CSCI-1680

Network Layer:
Intra-domain Routing

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Maziéres, Phil Levis, John Jannotti



Administrivia

* |P milestone meetings: Should meet with staff on/before
October 4 (tomorrow)

— Sign up link via email
— Can't find a time? Make a private post on Ed!

* [P Gearup Il tonight (10/3) 6-8pm, CIT368
— Implementation/debugging stutf; bring questions!

« HW1 due tonight; HW2 out after next class



Today

Two things
 NAT
* Intro to routing, RIP



Warmu o /g; """""" 1.2.1.0/ 2'4‘\\

{ \
: L : | 1.2.1.3 l
What is the destination MAC address when H1 is : obbb:bb |
sending the following packets? | :
Src Dest i %‘
1) Link | aa:aa:aa 777 i 1212 1.2.1.1
P 1.2.1.2 (A | CERCERCE SEEEEE |
2) Src Dest H1’s forwarding table:
Link | aaaaiaa | 777 T
P [1.212 1.2.1.3 1.2.1.0/24 il
Src Dest
3) Link | aa:aa:aa 777
P 1.2.1.2 8.8.8.8 (Google)
4




Recap: IP vs. Link-layer address

Src Dest
Link | aa:aa:aa CC:CC:CC
IP 1.2.1.2 8.8.8.8 (Google)

Link-layer header info (Ethernet/Wifi/etc)
- Destination MAC address is link-layer addr
for packet’s next hop
- Changes every hop
- Each hop could use a different link-layer
protocol!

|P_header info

- Destination IP is IP address of packet's
final destination

- Routers look at destination IP to figure
out where packet goes next (and which
MAC address goes on packet next)




Map of the Internet, 2021 (via BGP
OPTE project



... or does it?



Where it gets weird...

For many end hosts:

(IP assigned to your host) != (Your "public” IP)

(IP seen by other systems on the Internet)



Where it gets weird...

You get just one IP from your ISP...

=> Need to share IP among many devices on
the same network!



Where it gets weird...

You get just one IP from your ISP...

=> Need to share IP among many devices on
the same network!

Solution: Create a "private” IP range used within local network

=> Routers need to do extra work to share public IP among
many private |Ps

=> Network Address Translation (NAT)
(A form of connection multiplexing)







""" —How NAT wo rks

:’ \: (The most common type)

|

' 192.168.1.100 | ,,

i |
| | ==
=

] IF1 IFO

i 192.168.1.101 192.168.1.1 : 5678

|

i i Rest of Internet
[l i

g —— :

L 1.2.1.102 ]

' I

: I

| i

“Inside” network
N 192.168.1.0/24 /

—————————————————————————

Goal: Share one IP among many hosts on a private network
Router translates (modifies) packets from “inside” to use “outside” address



Private IPs (RFC1918)

IP ranges reserved for “private” networks:




Private IPs (RFC1918)

IP ranges reserved for “private” networks:

* Many networks will use these blocks internally

e These IPs should never be routed over the Internet!
— What would happen if they were?



— How NAT works

(The most common type)
192.168.1.100 ~
()

L IF1 IFO
192.168.1.101 192.168.1.1 5.6.7.8
Rest of Internet
= Your “public” IP
1.2.1.102

“Inside” network
192.168.1.0/24

Goal: Share one IP among many hosts on a private network
Router translates (modifies) packets from “inside” to use “outside” address

=> Router needs to remember connection state
=> Router makes some (sketchy) assumptions about traffic







IP Header

16

8
 Tdemufication __[riags|  Framentoffset




... ports are actually part of the transport layer header!

UDP TCP

0 31 0

UDP Length UDP Checksum Sequence Number
Acknowledgement Number
Data RIS
Giteat| Reserved |AE BRI winaowsize




... ports are actually part of the transport layer header!

UDP TCP

0

Sequence Number
Acknowledgement Number
Data 83
Giisat| Reserved R BRI windowsize

0 31

UDP Length UDP Checksum

Problem?

/:>Technica||y a violation of layering! Network layer shouldn’t care about port A
numbers, but here it matters

— NAT needs to know semantics of TCP/UDP (how connections start/end...

