CSCI-1680
Transport Layer Warmup (ish)

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, Jennifer Rexford, Rob Sherwood, David Maziéres, Phil Levis, John Jannotti

Administrivia: This week

* |P: Due Thursday

— Signups for grading meetings after that
— Look for a feedback form

Administrivia: This week

* |P: Due Thursday

— Signups for grading meetings after that
— Look for a feedback form

— Code cleanup, README, etc after deadline is okay

Administrivia: This week

* |P: Due Thursday

— Signups for grading meetings after that
— Code cleanup, README, etc after deadline is okay
— Look for a feedback form

« HW2: Out today, due in >Twk

« TCP: Out on Friday

— New team form this week (you MAY keep the same team)

Wa r’Mmu p Customer Everyone

Peer Customers only

Given the following AS relationships, |
Which ASes will A know about? AT OIS Cl

—> Customer (“A is customer of X")

Peer

Warmup 1

What happens if C suddenly starts advertising A's prefix?

Recap: Prefix hijacking

By default, BGP doesn’t verity that advertised routes match
their owners

Update: “I can reach prefix 128.148.0.0/16
hrough ASes 44444 3356 14325 11078”

Recap: Prefix hijacking

By default, BGP doesn't verity that advertised routes match
their owners

Update: “I can reach prefix 128.148.0.0/16
hrough ASes 44444 3356 14325 11078”

BGP router should ask:
“Should AS11078 be originating 138.16.161.0/247?"

Recap: Prefix hijacking

By default, BGP doesn’t verity that advertised routes match
their owners

Update: “I can reach prefix 128.148.0.0/16
hrough ASes 44444 3356 14325 11078”

BGP router should ask:
“Should AS11078 be originating 138.16.161.0/247?"

=> Not part of BGP by default. Standards have evolved to help, but
adoption is limited.

A modern way: RPKI|

AFRINIC

LACNIC

Leverages hierarchy of how IPs are allocated:

» Every AS adds a signature of its route info in database, signed
by authority that allocates addresses

=> ROA (Route Origin Authorization)

» Other ASes can verity ROA signature using cryptography,
making it hard to forge

A modern way: RPKI|

e

AFRINIC

LACNIC

Leverages hierarchy of how IPs are allocated:

« Every AS adds a signature of its route info in database, signed by
authority that allocates addresses

=> ROA (Route Origin Authorization)

» Other ASes can verify ROA signature using cryptography, making it
hard to forge

« (Can avoid
— Prefix hijacking
— Addition, removal, or reordering of intermediate ASes

ROAs for OSHEAN (Brown's provider

Found 4 ROAs and 9 certificates

& ROAs

ASN Prefix Max Length IP Family Trust Anchor Emitted Expiration
AS14325 2607:d00::/32 /64 IPv6 ARIN 8/28/2024 in a month

AS14325 131.109.0.0/16 /24 IPv4 ARIN 8/24/2024 in a month

Trust Anchor RoAfile [EONY

Prefix: 131.109.0.0/16 ARIN

Max Length: /24 Trust Anchor

ASN: 14325

Emitted: Sat, 24 Aug 2024 13:00:41 GMT I i
Validity: Sat, 24 Aug 2024 13:00:41 GMT - Fri, 22 Nov 2024 14:00:41 GMT

Trust Anchor: ARIN a73420cb-b3cc-4b03-bda7-1be204933ae5
Name: 5/622e78-c575-449a-836d-8c3f5e873fd4 1HOAS

Key: e852ddd445bb44252099dd8b7c39d39388bea544 $3609673-5066-4340-ad11-4da8dfb8cT77
Parent Key: 6b3fadc67835654f184fbbaa8e7b2408de32dabb 1 ROAS

Path: rsync://rpki.arin.net/repository/arin-rpki-ta/5e4a23ea-e80a-403e-b08c-2171da2157d3/a73420cb-b3cc-4b03-bda

7-1be204933ae5/f3e09673-5c6e-4340-ad11-4da8dfb8c777/08efbae2-5477-331b-b473-38399917¢289.roa 5f622978'°575'43891j§;6d'8°3f59873fd4

131.109.0.0/16
AS14325

ROASs for Brown

KEY ID: TRUST ANCHOR: PREFIX: PREFIX MATCH:

Resource List Hierarchical View

Found 0 ROAs and 8 certificates

RPKI deployment (2022)

RPKI-ROV Analysis of Unique Prefix-Origin Pairs (IPv4)

Valid: 35.12%

Unique P-O
TOTAL: 996,018

Invalid: 0.74% me— Not-Found : 638,780

Vo Not-Found: 64.13%

I Valid:349,820 Not-Found:638,780 [| Invalid:7,418

RPKI deployment (2024)

RPKI-ROV Analysis of Uniaue Prefix-Origin Pairs (IPv4)

Valid: 53.33%

Unique P-O

TOTAL: 1,055,176

Invalid: 0.50%=—— Valid : 562,751

Not-Found: 46.17%

M Valid:562,751 Not-Found:487,192 B Invalid:5,233

NIST RPKI Monitor: RPKI-ROV Analysis Protocol: IPv4 RIR: All Date: 2024-10-15 00:00
URL: https://rpki-monitor.antd.nist.gov/ROV#div1

This week

» Start of transport layer
* Intro to TCP

One more fun BGP thing...

