CSCI-1680
Transport Layer ||

Data over TCP: Flow Control

Nick DeMarinis

Based partly on lecture notes by Rodrigo Fonseca, David Mazieres, Phil Levis, John Jannotti

Administrivia

* TCP Gearup | TONIGHT (10/24) 6-8pm, CIT 368

— How the project works, how to think about sockets
— Stuff you need for milestone 1

Administrivia

* TCP Gearup | TONIGHT (10/24) 6-8pm, CIT 368

— How the project works, how to think about sockets
— Stuff you need for milestone 1

e TCP milestone 1: Schedule on/before Friday, November 1
— Goal: implement sockets, connection setup

e HW2: Due Mon, Oct 28

— Last problem helpful for milestone 1

The story so far

Stop and Wait: Simplest TCP sender/receiver

The story so far

Stop and Wait: Simplest TCP sender/receiver

-

Key features

- SEQ/ACK numbers denote where sender/receiver are in data stream
- Only one segment is “in flight” at a time

Warmup: Stop and Wait

. - —2 (TCP Handshake)
What are the values for the SEQ and ACK fields? : —>
SEQ: 1, ACK: 1, LEN: 5
conn.Write(“hello world”) "hello”
%
SEQ: 1, ACK: _ , WIN: N
<7
SEQ: L, ACK: 1, LEN: 5
“ worl”
—>
SEQ: , ACK: , WIN:
(,
SEQ: , ACK: 1, LEN: 1
Ildll
—>
SEQ: , ACK: . WIN:

Warmup: Stop and Wait

— (TCP Handshake)

€
What are the values for the SEQ and ACK fields? —
SEQ: 1, ACK: 1, LEN: 5
conn.Write(“hello world”) "hello”
%
SEQ: 1, ACK: _ , WIN: N
(,
Key features
- SEQ: Position of this segment in the data
SEQ: , ACK: 1, LEN: 5
stream Y worl”
- ACK: Next sequence number the receiver _ 4
expectf to receive (ACK' N == "| have up to SEQ: ACK: WIN:
(N-1)")
(,
SEQ: , ACK: 1, LEN: 1
Ildll
—>
SEQ: , ACK: . WIN:

Warmup: Stop and Wait

—2 (TCP Handshake)

<
What are the values for the SEQ and ACK fields? —>
SEQ: 1, ACK: 1, LEN: 5
conn.Write(“hello world”) "hello”
%
SEQ: 1, ACK: ___, WIN: 95 N
Key features <
- SEQ: Position of this segment in the data
stream SEQ: ,ACK: 1, LEN: 5
- ACK: Next sequence number the receiver “_worl”
expects to receive (ACK N == "| have up to —1
(N = 1)) SEQ: ,ACK: ___, WIN: 90
. . <«
Advertised window: how much space the SEO. ACK: 1 LEN: 1
receiver has left in its receive buffer g '
=> Window (WIN) field in TCP header —
SEQ: , ACK: , WIN: 89

Topics for today

* Flow control: Sliding window
* Computing RTO
 Connection termination

TCP and buffering

Recall: TCP stack responsibilities

» Sender: breaking application data into segments
* Receiver: receiving segments, reassembling them in order

TCP and buffering

Recall: TCP stack responsibilities
» Sender: breaking application data into segments
* Receiver: receiving segments, reassembling them in order

TCP stack needs to buffer data for both parts
« Sender: data waiting to be sent, not yet ACK'd

* Receiver: data not yet read by app, out-of-order segments

TCP and buffering

Recall: TCP stack responsibilities
» Sender: breaking application data into segments
* Receiver: receiving segments, reassembling them in order

TCP stack needs to buffer data for both parts
« Sender: data waiting to be sent, not yet ACK'd

* Receiver: data not yet read by app, out-of-order segments

Remember: in reality, both sides can send and receive!
=> All sockets have both a send and receive buffer

Sliding window: in abstract terms

* Window of size w
+ Can send at most w packets before waiting for an ACK

Goals
— Network “pipe” always filled with data

— ACKSs come back at rate data is delivered => “self-clocking”

Sender example

Receiver example

Flow Control: Sender

Sending application

Invariants
« LastByteSent — LastByteAcked <= AdvertisedWindow = :
Useful Sliding Wind
« EffectiveWindow = AdvertisedWindow — (BytesInFlight) L'Jl'err;}irl:gog;] ow

« LastByteWritten — LastByteAcked <= MaxSendBuffer RFC 9293 Sec 3.3.1

Flow control: receiver Useful Sliding Window

Terminology:
RFC 9293, Sec 3.3.1

Can accept data if space in window
Available window =

BufferSize— ((NextByteExpected-1) - LastByteRead

On receiving segment for byte S LastByteRead
— if s is outside window, ignore packet

— if s == NextByteExpected:
* Deliver to application (Update LastByteReceived) NextByteExpected LastByteRcvd
* If next segment was early arrival, deliver it too (b)

— If s > NextByteExpected, but within window

* Queue as early arrival

Send ACK for highest contiguous byte received, available window

Initial
sequence

Sequence numbers
(Circumference = 0 to 2*32 slots)

Data received, acknowledged,
but not yet delivered to application

Window
shifts

Receiver's window
(Allocation buffer)
Up to 2*16-1 slots

Some Visualizations

» Normal conditions: https://www.youtube.com/watch?v=zY35xv|8kZA

» With packet loss: https://www.youtube.com/watch?v=I[k27yilTOvU

https://www.youtube.com/watch?v=zY3Sxvj8kZA
https://www.youtube.com/watch?v=lk27yiITOvU

What happens if the receiving app never reads from its buffer?

