
CSCI-1680
Sockets and network programming

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazières, Phil Levis, John Jannotti

Administrivia

• Container setup: fill out form by TONIGHT (9/12)
– Whether or not you have it working

Snowcast is out!
• Gearup Today 9/12 5-7pm CIT368 (+Zoom, recorded)

– Look at the notes!

• Milestone due by Monday, 9/16 by 11:59pm EDT
– Warmup + design doc

Topics for Today

• Working with sockets
• TCP & UDP
• Building a protocol

Sockets: Communication Between Machines

• Network sockets are file descriptors!
• UDP (“datagram sockets”)
 => Connectionless: unreliable message delivery

• TCP (“stream sockets”)
– Reliable, connection-oriented...

UDP EXAMPLE

SENDER RECEIVER

B
SOCKETO

MAKESED BINDI

REIER.mu

Last time we ended on talking about the differences between UDP and TCP. We're
going to see a bit more of that, and then we're going to start building an application.

Let's go back to our UDP example: we had a sender and a receiver

Wait for a packet to arrive
(blocks!)

Send packet

(in format required by protocol)

Dial()

Create UDP socket

ListenUDP()

Create UDP socket,

Listen on port 5000

Where does this API come from?

This is defined by the OS interface, and most OSes follow something similar to the
"Berkeley socket API". In Linux, the core operations are system calls, and every
language wraps the system calls in some way. Here are those syscalls

=> Regardless of what language you use, or what new languages come about, you
want to think about this in terms of the system calls. Because when you interact
with the OS networking stack, no matter how much pretty stuff your language adds,
you're always working in terms of the system calls

UDP TCP

WE'LL

LEARN MORE

ABOUTTHISLATER

Unreliable: Don't know if
data arrived at its destination

Reliable (we'll see how
later)

Reliability

How connections
work

How data is sent

"Connectionless"

=> Can send even with no
receiver online!

"Connection-oriented"

Unique socket for each
client connection

(eg. A<->B, C <-> B)

"Reliable, in-order, byte stream"

=> Data you send can be any
size (TCP will reconstruct it in-
order on the other end)

"Datagram service"

 => Order doesn't matter

=> Sending discrete things

Better when latency
matters,

or you don't care about the
data if it's late (video call)

SENDER RECEIVER

A B

SOCKET

SOCKETO BIND
I s.EEautomatic

ACCEPT

SEND

Ii
RECV

TCP Example
 => Has concept of "connections" between client and server

 => Reliable protocol (will retry packets)

Listen()/etc

Create TCP socket

Listen on port 5000

Send some data

 - May be in multiple packets

 - OS will make sure it gets
there (how? wait a few weeks)

Dial

Create TCP socket

Start connection

Accept()

Wait for new connections

=> Returns a new file
descriptor for each client!

(Using client's FD)

Wait for data

Some key differences with TCP

 => Each client connection gets its own socket on the server => can be used to hold a
long-term communication between the server and one client (can send a lot of bytes over
multiple packets, just between A and B (like a pipe for each)

 => How does this work? Accept returns a NEW SOCKET for each client that connects

 => OS will make sure data is delivered reliably (or will return error)

Co 4 5

OF

In TCP: each client gets its own connection--you can think of this as a unique
"pipe" with which the server can communicate to each client independently.

In this way, TCP lets us send large amounts of data (which can't fit into a single
packet), since the protocol will ensure that it all arrives correctly, and in-order (eg.
sending files, web traffic, etc.)

Curt 5mV

HEYEY.EEidycRE
TooHIGH

G
yPE O
NUMBER GUESS

RESPONSE

TYPE 1
TOOHIGHNUMBER 6 CORRECT

1 TOO Low

i D BIG ENDIAN

IYE.IR O I 2 3 y
FÉFEEDEN

0 DD CL BB AA
LITTLE ENDIAN

Protocol must give the order of bytes => we’re saying it
should be big endian (ie, network byte order

Client-server example: Guessing game

Server picks a random number

Clients connect and can guess numbers

Server responds with too high, too low, or correct

First client to respond wins, restarts game

When we format the message as a byte array, we order each field as in the picture above: first the type, then the
number. For multi-byte data like integers, our protocol needs to specify the byte order (ie, the endianness) used to
send the data “over the wire”. In our protocol, we’ll use big endian, or “network byte order.” If our guess were the
number 0xaabbccdd, we’d format it like this:

In Go, we specify the byte order when marshaling the struct. In C, you would need to convert
the fields of your struct using helpers like ntohs(), htons(), etc, before casting your struct to a byte
array and sending it.

As the designers, we get to decide on the
format for how messages are exchanged

Here’s our format. In this version, every
message is 5 bytes:

Demo: guessing game

Sockets: Communication Between Machines

• Network sockets file descriptors!
• Datagram sockets (eg. UDP): unreliable message

delivery
– Send atomic messages, which may be reordered or lost

• Stream sockets (TCP): bi-directional pipes
– Stream of bytes written on one end, read on another
– Reads may not return full amount requested, must re-read

System calls for using TCP

Client Server
 socket – make socket
 bind – assign address, port
 listen – listen for clients
socket – make socket
bind* – assign address
connect – connect to listening socket
 accept – accept connection

• This call to bind is optional, connect can choose address & port.

Socket Naming

• TCP & UDP name communication endpoints
– IP address specifies host (128.148.32.110)
– 16-bit port number demultiplexes within host
– Well-known services listen on standard ports (e.g. ssh – 22, http

– 80, mail – 25)
– Clients connect from arbitrary ports to well known ports

• A connection is named by 5 components
– Protocol, local IP, local port, remote IP, remote port

Dealing with Data

• Many messages are binary data sent with precise formats

• Data usually sent in Network byte order (Big Endian)
– Remember to always convert!
– In C, this is htons(), htonl(), ntohs(), ntohl()