S ...but wait there’s more... Y.




NAT vs. Snowcast



—————————————————————————

192.168.1.100

IF1 IFO
192.168.1.101 192.168.1.1

5.6.7.8

-—— -

I

Rest of Internet

I

1.2.1.102
"Inside” network

192.168.1.0/24 ./

—————————————————————————

o T NN M R

What happens when outside host S wants to connect to inside host A?




It

192.168.1.100
, gy 7
L ==
=" IF1 R IFO
192.168.1.101 192.168.1.1 5.6.7.8
| Rest of Internet
f —
1.2.1.102

“Inside” network
192.168.1.0/24

What happens when outside host S wants to connect to inside host A?

/Can’t do it (at least without special setup)!
— By default, R only knows how to translate packets for connections
originating from INSIDE the network
— Breaks end to end connectivity!!!

\_




It

192.168.1.100
, gy 7
L ==
=" IF1 R IFO
192.168.1.101 192.168.1.1 5.6.7.8
| Rest of Internet
f —
1.2.1.102

“Inside” network
192.168.1.0/24

What happens when outside host S wants to connect to inside host A?

/Can’t do it (at least without special setup)!
— By default, R only knows how to translate packets for connections
originating from INSIDE the network
— Breaks end to end connectivity!!!

\_




End to end connectivity, you say?



Why is this bad?

NAT is used in just about every consumer network

* Generally: can’t connect directly to an end host unless it
connects to you first



Why is this bad?

NAT is used in just about every consumer network

* Generally: can’t connect directly to an end host unless it
connects to you first

* Need extra work for any protocols that need a direct
connection between hosts

[=> When do we need this? }




Why is this bad?

NAT is used in just about every consumer network

* Generally: can’t connect directly to an end host unless it
connects to you first

* Need extra work for any protocols that need a direct
connection between hosts

= Protocols that aren’t strictly client-server
— Latency critical applications: voice/video calls, games




NAT Traversal

Various methods, depending on the type of NAT

Examples:

* Manual method: port forwarding

« |ICE: Interactive Connectivity Establishment (RFC8445)
« STUN: Session Traversal Utilities for NAT (RFC5389)

One idea: connect to external server via UDP, it tells you the
address/port



Routing



Challenges in moving packets

» Forwarding:

* Routing:




Challenges in moving packets

» Forwarding: given a packet, decide which interface to
send the packet (based on IP destination)

* Routing: network-wide process of determining a
packet’s path through the network

=> How each router builds its forwarding table




Routing is the process of updating forwarding tables
— Routers exchange messages about networks they can reach



Routing is the process of updating forwarding tables
— Routers exchange messages about networks they can reach

Goal: find optimal route (or any route...) for
every other destination

This is a hard problem
— Decentralized
— Topology always changing
— Scale!




Map of th
OPTE pro

34



How do we connect everything?

Relies on hierarchical nature of IP addressing

* Smaller routers don’t need to know everything, just
another router that knows more

— Has default route

» Core routers know everything => no default!



A forwarding table (my laptop)

deemer@ceres ~ % ip route

default via 10.3.128.1 dev wlp2s@

10.3.128.0/18 dev wlp2s@ proto dhcp scope link src 10.3.135.44 metric 3003
172.18.0.0/16 dev docker® proto kernel scope link src 172.18.0.1
192.168.1.0/24 dev enp@s31f6 proto kernel scope link src 192.168.1.1

