
CSCI-1680
Transport Layer Warmup (ish)

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Jennifer Rexford, Rob Sherwood, David Mazières, Phil Levis, John Jannotti

Administrivia: This week

• IP: Due Thursday
– Signups for grading meetings after that
– Look for a feedback form

Administrivia: This week

• IP: Due Thursday
– Signups for grading meetings after that
– Look for a feedback form
– Code cleanup, README, etc after deadline is okay

Administrivia: This week

• IP: Due Thursday
– Signups for grading meetings after that
– Code cleanup, README, etc after deadline is okay
– Look for a feedback form

• HW2: Out today, due in >1wk

• TCP: Out on Friday
– New team form this week (you MAY keep the same team)

Warmup

XA Y Z

B C D

Customer (“A is customer of X”)

Peer

Given the following AS relationships,
Which ASes will A know about?

Advertised by… Export to…

Customer Everyone

Peer Customers only

Provider Customers only

Warmup II

XA Y

B C

What happens if C suddenly starts advertising A’s prefix?

Recap: Prefix hijacking

By default, BGP doesn’t verify that advertised routes match
their owners

Update: “I can reach prefix 128.148.0.0/16
 hrough ASes 44444 3356 14325 11078”

Recap: Prefix hijacking

By default, BGP doesn’t verify that advertised routes match
their owners

Update: “I can reach prefix 128.148.0.0/16
 hrough ASes 44444 3356 14325 11078”

BGP router should ask:
 “Should AS11078 be originating 138.16.161.0/24?”

Recap: Prefix hijacking

By default, BGP doesn’t verify that advertised routes match
their owners

Update: “I can reach prefix 128.148.0.0/16
 hrough ASes 44444 3356 14325 11078”

=> Not part of BGP by default. Standards have evolved to help, but
adoption is limited.

BGP router should ask:
 “Should AS11078 be originating 138.16.161.0/24?”

A modern way: RPKI

Leverages hierarchy of how IPs are allocated:
• Every AS adds a signature of its route info in database, signed

by authority that allocates addresses
=> ROA (Route Origin Authorization)

• Other ASes can verify ROA signature using cryptography,
making it hard to forge

A modern way: RPKI

Leverages hierarchy of how IPs are allocated:
• Every AS adds a signature of its route info in database, signed by

authority that allocates addresses
=> ROA (Route Origin Authorization)

• Other ASes can verify ROA signature using cryptography, making it
hard to forge

• Can avoid

– Prefix hijacking
– Addition, removal, or reordering of intermediate ASes

ROAs for OSHEAN (Brown’s provider)

ROAs for Brown

😭

RPKI deployment (2022)

RPKI deployment (2024)

This week

• Start of transport layer
• Intro to TCP

One more fun BGP thing…

Anycast

Advertise the same prefix (IP) from multiple places
=> Multiple devices have the same IP!!

• Used to make certain IPs highly available
– Public DNS: 8.8.8.8 (Google), 1.1.1.1 (Cloudflare)

Anycast

Advertise the same prefix (IP) from multiple places
=> Multiple devices have the same IP!!

• Used to make certain IPs highly available
– Public DNS: 8.8.8.8 (Google), 1.1.1.1 (Cloudflare)

Problems?

Anycast

Advertise the same prefix (IP) from multiple places
=> Multiple devices have the same IP!!

• Used to make certain IPs highly available
– Public DNS: 8.8.8.8 (Google), 1.1.1.1 (Cloudflare)

=> If you send multiple packets to 8.8.8.8, no guarantee you’re
talking to the same server!
=> Protocol must be able to account for this
 (DNS does, more on this later)

Intro to TCP: Ports and Sockets

The story so far
Network layer (L3): move packets between hosts
 (anywhere on Internet)

Layers, Services, Protocols

Network

Link

Physical

Transport

Application

Service: move bits to other node across link

Move data across individual links

Moving data between hosts (nodes)

How to support multiple applications?

Service: user-facing application.
Application-defined messages

The transport layer: a service provided for applications, usually
part of the OS

Examples: TCP, UDP

Transport Protocol Review

!

