
Don’t panic:  TCP gearup III










































Overview

• Final TCP stuff
• Any questions you have










































Roadmap

Milestone I
• Start of your API and TCP stack 
• Listen and establish connections => create sockets/TCB
• TCP handshake
• accept, connect, and start of ls REPL commands










































Roadmap

Milestone II
• Basic sending and receiving using your sliding 

window/send receive buffers
• Plan for the remaining features










































Roadmap

Final deadline
• Retransmissions (+ computing RTO from RTT)
• Out-of-order packets
• Sending and receiving files (sf, rf)
• Zero-window probing
• Connection teardown
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Sendfile/Recvfile
Using your socket API, send/recv a file

Sendfile
• Open a file, VConnect, call VWrite in a loop

Recvfile
• Listen on a port, Open a file, call VRead in a loop

=> This is the ultimate test:  your implementation should be 
similar to how you’d use a real socket API!
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Demo!










































So how do we get there?










































Relevant materials

• Lecture 15 (10/26):  Sliding window, retransmissions, zero 
window probing

• Lecture 16 (10/31):  connection teardown

• Testing and tools stuff:  ”TCP getting started” in docs
=> New IP reference for testing with packet loss => announcement soon
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Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some 

metadata
=> What to store?  You decide!

More info:  Lecture 15, RFC6298
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Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some 

metadata
=> What to store?  You decide!

• Start RTO timer
• When you get an ACK, reset

More info:  Lecture 15, RFC6298







































ONE THEN PEN SOCKET



Retransmissions

Usually, make a “retransmission queue”
• When segment sent, add segment to queue with some 

metadata
=> What to store?  You decide!

• Start RTO timer, reset on ACK

When RTO timer expires
• Retransmit earliest unACK’d segment
• RTO = 2 * RTO (up to max
• If no data after N retransmits => give up, terminate connection

More info:  Lecture 15, RFC6298

Þ RFC6298 is your friend!  Use it!
(edge cases, etc.)
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RTO?

RTO = Retransmission Timeout (RTO)
=> Based on expected RTT:  “how long until you SHOULD get an ACK?”

When you get an ACK, update RTO 

More info:  Lecture 15, RFC6298

Example upper/lower bounds
RTOmin ~= 100ms
RTOmax ~= 5sec
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RTO?

RTO = Retransmission Timeout (RTO)
=> Based on expected RTT:  “how long until you SHOULD get an ACK?”

When you get an ACK, update RTO 
   => Smoothed weighted moving average of recent RTTs

More info:  Lecture 15, RFC6298

Example upper/lower bounds
RTOmin ~= 100ms
RTOmax ~= 5sec
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Computing RTO
Strategy:  measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWMA)
• RFC793 version (“smoothed RTT”):

SRTT = (⍺ * SRTTLast) + (1 - ⍺)* RTTMeasured 
RTO = max(RTOMin, min(β * SRTT, RTOMax))

⍺ = “Smoothing factor”: .8-.9
β = “Delay variance factor”:   1.3—2.0
RTOMin = 1 second

RFC793, Sec 3.7
RFC6298 (slightly more complicated, 

also measures variance)










































UPDATE on perf requirement
Performance requirement:  send/recv process MUST be event driven

– No busy-waiting
– time.Sleep MUST NOT BLOCK SEND/RECV process

Where does this apply?
• REPL:  s, r, sf, rf
• VRead/VWrite
• Deciding when to send, or check for new data
• Retransmissions

=> Channels, condition variables, etc. are your friends

*Okay to use sleep, time.Ticker to have separate 
thread trigger an event, like retransmissions










































Out of order segments

Usually, make a “early arrival queue”
• When segment arrives, add to queue if it’s not the next segment

=> What to store?  You decide!