36



A large table

rviews@route-server.ip.att.net>show route table inet.® active-path

inet.@: 866991 destinations, 13870153 routes (866991 active, 0@ holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both
0.0.0.0/0 *[Static/5] 5w@d 19:43:09
> to 12.0.1.1 via em@.0
1.0.0.0/24 *[BGP/170] 1d 10:24:47, localpref 100, from 12.122.83.238
AS path: 7018 3356 13335 I, validation-state: valid
> to 12.0.1.1 via em@.0
1.0.4.0/22 *[BGP/170] 1d 10:24:47, localpref 100, from 12.122.83.238
AS path: 7018 3356 4826 38803 I, validation-state: valid
> to 12.0.1.1 via emd.0
1.0.4.0/24 *[BGP/170] 1d 10:24:47, localpref 100, from 12.122.83.238
AS path: 7018 3356 4826 38803 I, validation-state: valid
> to 12.0.1.1 via em@.0
1.0.5.0/24 *[BGP/170] 1d 10:24:47, localpref 100, from 12.122.83.238
AS path: 7018 3356 4826 38803 I, validation-state: valid
> to 12.0.1.1 via em@.0
1.0.6.0/24 *[BGP/170] 1d 10:24:47, localpref 100, from 12.122.83.238

AS path:
s to 172 0

7018 3356 4826 38803 I, validation-state: valid 37
1 1 via em@® 0



Thinking about the scale

At this stage, we think about routing to whole networks,
ie, some entity with some set of IP prefixes:

eg. Brown University @ 128.148.0.0/16, 138.16.0.0/16



Thinking about the scale

At this stage, we think about routing to whole networks,
ie, some entity with some set of IP prefixes:

eg. Brown University @ 128.148.0.0/16, 138.16.0.0/16

We call each entity an Autonomous System (AS):
a single administrative domain that lives on the Internet




Routing is organized in two levels:
* Intra-domain (interior) routing: routing within an AS

* Inter-domain (exterior) routing: routing between ASes



Routing is organized in two levels:
* Intra-domain (interior) routing: routing within an AS

=> Full knowledge of the network inside the AS

=> One administrator, routing policy
=> Strive for optimal paths

* Inter-domain (exterior) routing: routing between ASes
=> None of the above, decisions instead made by policy (later)



Intra-Domain (Interior) Routing



Typically, view network as a graph
* Nodes are routers

» Assign some cost to each edge
— latency, b/w, queue length, ...

Goal: find lowest-cost path between nodes
— Each node individually computes routes



Typically, view network as a graph
* Nodes are routers

» Assign some cost to each edge
— latency, b/w, queue length, ...

Goal: find lowest-cost path between nodes
— Each node individually computes routes

Collect routes into a routing table, used to generate the
forwarding table based on lowest-cost path




Generally: routing algorithms are decentralized



Generally: routing algorithms are decentralized

=>In general, no one entity telling routers what routes to use

=> Even for "interior” routing, where there is one admin, routers independently
compute how to update their tables based on latest info from other routers



Two classes of intra-domain routing algorithms

Distance Vector (Bellman-Ford shortest path algorithm)

Link State (Djikstra/Prim shortest path algorithm)




Two classes of intra-domain routing algorithms

Distance Vector (Bellman-Ford shortest path algorithm)
— Idea: routers get updates from their neighbors

Link State (Djikstra/Prim shortest path algorithm)




Distance Vector Routing

* Each node maintains a routing table

» Exchange updates with neighbors
about node’s links:
=> List of <Destination, Cost> pairs



Distance Vector Routing

« Each node maintains a routing table

» Exchange updates with neighbors
about node’s links:
=> List of <Destination, Cost> pairs

* When to send updates?
— Periodically (seconds to minutes)

— Whenever table changes (triggered update)
— Time out an entry if no updates within some time interval



Distance Vector Routing

« Each node maintains a routing table

» Exchange updates with neighbors
about node’s links:
=> List of <Destination, Cost> pairs

* When to send updates?
— Periodically (seconds to minutes)

— Whenever table changes (triggered update)
— Time out an entry if no updates within some time interval



Distance Vector: Update rules

Say router R receives an update <D, cp> from neighbor N at
cost C

=> Know: R can reach D via N with cost ¢ = ¢y + ¢,

How to update table?
f D not in table, add <D, ¢, N> (New route!)
If table has entry <D, M, c_,4>:

1.
2.

if ¢ < c,q: update table to <D, ¢, M>. (Lower cost!)

if c > c,gand M == N: update table to <D, ¢, N> (Cost increased!)
if c > cogand M !I= N: ignore (N is better)

if c == c,yand M ==N: no change (No new info)

(Just refresh timeout)



DV Example
@eAa




DV Example

B’s routing table

Dest. Cost | Next




Warmup

Suppose router R has the following table:

What happens when it gets [FDest. | Cost
this update from router S?




