CS 1680
|IP Forwarding realities

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Maziéres, Phil Levis, John Jannotti

Administrivia

* Look for announcement to sign up for IP milestone meetings,
preterably with your mentor TA, on or before Friday (Oct 4)

— You don't need to show an implementation, but you are expected to
talk about your design

* [P gearup Il: Thursday 6-8pm in CIT368
— Implementation and debugging tips

Administrivia

* Look for announcement to sign up for IP milestone meetings,
preterably with your mentor TA, on or before Friday (Oct 4)

— You don't need to show an implementation, but you are expected to talk
about your design

* |P gearup ll: Thursday 6-8pm in CIT368
— Implementation and debugging tips

« HW1: Due Thursday (HW2 out Thursday)

Today

Odds and ends that make IP forwarding actually work
» Longest Prefix Match

» |P<->Link layer (ARP, DHCP)

 Network Address Translation (NAT)

After this: Routing

Default

Network A: 82.14.0.0/16 @ B: 1.3.0.0/16

D: 5.6.128.0/20 C: 1.3.25.0/24

Warmup: based on the table, where would the

router send packets destined for the following
addresses:

1.3.0.0/16) 1. 5.6.128.100
2. 1.3.1.1
5.6.128.0/20 (D)
3. 8.8.8.8

(X) is placeholder—could be an IP or an interface name 4. 1.3.4.8

What happens when pretixes overlap?

An IP can match on more than one row
=> need to pick the most specific (longest) prefix

1.3.4.0/24 (C)

1.3.0.0/16 00000001 00000011 XXXXXXXX XXXXXXXX | SOLT(DefEuly

1.3.4.0/24 00000001 00000011 00000100 xxxxxxxxX

What happens when pretixes overlap?

An IP can match on more than one row
=> need to pick the most specific (longest) prefix

1.3.4.0/24 (C)

1.3.0.0/16 00000001 00000011 XXXXXXXX XXXXXXXX | SOLT(DefEuly

1.3.4.0/24 00000001 00000011 00000100, xxxxxxxxX

_Y l

More specific => best match!

What happens when pretixes overlap?

An IP can match on more than one row _
=> need to pick the most specific (longest) prefix
1.3.4.0/24 (C)

1.3.4.5/32
0.0.0.0/0 (Default)

1.3.0.0/16 00000001 00000011 XXXXXXXX XXXXXXXX

1.3.4.0/24 00000001 00000011 00000100, xxxxxxxxX

LY l

More specific => best match!

Other examples you'll see...

0.0.0.0/0 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

1.2.3.5/32 00000001 00000011 00000100 0OOOO1lO01

What happens when pretixes overlap?

An IP can match on more than one row _
=> need to pick the most specific (longest) prefix

1.3.4.0/24 (C)
1.3.4.5/32
1.3.0.0/16 00000001 00000011 XXXXXXXX XXXXXXXX 00.00/0 (Default
1.3.4.0/24 \0_(;000001 00000011 00000100’ XXXXKXXXX
More specific => best match!
Other examples you'll see...
0.0.0.0/0 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX => Least specific!

(Used for default “catchall” routes)

1.2.3.5/32 00000001 00000011 00000100 00000101 => Most specific!

(Refers to a single host,
often a local IP)

What happens when pretixes overlap?

Prefix IF/Next hop
1.3.0.0/16 (B)
1.3.4.0/24 (C)
1.3.4.5/32

0.0.0.0/0 (Default)

An IP can match on more than one row
=> need to pick the most specific (longest) prefix

1.3.0.0/16 00000001 00000011 XXXXXXXX XXXXXXXX

1.3.4.0/24 00000001 00000011 00000100} XXXXKXXXX

More specific => best match!

Other examples you'll see...

0.0.0.0/0 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX => Leastspecific!
(Used for default “catchall” routes)

1.2.3.5/32 00000001 00000011 00000100 00000101 => Most specific!

(Refers to a single host,
[=>Longest prefix matching: can keep forwarding tables small by } often a local IP)

summarizing routes where possible, otherwise using specific prefixes

What happens at the link layer?

IFO
=2 IF1 IF2
1.2.1.3 . oy 1.2.2.100

What does it mean to send to IF17?

11

What happens at the link layer?

IFO
J IF1 IF2
1.2.1.3 211 Y 1.2.2.100

What does it mean to send to IF17?

The story so far:

=>Can “easily” communicate with nodes on the same network,
but what about other networks?