Anycast

Advertise the same prefix (IP) from multiple places
=> Multiple devices have the same IP!!

» Used to make certain IPs highly available
— Public DNS: 8.8.8.8 (Google), 1.1.1.1 (Cloudflare)

Anycast

Advertise the same prefix (IP) from multiple places
=> Multiple devices have the same IP!!

» Used to make certain IPs highly available
— Public DNS: 8.8.8.8 (Google), 1.1.1.1 (Cloudflare)

[Problems? }

Anycast

Advertise the same prefix (IP) from multiple places
=> Multiple devices have the same IP!!

» Used to make certain IPs highly available
— Public DNS: 8.8.8.8 (Google), 1.1.1.1 (Cloudflare)

=> |t you send multiple packets to 8.8.8.8, no guarantee you're
talking to the same server!
=> Protocol must be able to account for this

K(DNS does, more on this later)

~

Intro to TCP: Ports and Sockets

The story so far

Network layer (L3): move packets between hosts
(anywhere on Internet)

16

0 4 8
— ldentification _[Fiags| Fromentoffset

Layers, Services, Protocols

Application

Transport How to support multiple applications?

Network Moving data between hosts (nodes)

Link Move data across individual links

Service: move bits to other node across link

Physical

The transport layer: a service provided for applications, usually
part of the OS

ARy Ay Ay Ay
FTP HTTP NV TFTP

Examples: TCP, UDP

The transport layer: a service provided for applications, usually
part of the OS

ARy Ay Ay Ay
FTP HTTP NV

Examples: TCP, UDP

Major challenges

* Multiplexing: multiple connections at
same [P

* Messaging: packets 7= messages

TCP is one transport-layer protocol
=> Provides a reliable, connection-oriented, byte stream

TCP: a reliable, connection-oriented, byte stream

Today's focus: connections

TCP: a reliable, connection-oriented, byte stream

Today's focus: connections

4 R
More generally: how does the OS support multiple applications

using the network?

=> Not just about TCP!
_ v

How to support multiple applications?

Multiplexing multiple connections at the same IP using port
numbers

=> Provided by OS as sockets
=> |n general, used by all transport-layer protocols

What's a port number?

* 16-bit unsigned integer, 0-65535

» Ports define a communication endpoint, usually a
process/service on the host

What's a port number?

* 16-bit unsigned integer, 0-65535

» Ports define a communication endpoint, usually a
process/service on the host

» OS keeps track of which ports map to which applications

Port numbering
port < 1024: "Well known port numbers”
port > 20000: “ephemeral ports”, for general app use

Ports are part of the transport layer

UDP TCP

0 31 0

UDP Length UDP Checksum Sequence Number
Acknowledgement Number
Data RIS
Giteat| Reserved |AE BRI winaowsize

Port numbers are the first two fields of these headers! (Not
part of IP!)

Some common ports

Port

Service

File Transfer Protocol (FTP)
Secure Shell (SSH)

Telnet (pre-SSH remote login)
SMTP (Email)

Domain Name System (DNS)
DHCP
HTTP (Web traffic)
HTTPS (Secure HTTP over TLS)

Ports and connections in TCP

Think back to Snowcast:

func main() {
listenConn, err := net.Listen(“tcp”, “127.0.0.1:5000”)

for {
clientConn, err := listenConn.Accept()

go handleClient(clientConn)

Ports and connections in TCP

To implement TCP, we need:
» Wait for new connections

* Individual connections between server and client
=> Separate data streams for multiple clients at a time!

How ports/sockets work

Two modes for using ports/sockets
» Listen (or “passive”) mode

 Normal (or “active”) mode

*: Nick made this term up so it has a name

How ports/sockets work

Two modes for using ports/sockets

» Listen (or “passive”) mode: apps “bind” to a port to accept new
connections

* Normal (or "active”) mode: a specific connection to another socket
(probably on a different system)

*: Nick made this term up so it has a name

How ports work

The kernel maps ports to sockets, which are used in applications like
file descriptors to access the network

Two modes for using ports/sockets:

 Listen mode: apps “bind” to a port to accept new connections
=> Used to receive/wait for new connections

« “Normal” mode*: make a connection to another socket

=> Used to make outgoing connections

*: Nick made this term up so it has a name

listen(80)

connect(1.2.3.4, 80) >

listen(80)

listen(80)
connect(1.2.3.4, 80) >
"+ Amust know B is listening on port 80)

=> "well known numbers"!

