CSCI-1680

Building Links and (Local) Networks

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

Administrivia
* Snowcast due Tuesday (9/24) by 11:59pm EDT

» Look for announcement on Gradescope/testing soon
— See our FAQ post for testing resources & common issues!

Next week: we start IP

Tuesday, 9/24

— Start of IP lectures
— Form for selecting your team
— Pre-release IP handout available

Next week: we start IP

Tuesday, 9/24

— Start of IP lectures
— Form for selecting your team
— Pre-release IP handout available

Thursday, 9/26

— Team form due

— IP project official release
— Gearup 5-7pm, CIT 368

Last time: RTT vs. Throughput

Today

| ast time: how to send over a link

Today: how to build small network?
* How to share a link

» Case study/fundamental terms: Ethernet (and Witi)
* How switching works

What does “link layer” mean?

Application

Transport

Network

Service: move frames to other node across link.
Link May add reliability, medium access control

. Service: move bits to other node across link
Physical

The main idea

(A

Setting the scene

An network (1980s)

http://basalgangster.macgui.com/RetroMacComputing/The_Long_View/Entries/2012/3/1_AppleTalk.html

Setting the scene

An network (1980s)

“Small” => Within a building, floor of office, etc
Related term: Local Area Network (LAN)

http://basalgangster.macgui.com/RetroMacComputing/The_Long_View/Entries/2012/3/1_AppleTalk.html

What does "“link layer” mean?

* Multiple hosts => shared channel
* Need ways to allow “small” number of hosts to communicate

How to share the channel?

How to share the channel?

Medium Access Control

Medium Access Control

ldea: No more than one device can be “talking” at one time

Need a protocol for “who can talk when?”

Another example of multiplexing
=> sharing the channel among multiple devices

High-level: MAC approaches

Partitioned Access: divide the channel into fixed slots

— Time Division Multiple Access (TDMA)
— Frequency Division Multiple Access (FDMA)

Problems?

— Hard to maximize channel utilization
(eg. what happens if only one person is talking?)

High-level: MAC approaches

Random Access: no fixed slots: “ask” to talk, or just talk and hope for
the best

— Carrier Sense Multiple Access / Collision Detection (CSMA/CD)

— Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA)

— RTS/CTS (Request to Send/Clear to Send)

— Token-based

Problems?

— Hard to maintain “fairness”
(eg. one host dominating channel)

Why does this matter?

Different types of links solve these problems differently

— Ethernet (wired) vs. Wifi (wireless)
— Affects throughput, reliability, etc.

Understand why different links operate differently
=> How we build the Internet from them

How does a device use a link?

Interface: device that connects something to a network

« OS abstraction for a network device

* Physical hardware that does the “talking”
=> Network Interface Card (NIC)

Common interfaces
— Loopback: Virtual, only for local host
— Wifi, Ethernet, Bluetooth, ...

@) < i1 Network Q

Location: Automatic

~ Wi-Fi

. Connectad Status: Connected Turn Wi-Fi Off
Wi-Fi is connected to RLAB and has the IP
Bluetooth PAN address 138.16.161.155.
@ Not Connected
¢ :SE :%/1‘“10?% LAN Network Name: RLAB
ot Connecte

/&%) Thunder...rnet Slot 2 Automatically join this network
@ Not Connected

v > Thunder..met:Slot4 Ask to join Personal Hotspots

@ Not Connected .
Ask to join new networks

...) Thunderbolt Bridge Known networks will be joined automatically. If
@ Not Connected no known networks are available, you will be

asked before joining a new network.
t:, ProtonVPN
Not Connected

Show Wi-Fi status in menu bar Advanced... ?

Fthernet

Dominant wired LAN technology, has evolved
significantly over time

» Oiriginal version (1983): 10Mbps

* Now (commonly): 1Gbps

» Also: 10Gbps, 40Gbps, ...

