissions
ere does IS dPPIY ¢

e REPL: s,r, sf, rf

 VRead/VWrite

« Deciding when to send, or check for new data
 Retransmissions

[=> Channels, condition variables, etc. are your friends 1

| Moreinfo: Lecture15 |
Out of order segments

Usually, make a “early arrival queue”

* When segment arrives, add to queue if it's not the next segment
=> What to store? You decide!

* As more segments arrive, check the top of the queue to see if it
fills in any gaps

Zero window probing (7 eSS

When receiver’s window is full, sender enters zero window probing mode

Stop sending segments
At a periodic intervals, send 1 byte segments until receiver sends back

window > 0O bytes /
| Ste Lews

=

[BY1w oF REA m,’,/ﬁ

W2ATA) LN fT2y v
[£ pegr /o T
Swap DUP.

The next page has an example for zero window probing and

retransmissions—it’s a bit more involved than we discussed in

a
the gearup but should be useful for seeing how it works and

intaracte wit w-hi

7

1 1 k= daY"
Hncravto Wil yuUul vulicl

”

7

.. | R
) i 3 wn_ mﬁ A
| > mn _ >~ J y_w,r/ > 2
W/ " ,“, ,M 1 | \vm,mw N RN
E_r N 2 hi Y NIEN TR
D\Mw&x/ R ¥ N W,V ~| =
974\ . fo../ .T%u, . &
~ ~ o«
¥ 3 T3 S B
HK _ .(/\d.% _ |) (/w 3 | _ t /\/mﬁ. ..
— .y\ .\ ! N / : . A g ~,
ol | \ N~ N u..lf, I 1/ o Gz R
> BN A 3 [AT
ik VAR] B A Y N = %\ Sk
. Jo>d W Y o3 83 3w
SN ~ / v RGRIESC) B . “
J& Al ol X AM\ “,/\/H\ 3 @\f .u,r q/\ i M/ W,* WM/
SN ANV /AN W AT 75 B W N
A 5] g o R]| W E B “ 5
~y / ,N.) ~ mc\/
VAR &\ /0
IQl ®f D\ | RECNERSINS; © |
) \ 1

c
7 S
E@ -ZE@ Dlbow> oge
— 364 ¢ A=) 0 Q] ,
T | e st Flt
Seq:), ACk:S, Wm0 —1% ccpsDen, PECEWER
'@(/"———‘/ Aw Ack (Mmoo yweANeED)
APP caeLs
P~ 4
L7 comm.2c4D ()
| Runs 2 27
2y
NE
/{ e
Zr@ ‘ 3 l/ s ﬁ
7\
wn/ L L
1372
B L s g st
- \\\ D C
— <Cq: € Acy =) n_, %)
—~L__ o v
- (7=t tofagsf \S"
) S€4=1, Ak=0, ‘ —] Blf‘Q v < 6 .
Mow |2 © @
t
(472
R LOTE! Zeno comgod ArogeC ARE ACwALr ok
T RECACDLESS OF The SCemewr S/Z€. fv 7unr EXAAE,
VS
A8 £ Beew me (-2 Seemenrt FHeoV 6N T —THU Ur A COMCIDENCE: /
! ! ! ! ! !

° ° [Moreinfo: Lecwre s]
Zero window probing

When receiver’s window is full, sender enters zero window probing mode
* Stop sending segments

« At a periodic intervals, send 1 byte segments until receiver sends back
window > 0O bytes

How to test?
* On one side, listen on a port: a 9999
« On other side, send a file

: [Moreinfo Lecture 16 |
Connection teardown

4-way connection close process => see the lecture for details

* VClose just starts the connection close process
=> TCB not deleted until connection goes to CLOSED state

esting with packet loss

New REPL command in vrouter reference (out soon):

> drop 0.01 // Drop 1% of packets
> drop 0.5 // Drop 50% of packets (way too aggressive)

> drop 1 // Drop ALL packets (equivalent to “down”)
=

> drop @ // Drop no packets

[Also: can set by running vrouter with --drop
——

Custom vnet_run configurations

How to test TCP | Moredocscomingsoon |

—:5000 /\ :5001ﬂ 4e10[0) ‘ : :5003

10.0.0.1 10.0.0.2 10.1.0.1 10.1.0.2

Useful wireshark mechanics
« SEQ/ACK analysis

* Follow TCP stream

* Validating the checksum

Note: watching traffic in wireshark works differently in this project!
=> See Gearup Il, "TCP getting started” guide for details

Reterence implementation

* Our implementation of TCP
 Try it and compare with your version!

Note: we're using a new reference this year (after 8+ years!)
« We've tested as best we can, but there may be bugs
* See Ed FAQ, docs FAQ for list of known bugs

* Let us know if you have issues!

the spec wins-——don't propagate buggy behavior

[= If the spec disagrees with the reference implementation, }
(please help us find any discrepancies!)

Closing thoughts

Do not underestimate these last parts--it will take time to
debug and test them.

When stuck, take a break and come back to it. It will help.
=> Do NOT wait until the last minute.

[Don't panic. }

&

November 2023 BROWN

WED SAT
Nov 1 4

Halloween First Day of American Indi

5 7

Daylight Saving Time end: Election Day

Breathe

i am a tiny cactus
and i believe

in you

you can do the tihg |

16

The TCP checksum

. is pretty weird

Computing the TCP checksum involves making a
“pesudo-header” from TCP header + IP header fields:

TCP pseudo-header for checksum computation (IPv4)
Bit offset 4-7 8-15
0 Source address
32 Destination address
64 Protocol TCP length
96 Source port Destination port
128 Sequence number
160 Acknowledgement number
192 Data offset | Reserved Flags Window
224 Checksum Urgent pointer

256 Options (optional)

256/288+ Data

[:> See the TCP-in-IP example for a demo of how to compute/verify it }

Where to get more info

F { Our docs: “REPL commands” spec }

Sockets AP { Our docs: “Socket API” example]
<
< a TCP-in-IP example (how to make/parse packets)
L- IP docs

Initial
sequence

Sequence numbers
(Circumference = 0 to 232 slots)

Data received, acknowledged,
but not yet delivered to application

Window
shifts

Receiver's window
(Allocation buffer)
Up to 2*16-1 slots

CONNECT/SYN (Step 1 of the 3-way-handshake)

> unusual event
———3 client/receiver path (Start)

——3 server/sender path LISTEN/- A
¢ i CLOSE/-
(Step 2 of the 3-way-handshake) SYN/SYN+ACK ;

LISTEN
A s
Y 5

SYN :
RECEIVED SYN/SYN+ACK (simultaneous open)

SEND/SYN

Data exchange occurs

- -
i o (Step 3 of the 3-way-handshake)

{ CLOSE/FIN
: CLOSE/FIN FINJACK

| Active CLOSE| |Passive CLOSE|

Y

CLOSE/FIN

FIN/ACK
FIN+ACK/ACK :

{ ACK/-

FIN WAIT 2 Feeiineennaenanae : TIME WAIT

FIN/ACK

Timeout

(Go back to start)