Dealing with Failures

» What happens when the D-A link fails?




How to avoid loops

* Does IP TTL help?

» Simple approach: consider a small cost n (e.g., 16) to be
infinity
— After n rounds decide node is unavailable

— But rounds can be long, this takes time

Problem: distance vector based only on local information



One way: Split Horizon

* When sending updates to node A, don't include routes you
learned from A

* Prevents B and C from sending cost 2 to A



Split Horizon + Poison Reverse

« Rather than not advertising routes learned from A, explicitly
include cost of .

 Faster to break out of loops, but increases advertisement sizes



Distance-vector updates

Even with split horizon + poison reverse,
can still create loops with >2 nodes (DA

What else can we do?

» Triggered updates: send update as soon as link state
changes

* Hold down: delay using new routes for certain time, affects
convergence time




Practice

B’s routing table

Routers A,B,C,D use RIP. When B sends a periodic update to A, what
does it send...

* When using standard RIP?
*  When using split horizon + poison reverse?



Dealing with failures

» What happens when the D-A link fails?



Link State Routing



Link State Routing

» Strategy:

— send to all nodes information about directly connected
neighbors

e Link State Packet (LSP)
— ID of the node that created the LSP

— Cost of link to each directly connected neighbor
— Sequence number (SEQNO)

- TTL



Reliable Flooding

« Store most recent LSP from each node
— Ignore earlier versions of the same LSP

 Forward LSP to all nodes but the one that sent it

* Generate new LSP periodically
— Increment SEQNO

e Start at SEQNO=0 when reboot

— If you hear your own packet with SEQNO=n, set your next SEQNO
to n+1

e Decrement TTL of each stored LSP
— Discard when TTL=0



Calculating best path

» Djikstra’s single-source shortest path algorithm
— Each node computes shortest paths from itself

I =Y

— N denote set of nodes in the graph

— I(i,j) denote the non-negative link between i,j
* o if there is no direct link between i and |

— s denotes yourself (node computing paths)
— C(n) denote the cost of path from s to n

e |nitialize variables

— M = {s} (set of nodes incorporated thus far)
— For each nin N-{s}, C(n) = I(s,n)
— Next(n) = n if I(s,n) < e, — otherwise



Djikstra’s Algorithm

 While N#M
— Let w €(N-M) be the node with lowest C(w)
— M=MuU {w}
— Foreach n € (N-M), if C(w) + [(w,n) < C(n)
then C(n) = C(w) + I(w,n), Next(n) = Next(w)

« Example: D: (D,0,-) (C,2,C) (B,5,C) (A,10,C)




Distance Vector vs. Link State

» # of messages (per node)

— DV: O(d), where d is degree of node
— LS: O(nd) for n nodes in system

» Computation
— DV: convergence time varies (e.g., count-to-infinity)
— LS: O(n?) with O(nd) messages
* Robustness: what happens with maltfunctioning router?

— DV: Nodes can advertise incorrect path cost, which propagates
through network

— LS: Nodes can advertise incorrect link cost



Metrics

* Original ARPANET metric

— measures number of packets enqueued in each link
— neither latency nor bandwidth in consideration

New ARPANET metric

— Stamp arrival time (AT) and departure time (DT)

— When link-level ACK arrives, compute
Delay = (DT — AT) + Transmit + Latency

— If timeout, reset DT to departure time for retransmission
— Link cost = average delay over some time period
* Fine Tuning
— Compressed dynamic range
— Replaced Delay with link utilization

» Today: commonly set manually to achieve specific goals



Examples

* RIPv2

— Fairly simple implementation of DV
— RFC 2453 (38 pages)

» OSPF (Open Shortest Path First)

— More complex link-state protocol

— Adds notion of areas for scalability
— RFC 2328 (244 pages)

 |SIS (Intermediate System to Intermediate System)
— OSl standard (210 pages)
— Link-state protocol (similar to OSPF)
— Does not depend on IP