New developments in physical media, encodings,
hardware => higher speeds over time

Ethernet: software viewpoint

Ethernet: software viewpoint

* Logically all hosts are connected to each other

* All hosts have an “ethernet address” (“mac address”)
=> Globally-unique identitier

 If you know a host’s ethernet address, you can send to it

Ethernet: the header

-]
Destination Source
Preamble |SFD MAC MAC EtherType Payload FCS
Address Address

Ethernet: the header

-]
Destination Source
Preamble |SFD MAC MAC EtherType Payload FCS
Address Address

* Source address: where packet is from

» Destination address: where packet is going

= Devices ask: “Is this my packet?” “Where should | send this
packet?”

Other stuft
* Preamble: when a packet starts
» FCS: Frame Check sequence (checksum)

Fthernet Addresses (mac addresses)

Destination Source
Preamble |SFD MAC MAC therType Payload FCS
Address Address

Globally unique, 48-bit address per interface
00:1¢:43:00:3d:09 (Samsung adapter)

=> Nowadays, we call them “mac addresses” or
"hardware addresses”

Fthernet Addresses (mac addresses)

Destination Source
Preamble |SFD MAC MAC therType Payload FCS
Address Address

Globally unique, 48-bit address per interface
00:1¢:43:00:3d:09 (Samsung adapter)

First 24 bits:

=> Other protocols have adopted this address format (eg. Wifi, Bluetooth, ...)

=> Nowadays, we call them “mac addresses” or
"hardware addresses”

http://standards.ieee.org/develop/regauth/oui/oui.txt

Ethernet's evolution

Ethernet's evolution

Originally, a shared medium with all hosts

Computer

 Basicidea: all hosts can see all frames, read a frame if it matches
your hardware address

* Implications?

{ =>Can have collisons! }

Classical Ethernet: Problems

Problem: all hosts in the same “collision domain”

Transmit algorithm
— If line is idle, transmit immediately

— Max message size: 1500 bytes
— If line is busy: wait until idle and transmit immediately

Classical Ethernet: Problems

Problem: all hosts in the same “collision domain”

Transmit algorithm
— If line is idle, transmit immediately

— Max message size: 1500 bytes
— If line is busy: wait until idle and transmit immediately

[On Ethernet: generally possible to detect collisions (not always true!)}

"Delay and try again later”

Sketch: In Ethernet

« nth time: k x 51.2us, for k = U{0..(2minn.101)}
— 1sttime: O or 51.2us
— 2" time: 0, 51.2, 102.4, or 153.6ps

 QGive up after several times (usually 16)

"Delay and try again later”

Sketch: In Ethernet

« nth time: k x 51.2us, for k = U{0..(2minn.10.1)}
— 1sttime: O or 51.2us
— 2" time: 0, 51.2, 102.4, or 153.6pus

 QGive up after several times (usually 16)

=> Exponential backoff: a useful, general technique

Does this scale?

Ethernet Recap

» Service provided: send frames among stations with
specific addresses

e All nodes in the same “collision domain”

Avoiding collisions

« Early method: bridging

Avoiding collisions

Add some hardware to the network that can separate collision
domains

Original way (1990s): bridges

Modern way: switching

Switch: network device that forwards frames (packets)
between ports

\\\\\\\\\\\\lllll||||IIIHHIIIIIII []

e All hosts connect to a switch
e Collision domain is host-switch

» Switch buffers packets,

forwards to destination when
its port is idle

[How to know which devices is on which port?

MAC learning, how it works

MAC Learning

* Switches “learn” which host lives on which port by watching
traffic

=>Keeps table of <destination addr => port>

* |f you don't know, flood to all ports!

MAC Learning

* Switches “learn” which host lives on which port by watching
traffic

* |f you don't know, flood to all ports!

MAC learning is just an optimization vs. old version
(but a pretty good one...)

MAC table example

Ro#sh mac-address-table

EHWIC: 0
Destination Address Address Type VLAN Destination Port

5c45.
7641.

5c45

27e0.
/b63.
.27€0.
0000 .
ca3f.
044b .
f018.
ecb5.
afa4 .
4c71.
12d3.
04d4.