L]
P
b

TC
Send buffer

Transmit segments

What happens if the receiving app never reads from its buffer?

L]
P
b

TC
Send buffer

Transmit segments

4 I

= Receive bufter fills up => Advertised window drops to 0
= Send buffer fills up

= Eventually, sending app can’t send anymore

N i

What happens if the receiving app never reads from its buffer?

Problem: need a way for sender to know when space is available
again!

What happens if the receiving app never reads from its buffer?

Problem: need a way for sender to know when space is available
again!

Resolution: zero window probing

— Sender periodically sends 1-byte segments

— Receiver sends back ACK with advertised window (even if it has no room
for segment

What happens if the receiving app never reads from its buffer?

Problem: need a way for sender to know when space is available
again!

Resolution: zero window probing

— Sender periodically sends 1-byte segments

— Receiver sends back ACK with advertised window (even if it has no room
for segment

— Sender can resume sending when win != 0O (preferably when win >= MSS)

TCP State Diagram

ceeveeneen. e UNusual event
————> client/receiver path (Start) _ P ORI

———> server/sender path LISTEN/-¢

T TR
i CLOSE/-

(St 2 of the 3- -handshake) SYN/SYN+ACK
ep o e way-handshake | LISTEN |

.

RST- SEND/SYN

SYN :
RECEIVED | <o SYNSYNFACK (simultancous open)

Data exchange occurs
SYN+ACK/ACK

- (Step 3 of the 3-way-handshake)

.
v

{ CLOSE/FIN
‘ CLOSE/FIN FINJACK

| Active CLOSE| |Passive CLOSE|-
\
| CLOSEWAIT |

FIN/ACK

| FIN WAIT 1

CLOSING |
FIN+ACK/ACK :

£ ACK- CLOSE/FIN

| Y
FIN/ACK

Timeout

How do ACKs work?

* ACK contains next expected sequence number

« Sender: if one segment is missed but new ones received, send
duplicate ACK

* Receiver retransmits when:
— Receive timeout (RTO) expires
— Possibly other conditions, for certain TCP variants (eg. 3 dup ACKs)

e How to set RTO?

What's a good timeout value?
- 0.5s? 157 0.01s?

What's a good timeout value?
- 0.5s? 157 0.01s?

=> |f timeout too short, packet might still be in flight (network latency, etc.)

=> |f timeout too long, affects throughput

What's a good timeout value?
- 0.5s? 157 0.01s?

=> |f timeout too short, packet might still be in flight (network latency, etc.)

=> |f timeout too long, affects throughput

£=> How long should it take a packet to arrive at other side? }

What's a good timeout value?
- 0.5s? 157 0.01s?

=> |f timeout too short, packet might still be in flight (network latency, etc.)

=> |f timeout too long, affects throughput

a A

= How long should it take a packet to arrive at other side?

1RTT!
=>Can measure RTT, use to set RTO

_ %

Computing RTO

Strategy: measure expected RTT based on ACKs received
— Use exponentially weighted moving average (EWMA)

Computing RTO

Strategy: measure expected RTT based on ACKs received

Use exponentially weighted moving average (EWMA)

« RFC793 version (“smoothed RTT"):

SRTT = (O(* SRTTLast) + (1 - O()* RTTI\/Ieasured
RTO = max(RTOp;in, min(B * SRTT, RTOpay)

a = “Smoothing factor”: .8-.9
B = “Delay variance factor”: 1.3—2.0

RTOw:, = 1 second
RFC793, Sec 3.7

RFC6298 (slightly more complicated,
also measures variance)

Using the RTO timer

Recommended by RFC6298

« Maintain ONE timer per connection

* When segment is sent => set timer to expire after tgro
* When ACK is received with new data, reset the timer

Using the RTO timer

Recommended by RFC6298

« Maintain ONE timer per connection

* When segment is sent => set timer to expire after tgro
* When ACK is received with new data, reset the timer

When the timer expires:
* Retransmit earliest unacknowledged segment
* RTO =2 *RTO (up to some max)

* If no data after N retransmissions => give up, terminate
connection

This is only the beginning...

* Problem 1: what it ACK is for a retransmitted segment?

— Solution: don’t update RTT it segment was retransmitted

* Problem 2: RTT can have high variance
— Initial implementation doesn’t account for this (modern version, RFC6298)
— Congestion control: modeling network load