"#$

#%$ &'$

($

)*#+)*#,)*#!

-##$). #"#$

• Transport protocols sit on top of the network layer (IP)

• Can provide:
- Application-level multiplexing (“ports”)

- Error detection, reliability, etc.

The transport layer: a service provided for applications, usually
part of the OS

Examples: TCP, UDP

Transport Protocol Review

!

"#$

#%$ &'$

($

)*#+)*#,)*#!

-##$). #"#$

• Transport protocols sit on top of the network layer (IP)

• Can provide:
- Application-level multiplexing (“ports”)

- Error detection, reliability, etc.

Major challenges
• Multiplexing: multiple connections at

same IP
• Messaging: packets ?= messages

TCP is one transport-layer protocol
=> Provides a reliable, connection-oriented, byte stream

TCP: a reliable, connection-oriented, byte stream

Today’s focus: connections

TCP: a reliable, connection-oriented, byte stream

Today’s focus: connections

More generally: how does the OS support multiple applications
using the network?
 => Not just about TCP!

How to support multiple applications?

Multiplexing multiple connections at the same IP using port
numbers
 => Provided by OS as sockets
 => In general, used by all transport-layer protocols

What’s a port number?

• 16-bit unsigned integer, 0-65535
• Ports define a communication endpoint, usually a

process/service on the host

What’s a port number?

• 16-bit unsigned integer, 0-65535
• Ports define a communication endpoint, usually a

process/service on the host
• OS keeps track of which ports map to which applications

Port numbering
• port < 1024: “Well known port numbers”
• port > 20000: “ephemeral ports”, for general app use

Ports are part of the transport layer

Port numbers are the first two fields of these headers! (Not
part of IP!)

UDP TCP

Some common ports

Port Service

20, 21 File Transfer Protocol (FTP)
22 Secure Shell (SSH)
23 Telnet (pre-SSH remote login)
25 SMTP (Email)
53 Domain Name System (DNS)

67, 68 DHCP
80 HTTP (Web traffic)

443 HTTPS (Secure HTTP over TLS)

Ports and connections in TCP

func main() {
 listenConn, err := net.Listen(“tcp”, “127.0.0.1:5000”)

 for {
 clientConn, err := listenConn.Accept()

 go handleClient(clientConn)
 }
}

Think back to Snowcast:

Ports and connections in TCP

To implement TCP, we need:
• Wait for new connections

• Individual connections between server and client
=> Separate data streams for multiple clients at a time!

How ports/sockets work

Two modes for using ports/sockets
• Listen (or “passive”) mode

• Normal (or “active”) mode

*: Nick made this term up so it has a name

How ports/sockets work

Two modes for using ports/sockets
• Listen (or “passive”) mode: apps “bind” to a port to accept new

connections

• Normal (or “active”) mode: a specific connection to another socket
(probably on a different system)

*: Nick made this term up so it has a name

How ports work

The kernel maps ports to sockets, which are used in applications like
file descriptors to access the network

Two modes for using ports/sockets:
• Listen mode: apps “bind” to a port to accept new connections
 => Used to receive/wait for new connections

• “Normal” mode*: make a connection to another socket
 => Used to make outgoing connections

*: Nick made this term up so it has a name

A
1.2.3.4

B
5.6.7.8

listen(80)

A
1.2.3.4

B
5.6.7.8

listen(80)

Src Dst
IP 1.2.3.4 5.6.7.8
Port 12345 80

connect(1.2.3.4, 80)

A
1.2.3.4

B
5.6.7.8

listen(80)

Src Dst
IP 1.2.3.4 5.6.7.8
Port 12345 80

connect(1.2.3.4, 80)

• A must know B is listening on port 80
 => "well known numbers"!

• When connecting, A's OS picks random source port (eg. 12345),
for its side of connection

A
1.2.3.4

B
5.6.7.8

listen(80)

Src Dst
IP 1.2.3.4 5.6.7.8
Port 12345 80

connect(1.2.3.4, 80)

Src Dst
IP 5.6.7.8 1.2.3.4
Port 80 12345

B responds to A using this port

Demo: netstat

How sockets work

Socket: OS abstraction for a network connection
(like a file descriptor)

Kernel receives all packets => needs to map each packet to a
socket to deliver to app

How sockets work

Socket: OS abstraction for a network connection
(like a file descriptor)

Kernel receives all packets => needs to map each packet to a
socket to deliver to app
• Socket table: list of all open sockets
• Each socket has some kernel state too (buffers, etc.)