=> Routers know about multiple networks, forward packets between them 1.2.1.0/24 IF1

8.0.0.0/30 IFO
Default 8.0.0.2

12

1.2.1.200

1.2.1.2

lllll
N —————— -

what does it mean to send to |F1?

“Local delivery”:

“Local delivery”:
what does it mean to send to IF17?

So far: "easy” to communicate with nodes on the

same network. But how?

To send a packet on a local network, we need:

e Dest. IP (Network layer)
« Dest. MAC address (Link layer)
Src Dest
Link 77?7
P 10.2.4.100 | 1.2.1.3

Assume: link layer can figure out the rest once we

fill in this info

[=> How do we get the MAC address? }

IF1
1.2.1.1

g

1.2.1.200

e T NN N R S R R R R R S R R R —

I ————————— | SR AR

S ’

1.2.1.0/24 IF1

14

"Glue” between L2 and L3

Need a way to connect get link layer info (mac address) from
network-layer info (IP address)

“What MAC address has IP 1.2.3.4?7"

"Glue” between L2 and L3

Need a way to connect get link layer info (mac address) from
network-layer info (IP address)

“What MAC address has IP 1.2.3.4?7"

a I
Solution: ask the network!

=> Address Resolution Protocol (ARP)

- /

ARP: Address resolution protocol

Given an IP address, ask network for the MAC address
Request: “Who has 1.2.3.4?”
Response: “aa:bb:cc:dd:ee:ff is at 1.2.3.4”

How ARP works

ARP: Address resolution protocol

Given an IP address, ask network for the MAC address
Request: “Who has 1.2.3.4?”
Response: “aa:bb:cc:dd:ee:ff is at 1.2.3.4”

Key data structure: ARP table: map of IP -> MAC address
» All devices use ARP protocol to build their own table
* Requests send to broadcast address: ff:ff:ff:ff:ff:ff

_________________*

ARP Request

Broadcast address: sent to all

ARP Response
hosts on the subnet!

_________________*

ARP Request

Broadcast address: sent to all

ARP Response
hosts on the subnet!

[=> Any host can respond. Problem?

Example

arp -n
Address
172.17.44.1
172.17.44.25
172.17.44.6
172.17.44.5

HWtype
ether
ether
ether
ether

HWaddress

00:12:80:01:34:55
10:dd:b1:89:d5:3
b8:27:eb:55:c3:45
00:1b:21:22:€0:22

Flags Mask
C

C
C
C

Iface
etho
etho
etho
etho

Putting it all together....

1.2.1.2 i
MAC: aa:aa:aa i

v, JQ

T =

IF1

o TN NN M R N R R R S R N N R R RN R R R Ry,

1.2.1.3 12113 s 1.2.2.100
MAC: bb:bb:bb MAC: cciec:ce MAC: dd-dd-dd MAC: ee:ee:ee
~._ Subnet "A": 1.2.1.0/24 /’I Subnet “"B": 1.2.2.0/24

~ -

25

1.2.1.2

MAC: aa:aa:aa

i,

Li2)
=

2.1.3 1211 vy 1.2.2.100
AC: bb:bb:bb MAC: ccicc:cc MAC: dd:dd:dd MAC: ee:ee:ee
Subnet “A": 1.2.1.0/24 Subnet “B": 1.2.2.0/24
Suppose H1 wants to send a packet to H2.
Q: What would the headers look like when Src Dest
the packet leaves H1? T
|
Q: Would it change after reaching R? P

26

I\/IAC aa:aa:aa

E'

I vy
: IF2
: 1.2.2.100

’——---------------

IF1
2.1.3 1.2.1.1 1221
AC: bb:bb:bb MAC: cciccice | MAC: dd:dd:dd MAC: ee:ce:ce
._Subnet "A": 1.2.1.0/24 .~/ Subnet “B": 1.2.2.0/24

H1's forwarding table Router’s forwarding table

27

How do you get an IP address?

Wi-Fi TCP/IP DNS WINS

Configure IPv4: Using DHCP

IPv4 Address: 138.16.161.209
Subnet Mask: 255.255.255.0

Router: 138.16.161.1

G etti n g a n | P ’ Wi-Fi TCP/IP DNS WINS

Configure IPv4: Using DHCP

IPv4 Address: 138.16.161.209

Subnet Mask: 255.255.255.0

Two ways to configure an IP for a host:

» Static configuration: manually specify IP address, mask,
gateway, ...