• As more segments arrive, check the top of the queue to see if it 
fills in any gaps

More info:  Lecture 15









































Zero window probing
When receiver’s window is full, sender enters zero window probing mode
• Stop sending segments
• At a periodic intervals, send 1 byte segments until receiver sends back 

window > 0 bytes

More info:  Lecture 15
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The next page has an example for zero window probing and 
retransmissions—it’s a bit more involved than we discussed in 
the gearup but should be useful for seeing how it works and 
interacts with your buffers. 
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Zero window probing
When receiver’s window is full, sender enters zero window probing mode
• Stop sending segments
• At a periodic intervals, send 1 byte segments until receiver sends back 

window > 0 bytes

How to test?
• On one side, listen on a port:  a 9999
• On other side, send a file

More info:  Lecture 15



Connection teardown
4-way connection close process => see the lecture for details

• VClose just starts the connection close process
 => TCB not deleted until connection goes to CLOSED state

More info:  Lecture 16



Testing with packet loss
New REPL command in vrouter reference (out soon):

> drop 0.01   // Drop 1% of packets
> drop 0.5    // Drop 50% of packets (way too aggressive)

> drop 1   // Drop ALL packets (equivalent to “down”)

> drop 0  // Drop no packets

Also:  can set by running vrouter with --drop

i



Custom vnet_run configurations



How to test TCP

R1 if1H1 if0if0 if0

:5000
10.0.0.1

:5001
10.0.0.2

:5002
10.1.0.1

:5003
10.1.0.2

Note:  watching traffic in wireshark works differently in this project!
=> See Gearup II,  ”TCP getting started” guide for details

H2

Useful wireshark mechanics
• SEQ/ACK analysis
• Follow TCP stream
• Validating the checksum

More docs coming soon!

x x



Reference implementation

• Our implementation of TCP
• Try it and compare with your version!

Note:  we’re using a new reference this year (after 8+ years!)
• We’ve tested as best we can, but there may be bugs
• See Ed FAQ, docs FAQ for list of known bugs
• Let us know if you have issues!

Þ If the spec disagrees with the reference implementation, 
the spec wins-–don’t propagate buggy behavior 

(please help us find any discrepancies!)



Do not underestimate these last parts--it will take time to 
debug and test them. 

When stuck, take a break and come back to it.  It will help.  
 => Do NOT wait until the last minute.

Closing thoughts

Don’t panic.



TCP due

You are 
here



Breathe



The TCP checksum
… is pretty weird

Computing the TCP checksum involves making a 
“pesudo-header” from TCP header + IP header fields:

Þ See the TCP-in-IP example for a demo of how to compute/verify it



IP stack

TCP Stack

Sockets API

TCP REPL Commands
send (s), recv (r),

send file (sf), receive file (rf)

Where to get more info

Our docs:  “REPL commands” spec

Our docs:  ”Socket API” example

Guidelines:  “TCP notes” in our docs
 - Links to relevant RFCs (eg. RFC9293)
 - Our modifications/notes on the RFCs

- TCP-in-IP example (how to make/parse packets)
- IP docs



Unfilled buffer

Data received,but not acknowledged

Data receive
d, ackn

owledged
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Sequence numbers
(Circumference = 0 to 2^32 slots)

Data received, acknowledged,
but not yet delivered to application

Initial
sequence
number

Receiver's window
(Allocation buffer)
Up to 2^16-1 slots
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CLOSED(Start)

LISTEN/-
CLOSE/-

LISTEN

SYN
RECEIVED

SYN
SENT

CONNECT/ (Step 1 of the 3-way-handshake)SYN

SYN/SYN+ACK(Step 2 of the 3-way-handshake)

unusual event
client/receiver path
server/sender path

RST/-

SYN/SYN+ACK (simultaneous open)

SYN+ACK/ACK
(Step 3 of the 3-way-handshake)

Data exchange occurs
ESTABLISHED

FIN/ACK

ACK/-

CLOSE/-

SEND/SYN

CLOSE/FIN

CLOSE/FIN

CLOSING

TIME WAIT

CLOSED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

LAST ACK

CLOSE/FIN

FIN/ACK

FIN+ACK/ACK

ACK/-

FIN/ACK

Timeout

(Go back to start)

Active CLOSE Passive CLOSE

ACK/-

ACK/-