You will build this!!!

How to map packets to sockets?

Proto Local (yours) Remote (theirs) Socket

IP Port IP Port

(some struct)

…

Kernel table looks something like this:

How to map packets to sockets?

Proto Local (yours) Remote (theirs) Socket

IP Port IP Port

tcp/udp 10.0.0.1 12345 1.2.3.4 80 (some struct)

10.0.0.1 55444 5.6.7.8 443 (some struct)
... … … …

Kernel table looks something like this:

Key: 5-tuple of (local IP, local port, remote IP, remote port, protocol) Value: kernel state for
socket
(state, buffers, …)

Proto Local (yours) Remote (theirs) Socket

IP Port IP Port

tcp 1.2.3.4 12345 5.6.7.8 80 (normal struct)

tcp * 22 * * (listen struct)
... … … …

Key: 5-tuple of (local IP, local port, remote IP, remote port, protocol) Value: kernel state for
socket
(state, buffers, …)=> For listen sockets, some fields may be blank

What if A does: listen(22)

Netstat

deemer@vesta ~/Development % netstat -an
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 10.3.146.161.51094 104.16.248.249.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51076 172.66.43.67.443 ESTABLISHED
tcp6 0 0 2620:6e:6000:900.51074 2606:4700:3108::.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51065 35.82.230.35.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51055 162.159.136.234.443 ESTABLISHED
tcp4 0 0 10.3.146.161.51038 17.57.147.5.5223 ESTABLISHED
tcp6 0 0 *.51036 *.* LISTEN
tcp4 0 0 *.51036 *.* LISTEN
tcp4 0 0 127.0.0.1.14500 *.* LISTEN

An interface to applications

• Ports define an interface to applications
• If you can connect to the port, you can (usually) use it!

Problems?

Port scanning

What can we learn if we just start connecting to well-known
ports?
• Applications have common port numbers
• Network protocols use well-defined patterns

deemer@vesta ~/Development % nc <IP addr> 22
SSH-2.0-OpenSSH_9.1

Port scanning

What can we learn if we just start connecting to well-known
ports?
• Applications have common port numbers
• Network protocols use well-defined patterns

deemer@vesta ~/Development % nc <IP addr> 22
SSH-2.0-OpenSSH_9.1

ÞCan discover things about the network
ÞCan learn about open (vulnerable) systems

Port scanning

What can we learn if we just start connecting to well-known
ports?
• Applications have common port numbers
• Network protocols use well-defined patterns

deemer@vesta ~/Development % nc <IP addr> 22
SSH-2.0-OpenSSH_9.1

ÞCan discover things about the network
ÞCan learn about open (vulnerable) systems

Port scanners: try to connect to lots of ports, determine
available services, find vulnerable services...

Large-scale port scanning

• Can reveal lots of open/insecure systems!
• Examples:

– shodan.io
– VNC roulette
– Open webcam viewers…
– …

Disclaimer

• Network scanning is easy to detect

• Unless you are the owner of the network, it’s seen as malicious
activity

• If you scan the whole Internet, the whole Internet will get mad at you
(unless done very politely)

Do NOT try this on the Brown network. I warned you.

Internet scanning I have done
• Scanned IPv4 space for ROS (Robot Operating System)
• Found ~200 “things” using ROS (some robots, some

other stuff)

The transport layer MAY provide…
• Reliable data delivery
• Creating a data stream
• Managing throughput/sharing bandwidth

– “Congestion control”

These are provided by TCP, which is our main focus. However:
ÞNot required for all transport layer (UDP has none of these)
ÞOther protocols do this too (eg. QUIC)

From Lec 2: OSI Model

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Application Protocol

Transport Protocol

Network Protocol

Link-Layer Protocol