* When connecting, A's OS picks random source port (eg. 12345),
_ for its side of connection Y,

connect(1.2.3.4, 80) >

listen(80)

[B responds to A using this port }

Demo: netstat

How sockets work

Socket: OS abstraction for a network connection
(like a tile descriptor)

Kernel receives all packets => needs to map each packet to a
socket to deliver to app

How sockets work

Socket: OS abstraction for a network connection
(like a tile descriptor)

Kernel receives all packets => needs to map each packet to a
socket to deliver to app

» Socket table: list of all open sockets
* Each socket has some kernel state too (buffers, etc.)

[You will build this!!! }

How to map packets to sockets?

Kernel table looks something like this:

Socket

(some struct)

How to map packets to sockets?

Kernel table looks something like this:

Socket

tcp/udp 10.0.0.1 12345 1.2.3.4 80 (some struct)

10.0.0.1 55444 5.6.7.8 443 (some struct)

| |

Key: 5-tuple of (local IP, local port, remote IP, remote port, protocol) VaIlIJ(e:tkerneI state for
socke

(state, buffers, ...)

What if A does: listen(22)

Socket

tcp 1.2.3.4 12345 5.6.7.8 (normal struct)

tcp * 22 * (listen struct)

| |

Key: 5-tuple of (local IP, local port, remote IP, remote port, protocol) VaIlIJ(e:tkerneI state for
socke

[=> For listen sockets, some fields may be blank } (state, buffers, ...)

Netstat

[¢]

deemer@vesta ~/Development % netstat -an

Active Internet connections
Proto Recv-0Q Send-Q

tcp4
tcp4
tcpb
tcp4
tcp4
tcp4
tcpb
tcp4
tcp4

0

O O OO o o o o

0

O O OO o oo o

Local Address
10.3.146.161.51094
10.3.146.161.51076
2620:6e:6000:900.51074
10.3.146.161.51065
10.3.146.161.51055
10.3.146.161.51038
*.51036

*.51036
127.0.0.1.14500

(1ncluding servers)

Foreign Address
104.16.248.249.443
172.66.43.67.443
2606:4700:3108::.443
35.82.230.35.443
162.159.136.234.443
17.57.147.5.5223

k.

k.

* %

(state)
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
LISTEN
LISTEN
LISTEN

An interface to applications

» Ports define an intertace to applications
» |f you can connect to the port, you can (usually) use it!

[Problems? }

Port scanning

What can we learn it we just start connecting to well-known
ports?

» Applications have common port numbers

* Network protocols use well-defined patterns

deemer@vesta ~/Development % nc <IP addr> 22
SSH-2.0-0penSSH_9.1

Port scanning

What can we learn it we just start connecting to well-known
ports?

» Applications have common port numbers

* Network protocols use well-defined patterns

deemer@vesta ~/Development % nc <IP addr> 22
SSH-2.0-0penSSH_9.1

— Can discover things about the network
= Can learn about open (vulnerable) systems

Port scanning

What can we learn it we just start connecting to well-known
ports?

» Applications have common port numbers

* Network protocols use well-defined patterns

deemer@vesta ~/Development % nc <IP addr> 22
SSH-2.0-0penSSH_9.1

— Can discover things about the network
= Can learn about open (vulnerable) systems

Port scanners: try to connect to lots of ports, determine

available services, find vulnerable services...

Large-scale port scanning

» Can reveal lots of open/insecure systems!

» Examples:

— shodan.io
— VNC roulette
— Open webcam viewers...

Disclaimer

» Network scanning is easy to detect

« Unless you are the owner of the network, it's seen as malicious
activity

 |f you scan the whole Internet, the whole Internet will get mad at you
(unless done very politely)

[Do NOT try this on the Brown network. | warned you. }

Internet scanning | have done

» Scanned IPv4 space for ROS (Robot Operating System)

* Found ~200 “things” using ROS (some robots, some
other stuff)

LA
Atawee
fag T8l T T

The transport layer MAY provide...
» Reliable data delivery
* Creating a data stream

* Managing throughput/sharing bandwidth

— “Congestion control”

4 h
These are provided by TCP, which is our main focus. However:

= Not required for all transport layer (UDP has none of these)
= Other protocols do this too (eg. QUIC)

_ %

From Lec 2: OSI Model

End host

— Application Protocol
Application

e

Presentation Presentation

e

Session Session

— Transport Protocol

™ e - = = - - W W W

*Networ rOtOCQ e cm—

Network == mr == == ==

Network Network ~ == Network

+[ink-L yer Protocolmmmes s w—

Data link «= w - - SN Data link == == = «= Data link

Physical Physical ~~— Physical Physical

One or more nodes
within the network