5e00

aee3.
fo12.
9815.
4677
.4165
0c9z2.
acae.
.9cf7

fal3
c5c2

c448

8383
584a
8381

.0101

e3eb

7f75.

8eb8

4110
bbc@

Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic

GigabitEthernetd/1/3
GigabitEthernetd/1/3
GigabitEthernetd/1/3
GigabitEthernet0/0/1
GigabitEthernetd/1/3
GigabitEthernetd/1/3
GigabitEthernetd/1/3
GigabitEthernetd/0/2
GigabitEthernet0/0/1
GigabitEthernetd/1/3
GigabitEthernet0/0/1
GigabitEthernetd/1/3

45

What can go wrong?

Attack on a Learning Switch

Eve: wants to sniff all packets sent to Bob
Same segment: easy (shared medium)

Different segment on a learning bridge: hard
— Once bridge learns Bob's port, stop broadcasting

How can Eve force the bridge to keep broadcasting?
— Flood the network with frames with spoofed src addr!

Also: VLANSs

Consider: Company network, A and B departments
— Broadcast traffic does not scale
— May not want traffic between the two departments
— What it employees move between offices?

VLANSs

e Solution: Virtual LANs

— Assign switch ports to a VLAN ID (color)
— Isolate traftfic: only same color
— Some links may belong to multiple VLANs

=> Easy to change, no need to rewire

How does this all change with wifi?

How does this all change with wifi?

Can’t detect collisions anymore!

=> Carrier Sense Multiple Access / Collision Avoidance

=> Try to send: if you don't hear back, assume collision (and maybe
retry)

Extra material

Coming Up

» Connecting multiple networks: IP and the Network Layer

Dealing with Loops

Problem: people may create loops in LAN!

— Accidentally, or to provide redundancy
— Don’t want to forward packets indefinitely

Enter Radia Perlman

"...we have designed an algorithm that allows the extended
network to consist of an arbitrary topology. (...)

The algorithm (...) computes a subset of the topology that
connects all LANs yet is loop-free (a spanning tree).”

Perlman, Radia (1985). "An Algorithm for Distributed Computation of a Spanning
Tree in an Extended LAN". ACM SIGCOMM Computer Communication
Review. 15 (4): 44-53.

»

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F318951.319004

Spanning Tree

* Need to disable ports, so that no loops in network
» Like creating a spanning tree in a graph
— View switches and networks as nodes, ports as edges

Distributed Spanning Tree Algorithm

» Every bridge has a unique ID (Ethernet address)

* Goal:
— Bridge with the smallest ID is the root

— Each segment has one designated bridge, responsible for forwarding
its packets towards the root

 Bridge closest to root is designated bridge
* |f there is a tie, bridge with lowest ID wins

Spanning Tree Protocol

* Send message when you think you are the root

« Otherwise, forward messages from best known root
— Add one to distance before forwarding
— Don't forward over discarding ports (see next slide)

* Spanning Tree messages contain:
— ID of bridge sending the message
— |D sender believes to be the root
— Distance (in hops) from sender to root

 Bridges remember best config msg on each port
* In the end, only root is generating messages

Spanning Tree Protocol (cont.)

« Forwarding and Broadcasting

* Port states™:
: a port the bridge uses to reach the root
: the lowest-cost port attached to a single segment
— If a port is not a root port or a designated port, it is a discarding port.

*In a later protocol RSTP, there can be ports configured as backups and alternates.

Root Port
Designated Port

® Discarding Port

Algorhyme

| think that | shall never see

a graph more lovely that a tree.

A tree whose crucial property

is loop-free connectivity.

A tree that must be sure to span
so packet can reach every LAN.
First the root must be selected.

By ID, it is elected.

Least cost paths from root are traced.
In the tree, these paths are placed.
A mesh is made by folks like me,
then bridges find a spanning tree.