OSPFv2

* Link state protocol

* Runs directly over IP (protocol 89)
— Must provide its own reliability

» All exchanges are authenticated
» Adds notion of areas for scalability



OSPF Areas

» Area 0 is “backbone” area (includes all boundary routers)
 Traffic between two areas must always go through area O
* Only need to know how to route exactly within area

» Otherwise, just route to the appropriate area

 Tradeoft: scalability versus optimal routes



OSPF Areas

. Boundary router

Pt ‘-"-.:"
AJ\ o Backbone
. - router

r .Vh._ -"l

border
routers

S,

Internal
routers




RIPvZ

* Runs on UDP port 520
— (IP assignment: directly in IP, protocol 200)
* Link cost =1
* Periodic updates every 30s, plus triggered updates
* Relies on count-to-intinity to resolve loops

— Maximum diameter 15 (0 = 16)
— Supports split horizon, poison reverse

» Deletion
— If you receive an entry with metric = 16 from parent OR
— If a route times out




Packet format

0 1 2 3
01234567890123456789012345678901
+—t—t—t—t—t—t—t—t—t—t—F—t—t—F—t—t—F—t—t—F—t—t—F—F—t—F—F—F—F—+—+—+

| command (1) | version (1) | must be zero (2)




RIPvZ Entry

0 1 2 3

01234567890123456789012345678901
+—t—t—t—t—F—t—t—F—t—t—F—t—t—F—t—t—F—t—t—F—F—t—F—F—t—F—F—t—F—F—+—+

| address family identifier (2) | Route Tag (2)




Route Tag field

» Allows RIP nodes to distinguish internal and external
routes

* Must persist across announcements
* E.g., encode AS



Next Hop field

» Allows one router to advertise routes for multiple routers
on the same subnet

* Suppose only XR1 talks RIPv2:

| XR1| | XR2| | XR3 |




Adapting to Failures

«  F-Gfails

« F sets distance to G to infinity, propagates

« A sets distance to G to infinity

* Areceives periodic update from C with 2-hop path to G
* Asets distance to G to 3 and propagates

* F sets distance to G to 4, through A



Count-to-Infinity

 Link from A to E fails

* A advertises distance of infinity to E

« B and C advertise a distance of 2 to E

* B decides it can reach E in 3 hops through C

* A decides it can reach E in 4 hops through B

« C decides it can reach E in 5 hops througn A, ...
*  When does this stop?




Good news travels fast

B
A C
10

« A decrease in link cost must be fresh information

* Network converges at most in O(diameter) steps



Bad news travels slowly

B
A C
10

* Anincrease in cost may cause confusion with old information, may form loops
« Consider routes to A

« Initially, B:A,4,A; C:A,5,B

* Then B:A,12,A, selects C as next hop -> B:A,6,C

« C->A,/7B;:B->A8,C;C->A,9B;B->A,10,C;

e Cfinally chooses C:A,10,A, and B -> A,11,C!




Next Class

* Inter-domain routing: how scale routing to the entire
Internet



|IP Connectivity

For each destination address, a router must either:

— Have matching prefix in its forwarding table
— Know a “smarter router”, ie default route for unknown prefixes

» Core routers know everything => no default route!
* Manage using notion of Autonomous System (AS)



Scaling Issues

Problem: Every router must be able to forward based on
any destination |IP address

— Map destination address => next hop

— Could we have one entry per IP? No!

Solutions
— Leverage hierarchy in network topology
— Address aggregation

 Address allocation is very important (should mirror topology)
— Detault routes



Autonomous Systems (ASes)

» Correspond to an administrative domain

— AS's reflect organization of the Internet
— E.g., Brown, large company, etc.
— |dentified by a 16-bit number (now 32)
* QGoals
— AS'’s choose their own local routing algorithm

— AS's want to set policies about non-local routing
— AS’s need not reveal internal topology of their network



Internet structure, 1990

@ NSENET backbone @
BARRNET MidNet
regional Westnet e regional
regional -

O T o @D G

» Several independent organizations
* Hierarchical structure with single backbone




Internet structure, today

Large corporation
Small
corporation

* Multiple backbones, more arbitrary structure