« Automatic: ask the network for an IP when you connect!

Getting an IP

Two ways to configure an IP for a host:

» Static configuration: manually specify IP address, mask,
gateway, ...

=> More common with network devices that don’t change often

« Automatic: ask the network for an IP when you connect!

=> Most common for end hosts
=> Dynamic Host Configuration Protocol (DHCP)

DHCP: The idea

Dynamic Host Configuration Protocol

DHCP: The idea

Dynamic Host Configuration Protocol

» Every network has a “pool” of IPs it can assign to hosts
Some subset of its prefix (eg. 192.168.1.0/24)

« When a host connects, it asks a DHCP server for an address from the
pool

« DHCP server(s) act like allocators: give “leases” to IPs, provide other
config info

=> Again, host needs to use broadcast address. Why?
=> Problem?

(More steps after this)

(More steps after this)

=> Again, host needs to use broadcast address. Why?
=> Problem?

Home routers
The good, the bad, and the ugly...

What's in a home router?

Story time

Where it gets weird...

Where it gets weird...

You get just one IP from your ISP...

=> Need to share IP among many devices on
the same network!

Where it gets weird...

You get just one IP from your ISP...

=> Need to share IP among many devices on
the same network!

Solution: Create a "private” IP range used within local network

=> Routers need to do extra work to share public IP among
many private |Ps

=> Network Address Translation (NAT)
(A form of connection multiplexing)

""" —How NAT wo rks

:’ \: (The most common type)

|

' 192.168.1.100 | ,,

i |
| | ==
=

] IF1 IFO

i 192.168.1.101 192.168.1.1 : 5678

|

i i Rest of Internet
[l i

g —— :

L 1.2.1.102]

' I

: I

| i

“Inside” network
N 192.168.1.0/24 /

—————————————————————————

Goal: Share one IP among many hosts on a private network
Router translates (modifies) packets from “inside” to use “outside” address

— How NAT works

(The most common type)
192.168.1.100 -
-
=2 F1 M [

192.168.1.101 192.168.1.1 5.6.7.8
| Rest of Internet
f—
1.2.1.102

“Inside” network
192.168.1.0/24

Goal: Share one IP among many hosts on a private network
Router translates (modifies) packets from “inside” to use “outside” address

=> Router needs to remember connection state
=> Router makes some (sketchy) assumptions about traffic

IP Header

16

8
 Tdemufication __[riags| Framentoffset

... ports are actually part of the transport layer header!

UDP TCP

0

Sequence Number
Acknowledgement Number
Data 83
Giisat| Reserved R BRI windowsize

0 31

UDP Length UDP Checksum

Problem?

/:>Technica||y a violation of layering! Network layer shouldn’t care about port A
numbers, but here it matters

— NAT needs to know semantics of TCP/UDP (how connections start/end...

S ...but wait there’s more... Y.

—————————————————————————

192.168.1.100

IF1 IFO
192.168.1.101 192.168.1.1

5.6.7.8

-—— -

I

Rest of Internet

I

1.2.1.102
"Inside” network

192.168.1.0/24 ./

—————————————————————————

o T NN M R

What happens when outside host S wants to connect to inside host A?

It

192.168.1.100
, gy 7
L ==
=" IF1 R IFO
192.168.1.101 192.168.1.1 5.6.7.8
| Rest of Internet
f —
1.2.1.102

“Inside” network
192.168.1.0/24

What happens when outside host S wants to connect to inside host A?

/Can’t do it (at least without special setup)!
— By default, R only knows how to translate packets for connections
originating from INSIDE the network
— Breaks end to end connectivity!!!

_

Private |IPs (RFC1918)

IP ranges reserved for “private” networks:

Private |IPs (RFC1918)

IP ranges reserved for “private” networks:

* Many networks will use these blocks internally

e These IPs should never be routed over the Internet!
— What would happen if they were?

It

192.168.1.100
, gy 7
L ==
=" IF1 R IFO
192.168.1.101 192.168.1.1 5.6.7.8
| Rest of Internet
f —
1.2.1.102

“Inside” network
192.168.1.0/24

What happens when outside host S wants to connect to inside host A?

/Can’t do it (at least without special setup)!
— By default, R only knows how to translate packets for connections
originating from INSIDE the network
— Breaks end to end connectivity!!!

_

End to end connectivity, you say?

Why is this bad?

NAT is used in just about every consumer network

» Generally: can’t connect directly to an end host unless it
connects to you first

Why is this bad?