Radia Perlman

Limitations of Bridges

 Scaling
— Spanning tree algorithm doesn’t scale
— Broadcast does not scale
— No way to route around congested links, even if path exists

* May violate assumptions

— Could confuse some applications that assume single segment

* Much more likely to drop packets
« Makes latency between nodes non-uniform

— Beware of transparency

Switching

Switches must be able to, given a packet, determine the outgoing
port
e 3 ways to do this:

— Virtual Circuit Switching
— Datagram Switching
— Source Routing

Virtual Circuit Switching

» Explicit set-up and tear down phases
— Establishes Virtual Circuit Identifier on each link
— Each switch stores VC table

» Subsequent packets follow same path
— Switches map [in-port, in-VCI] : [out-port, out-VClI]
» Also called connection-oriented model

Virtual Circuit Model

* Requires one RTT before sending first packet

» Connection request contain full destination address,
subsequent packets only small VCI

 Setup phase allows reservation of resources, such as

bandwidth or butter-space

— Any problems here?
* |fa link or switch fails, must re-establish whole circuit

» Example: ATM, MPLS

Datagram Switching

» Each packet carries destination address

« Switches maintain address-based tables Switch 2
— Maps [destination address]:[out-port] Addr Port
* Also called connectionless model A

T— OO mm O O
O O - N W W O w

Datagram Switching

* No delay for connection setup

* Source can't know if network can deliver a packet
» Possible to route around failures

» Higher overhead per-packet

» Potentially larger tables at switches

Source Routing

» Packets carry entire route: ports

* Switches need no tables!
— But end hosts must obtain the path information

* Variable packet header

0 Switch 1

Generic Switch Architecture

» Goal: deliver packets from input to output ports

» Three potential performance concerns:
— Throughput in bytes/second
— Throughput in packets/second
— Latency

Shared Memory Switch

* 15t Generation — like a regular PC

— NIC DMAs packet to memory over I/O bus
— CPU examines header, sends to destination NIC
— /O bus is serious bottleneck

— For small packets, CPU may be limited too

— Typically < 0.5 Gbps

Shared Bus Switch

» 25t Generation
— NIC has own processor, cache of forwarding table
— Shared bus, doesn’t have to go to main memory

— Typically limited to bus bandwidth
* (Cisco 5600 has a 32Gbps bus)

Point to Point Switch

« 3@ Generation: overcomes single-bus bottleneck

» Example: Cross-bar switch
— Any input-output permutation

— Multiple inputs to same output requires trickery
— Cisco 12000 series: 60Gbps

Cut through vs. Store and Forwaro

» Two approaches to forwarding a packet

— Receive a full packet, then send to output port

— Start retransmitting as soon as you know output port, before full
packet

« Cut-through routing can greatly decrease latency

« Disadvantage

— Can waste transmission (classic optimistic approach)
* CRC may be bad
* If Ethernet collision, may have to send runt packet on output link

Buffering

» Buffering of packets can happen at input ports, fabric, and/or
output ports

» Queuing discipline is very important
» Consider FIFO + input port buffering

— Only one packet per output port at any time

— If multiple packets arrive for port 2, they may block packets to other
ports that are free

— Head-of-line blocking: can limit throughput to ~ 58% under some
reasonable conditions*

* For independent, uniform traffic, with same-size frames

Head-of-Line Blocking

» Solution: Virtual Output Queueing
— Each input port has n FIFO queues, one for each output
— Switch using matching in a bipartite graph
— Shown to achieve 100% throughput™*

*MCKEOWN et al.: ACHIEVING 100% THROUGHPUT IN AN INPUT-QUEUED SWITCH, 1999

Current Developments

» Switches are becoming programmable
— Match-action paradigm
— Custom protocols, encapsulation, metering, monitoring

—————————— .— — — — — -~ packet /
Ingress processing /=

ue
Input Ch. 1 \ haueu - Ueu | / Output Ch. 1
a
ngress age age 2 ;erszr \ / re age age i ress
arsers “es res
Input Ch. 64 | \ |Output Ch. 64
4>// \

C ac
ata ata

* Current speeds reach 12.8Tbps (32x400Gbps or 256x50Gbps) on
a single programmable switching chip