NAT is used in just about every consumer network

» Generally: can’t connect directly to an end host unless it
connects to you first

* Need extra work for any protocols that need a direct
connection between hosts

[=> When do we need this? }

Why is this bad?

NAT is used in just about every consumer network

» Generally: can’t connect directly to an end host unless it
connects to you first

* Need extra work for any protocols that need a direct
connection between hosts

= Protocols that aren’t strictly client-server
— Latency critical applications: voice/video calls, games

NAT Traversal

Various methods, depending on the type of NAT

Examples:

* Manual method: port forwarding

« |ICE: Interactive Connectivity Establishment (RFC8445)
« STUN: Session Traversal Utilities for NAT (RFC5389)

One idea: connect to external server via UDP, it tells you the
address/port

NAT Example

IPv6

IP challenge: Address space exhaustion

* |P version 4: ~4 billion IP addresses
— World population: ~8 billion
— Est. number of devices on Internet (2021): >10-30 billion

* Since 1990s: various tricks
— Smarter allocations by registrars
— Address sharing: Network Address Translation (NAT)

— DHCP
— Reclaiming unused space

» Long term solution: IP version 6

64

RIR IPv4 Address Run-Down Model

AFRINIC
APNIC

ARIN

LACNIC

AFRINIC
LACNIC

w
0
—
©
o
o
w
w
D
—
o
o
<
.
(0

| | |

2009 2010 2011 2012 2013 2014
Date

Source: potaroo.net/tools/ipv4

RIR IPv4 Address Run-Down Hodel

T

I I I T
AFRINIC
APNIC
ARIN
RIPE NCC
!

AFRINIC
LACNIC

~
2]
w
“~
~
|
o
Q
.
“
“
4]
[
-
-
-4
[+ 4
-
o

Source: potaroo.net/tools/ipv4

So what happened when we ran out of IPv4
addresses?

NETWORKWORLD

i CORE NETWO
By Scott Hogg Follow
/

I
ARIN Finally Runs BO

oards are Bar

RKING AND §'

{pv4 Address CupD

25 AMPT
NetworkWorld Sep 22, 20157:25

* It's not completely gone just yet, but close

« Address block fragmentation

— Secondary market for IPv4
— E.g., in 2011 Microsoft bought >600K US IPv4 addresses for $7.5M

 NATs galore
— Home NATs, carrier-grade NATs

IPv6

Main motivation: |IPv4 address exhaustion

Initial idea: larger address space

Need new packet format:

— REALLY expensive to upgrade all infrastructure!

— While at it, why don't we fix a
Work started in 1994, basic

ounch of things in IPv4?

orotocol published in 1998

The original expected plan

Jize of l\/\e Ef\l(/‘f\e.l-

setmsrsans N\

Thw Poa Jize

From: http://www.potaroo.net/ispcol/2012-08/EndPt2.html

The plan in 2011

TP Pool Size

TP Transition = Dual Slack

200¥

What was happening (late 2012)

TPu< Poo\ Jize

TP Transition = Dual Slack

June 6th, 2012

Transition is not painless

From

You may want to begin with our “Where Do | Start?" page where we have
guides for:

* Network operators

* Developers

» Content providers / website owners

* Enterprise customers

 Domain name registrars

» Consumer electronics vendors

* Internet exchange point (IXP) operators

» Why do each of these parties have to do
something?

http://www.internetsociety.org/deploy360/ipv6/

IP version 6

Traffic class Flow label

Source address

128-bit addresses!
Eg. 2600:3c03::f03c:91ff:febe:e3el

Destination address

74

IPvé Adoption

At Google:

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

40.00%

35.00%

30.00%

25.00%

20.00%

15.00%

10.00%

5.00%

0.00% —

Jan 2012

Jan 2013

Jan 2014

Jan 2015

Jan 2016

Native: 36.43%

Jan 2017

Jan 2018

Jan 2019

Jan 2020

| Feb 6, 2022

Jan 2021 Jan 2022

75

IPvé Adoption

At Google:

45.00%
40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

Native: 43.41%

| Oct 1, 2023

V4S)

At Brown

Wi-Fi

Configure IPv4:
IPv4 Address:
Subnet Mask:

Router:

Configure IPv6:

Router:

TCP/IP DNS

Using DHCP
10.3.142.223
255.255.192.0

10.3.128.1

Automatically
fe80::1

IPv6 Address

802.1X Proxies

A
v

DHCP Client ID:

A
v

2620:6e:6000:900:187f:2222:a64f:392a
2620:6e:6000:900:d4d6:81f8:1bc2:97¢c5

Hardware

Renew DHCP Lease

(If required)

Prefix Length

Cancel

77

IPv6 Key Features

e 128-bit addresses

» Simplities basic packet format through extension headers
— 40-byte base header (fixed)
— Make less common fields optional

» Security and Authentication

IPvé6 Address Representation

* Groups of 16 bits in hex notation
47cd:1244:3422:0000:0000:fef4:43ea:0001

* Two rules:
— Leading O's in each 16-bit group can be omitted
47cd:1244:3422: : :fefd:43ea:

— One contiguous group of O's can be compacted

47cd:1244:3422 fefd:43ea:

IPv6 Addresses

 Break 128 bits into 64-bit network and 64-bit interface

— Makes autoconfiguration easy: interface part can be derived from Ethernet
address, for example
» Types of addresses
— All O's: unspecitied
— 000...1: loopback
— ff/8: multicast
— 1e8/10: link local unicast
— fec/10: site local unicast
— All else: global unicast

IPv6 Header

Source
(16 octets, 128 bits)

Destination
(16 octets, 128 bits)

IPv6 Header Fields

 Version: 4 bits, 6
e (lass: 8 bits, like TOS in IPv4
* Flow: 20 bits, identifies a flow
* Length: 16 bits, datagram length
 Next Header, 8 bits: ...
* Hop Limit: 8 bits, like TTL in IPv4
» Addresses: 128 bits
* What's missing?
— No options, no fragmentation flags, no checksum

Design Philosophy

» Simplity handling
— New option mechanism (fixed size header)
— No more header length field

* Do less work at the network (why?)
— No fragmentation
— No checksum

* General flow label
— No semantics specitied
— Allows for more flexibility

» Still no accountability

With some content from Scott Shenker

Interoperabpility

« RFC 4038

— Every IPv4 address has an associated |IPvé address (mapped)

— Networking stack translates appropriately depending on other end
— Simply prefix 32-bit IPv4 address with 80 bits of O and 16 bits of 1:
— E.g., :FFFF:128.148.32.2

» Two IPv6 endpoints must have IPv6 stacks

e Transit network:
— v6—-vb6-Vb:
— v4-v4 -v4 :
— v4d-v6-Vv4:
— v6—-v4 —-vb:

Example Next Header Values

0: Hop by hop header
1: ICMPv4

4: |Pv4

6:TCP

17: UDP

41: IPv6

43: Routing Header

44: Fragmentation Header
58: ICMPv6

Current State

* |Pv6 Deployment picking up
* Most end hosts have dual stacks today (Windows, Mac OSX,
Linux, *BSD, Solaris)

* Requires all parties to work!
— Servers, Clients, DNS, ISPs, all routers

* |Pv4 and IPvé6 will coexist for a long time

Coming Up

* Routing: how do we fill the routing tables?

— Intra-domain routing: Tuesday, 10/4
— Inter-domain routing: Thursday, 10/6

Example

arp -n

Address HWtype HWaddress Flags Mask Iface
172.17.44.1 ether 00:12:80:01:34:55 C etho
172.17.44.25 ether 10:dd:b1:89:d5:f3 C etho
172.17.44.6 ether b8:27:eb:55:c3:45 C etho
172.17.44.5 ether 00:1b:21:22:€0:22 C etho

ip route

127.0.0.0/8 via 127.0.0.1 dev 1lo

172.17.44.0/24 dev enp7s@ proto kernel scope link src 172.17.44.22 metric 204
default via 172.17.44.1 dev eth® src 172.17.44.22 metric 204

Internet Control Message Protocol (ICMP)

e aleN(el[ale)
Redirect
Destination unreachable (protocol, port, or host)

L exceeded

Checksum failed

Reassembly failed

Can’t fragment

Many ICMP messages include part of packet that triggered them
See

http://www.iana.org/assignments/icmp-parameters

ICMP message format

0 1 2 3
01234567890123456789012345678901

20-byte IP header
(protocol = 1—ICMP)

depends on type/code

Example: Time Exceeded

0 1 2 3
01234567890123456739012345678901

20-byte IP header
(protocol = 1—ICMP)

Type = 11

unused

IP header + first 8 payload bytes
of packet that caused ICMP to be generated

* Code usually O (TTL exceeded in transit)
 Discussion: traceroute

